forked from xingyaochen/bee
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflower_analysis.Rmd
105 lines (92 loc) · 2.64 KB
/
flower_analysis.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
title: "Initial Analysis of White Sage Data"
author: "Xingyao Chen"
date: "6/20/2017"
output:
html_document: default
pdf_document: default
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(cache = TRUE)
# install.packages('gsheet')
# install.packages("ggplot2")
# install.packages("reshape2")
#install.packages("devtools")
#install_github("ggobi/ggally")
library(devtools)
library(ggplot2)
library(GGally)
library(reshape2)
library(gsheet)
```
## Load in the clean dataset
```{r}
setwd('~/bee/')
mydat_small=read.csv('pollinator_visitation_fullData.csv')
```
##Plot Honeybees vs. Explainatory variable, with groupings
```{r}
ggplot(mydat_small, aes(x=Total.inflorescenses, y=Honeybees, color=Size, group=Pair))+
geom_line(color='gray')+
geom_point()+
facet_wrap(~Date)+
theme_bw()
ggplot(mydat_small, aes(x=Avg.open.flowers.per.inflorescence, y=Honeybees, color=Size, group=Pair))+
geom_line(color='gray')+
geom_point()+
facet_wrap(~Date)+
theme_bw()
ggplot(mydat_small, aes(x=Total.Flowers, y=Honeybees, color=Size, group=Pair))+
geom_line(color='gray')+
geom_point()+
facet_wrap(~Date)+
labs(x="Total Flowers")+
theme_bw()
ggplot(mydat_small, aes(x=Sugar_conc, y=Honeybees, group=Pair, color=Size))+
geom_point()+
geom_line(color='gray')+
facet_wrap(~Date)+
theme_bw()
ggplot(mydat_small, aes(x=Sugar_content, y=Honeybees, group=Pair, color=Size))+
geom_point()+
geom_line(color='gray')+
facet_wrap(~Date)+
theme_bw()
ggplot(mydat_small, aes(x=Volume, y=Honeybees, group=Pair, color=Size))+
geom_point()+
geom_line(color='gray')+
facet_wrap(~Date)+
theme_bw()
```
#Load in the raw nectar data from Gdrive
```{r}
url='docs.google.com/spreadsheets/d/1LKr8Ken8p1jpTGpbn2a_napP6uNJ4sEnN8gdDSEQGxY/edit#gid=212997740'
nect=read.csv(text=gsheet2text(url, format='csv'))
head(nect)
size=strsplit(as.character(nect$Location), ' ')
df=as.data.frame(t(matrix(unlist(size), 3)))
names(df)=c('non', 'Pair', 'Size')
nect=cbind(nect, df[,2:3])
nect$sugar.concentration=as.numeric(as.character(nect$sugar.concentration))
nect$sugar.content..µg.=as.numeric(as.character(nect$sugar.content..µg.))
#Clean up outliers
nect=nect[which(nect$sugar.concentration<1.9),]
zeros=which(nect$sugar.concentration==0)
nect=nect[-zeros, ]
```
#Make some boxplots
```{r}
ggplot(nect, aes(y=sugar.concentration, x=Pair, fill=Size))+
geom_boxplot()+
facet_wrap(~Date)+
theme_bw()
ggplot(nect, aes(y=sugar.content..µg., x=Pair, fill=Size))+
geom_boxplot()+
facet_wrap(~Date)+
theme_bw()
ggplot(nect, aes(y=volume.of.nectar..µl., x=Pair, fill=Size))+
geom_boxplot()+
facet_wrap(~Date)+
theme_bw()
```