-
Notifications
You must be signed in to change notification settings - Fork 1
/
late_fusion_imgtabtext.py
177 lines (148 loc) · 5.4 KB
/
late_fusion_imgtabtext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
import pandas as pd
import tensorflow as tf
import os
import keras
from keras.models import Sequential, Model
from keras.layers import GlobalAveragePooling2D, Dense, Input, Dropout, concatenate
from keras.applications.vgg16 import VGG16
from keras.preprocessing.text import Tokenizer
from sklearn.model_selection import train_test_split
from data_generator import TextMultimodalDataGenerator
from math import ceil
import datetime
# If using Nvidia gpu and running into memory issues
# gpus = tf.config.experimental.list_physical_devices('GPU')
# tf.config.experimental.set_memory_growth(gpus[0], True)
# tf.TF_ENABLE_GPU_GARBAGE_COLLECTION=False
BATCH_SIZE = 32
IMAGE_SIZE = 224
DROPOUT_PROB = 0.2
DATASET_PATH = "data/"
LOG_PATH = "log/"
TABULAR_COLS = ['gender', 'masterCategory', 'subCategory', 'articleType', 'baseColour', 'usage']
log_name = LOG_PATH + str(datetime.datetime.today().strftime("%Y%m%d%H%M%S")) + ".txt"
# Read CSV file
df = pd.read_csv(DATASET_PATH + "balanced_sorted.csv", nrows=100, error_bad_lines=False)
# Image and Tabular pre-processing
df['image'] = df.apply(lambda row: str(row['id']) + ".jpg", axis=1)
df['usage'] = df['usage'].astype('str')
images = df['image']
tabular = pd.get_dummies(df[TABULAR_COLS])
labels = pd.get_dummies(df['season'])
NUM_CLASSES = len(labels.columns)
dummy_tabular_cols = tabular.columns
dummy_labels_cols = labels.columns
# Text pre-processing
vocab_filename = 'data/vocab.txt'
file = open(vocab_filename, 'r')
vocab = file.read()
file.close()
vocab = vocab.split()
vocab = set(vocab)
sentences = df['productDisplayName'].astype('str').values.tolist()
usage = pd.get_dummies(df['season'])
usage = usage.values.tolist()
tokenizer = Tokenizer()
tokenizer.fit_on_texts(sentences)
text = pd.DataFrame(tokenizer.texts_to_matrix(sentences, mode='tfidf'))
dummy_text_cols = text.columns
data = pd.concat([ images, tabular, text, labels ], axis=1)
train, test = train_test_split(
data,
random_state=42,
shuffle=True,
stratify=labels
)
train = train.reset_index(drop=True)
test = test.reset_index(drop=True)
train_images = train['image']
train_tabular = train[dummy_tabular_cols]
train_text = train[dummy_text_cols]
train_labels = train[dummy_labels_cols]
training_generator = TextMultimodalDataGenerator(
train_images,
train_tabular,
train_text,
train_labels,
batch_size=BATCH_SIZE,
target_size=(IMAGE_SIZE, IMAGE_SIZE),
directory=DATASET_PATH + "images/"
)
test_images = test['image']
test_tabular = test[dummy_tabular_cols]
test_text = test[dummy_text_cols]
test_labels = test[dummy_labels_cols]
test_generator = TextMultimodalDataGenerator(
test_images,
test_tabular,
test_text,
test_labels,
batch_size=BATCH_SIZE,
target_size=(IMAGE_SIZE, IMAGE_SIZE),
directory=DATASET_PATH + "images/"
)
# Build image model
base_model1 = VGG16(weights='imagenet', include_top=False, input_shape=(IMAGE_SIZE, IMAGE_SIZE, 3))
for layer in base_model1.layers:
layer.trainable = False
x1 = base_model1.output
x1 = GlobalAveragePooling2D()(x1)
x1 = Dropout(DROPOUT_PROB)(x1)
log_file = open(log_name, 'w')
log_file.write('VGG/Tabular Late Fusion \n')
base_model1.summary(print_fn=lambda x: log_file.write(x + '\n\n'))
# Build tabular model
base_model2 = Sequential()
base_model2.add(Dense(12, input_dim=len(dummy_tabular_cols), activation='relu'))
base_model2.add(Dropout(DROPOUT_PROB))
base_model2.add(Dense(8, activation='relu'))
base_model2.add(Dropout(DROPOUT_PROB))
base_model2.add(Dense(NUM_CLASSES, activation='softmax'))
base_model2.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
base_model2.summary(print_fn=lambda x: log_file.write(x + '\n\n'))
x2 = base_model2.output
# Build text model
n_words = text.shape[1]
base_model3 = Sequential()
base_model3.add(Dense(50, input_shape=(n_words,), activation='relu'))
base_model3.add(Dense(4, activation='sigmoid'))
base_model3.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
base_model3.summary(print_fn=lambda x: log_file.write(x + '\n\n'))
x3 = base_model3.output
# LATE FUSION
x = concatenate([x1, x2, x3])
x = Sequential()(x)
x = Dense(x.shape[1], activation='relu')(x) #12
x = Dropout(DROPOUT_PROB)(x)
x = Dense(ceil(x.shape[1]/2), activation='relu')(x) #8
x = Dropout(DROPOUT_PROB)(x)
predictions = Dense(NUM_CLASSES, activation='softmax')(x)
model = Model(inputs=[base_model1.input, base_model2.input, base_model3.input], outputs=predictions) # Inputs go into two different layers
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
print(model.summary())
summary = model.summary(print_fn=lambda x: log_file.write(x + '\n'))
callbacks = [
keras.callbacks.EarlyStopping(
# Stop training when `val_loss` is no longer improving
monitor='val_loss',
# "no longer improving" being defined as "no better than 1e-2 less"
min_delta=1e-2,
# "no longer improving" being further defined as "for at least 2 epochs"
patience=2,
verbose=1)
]
history = model.fit_generator(
generator=training_generator,
steps_per_epoch=ceil(0.75 * (df.size / BATCH_SIZE)),
validation_data=test_generator,
validation_steps=ceil(0.25 * (df.size / BATCH_SIZE)),
epochs=10,
callbacks=callbacks,
verbose=1
)
hist_df = pd.DataFrame(history.history)
log_file.close()
hist_df.to_csv(log_name, mode='a', header=True)
model.save('weights/late_fusion.h5')
log_file.close()