-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathImageProcess.py
362 lines (296 loc) · 14.3 KB
/
ImageProcess.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
# -*- coding: utf-8 -*-
from PIL import ImageFilter
import numpy
from PIL import Image
from PIL import ImageStat
from colorsys import *
from operator import add
from sklearn import preprocessing
from skimage.feature import greycomatrix, greycoprops
from skimage import filters, color
from MachineLearning import *
import matplotlib
from scipy.stats import skew
#Global Variables.
NUMBERMETRICS = 19 #change the number of metrics used here.
#############Calculating metrics ############################################
#############################################################################
def getMetrics(image):
"""Takes in a PIL image and outputs all of the metrics on that image in a list."""
avg = colorAvg(image)
yellow = findYellowFast(image)
edges = countEdgePixels(image)
var = colorVariance(image)
texture = textureAnalysis(image)
(contrast, dissim, homog, energy, corr, ASM) = GLCM(image)
(Hstd, Sstd, Vstd, Hskew, Sskew, Vskew) = colorMoment(image)
metrics = [avg[0], avg[1], avg[2], yellow, var, edges, texture, contrast, dissim, homog, energy, corr, ASM, Hstd, Sstd, Vstd, Hskew, Sskew, Vskew]
return metrics
#Extract all nxn rectangles from an image (these will be processed then used as inputs for ML algorithm).
def getSub(n, imageName, overlap):
"""Takes in n, an integer less than or equal to the minimum dimension of the image
and imageName, the string containing the name of the image to be processed.
Returns a list of metrics for each nxn subsection of the image."""
# define overlap percentage for sub images
image = Image.open(imageName) #load in the image.
#Find the size of the image.
size = image.size
width = size[0] #pull out length and width
length = size[1]
smallTileSize = int(overlap*n)
MetricDict = {} #initialize empty dict.
# Extract all tiles using a specific overlap (overlap depends on n)
for i in range(0,width -n, int(overlap*n)): #Go through the entire image
for j in range(0, length - n, int(overlap*n)):
box = (i,j,i+n, j+n) #edge coordinates of the next rectangle.
newImage = image.crop(box) #pull out the desired rectangle
Metrics = getMetrics(newImage) #calculate all of the metrics on this cropped out image.
MetricDict[(i,j)] = Metrics #add these metrics to the metric dictionary with the upper left coordinates as the key.
return MetricDict
def allMetrics(dictionary,n, im, overlap):
"""Takes in a dictionary of results from small tiles and calculates average metrics
for a larger tile of size n, in image im, with overlap percentage im."""
width, height = im.size
overlapSize = int(overlap*n)
numberTiles = int((width-n)/(overlapSize)+1)*int(((height-n)/(overlapSize))+1)
metricArray = numpy.zeros((NUMBERMETRICS, numberTiles))
for i in range(0,width - n, overlapSize):
for j in range(0,height- n, overlapSize):
#you're at the start of a box
metricTotals = len(dictionary[(0,0)])*[0.0]
##Adding up metrics from small tiles
for k in range(i,i+n-overlapSize+1, overlapSize):
for m in range(j, j+n-overlapSize+1, overlapSize):
#pull out metrics
metrics = dictionary[(k,m)]
#print(metrics )
metricTotals = map(add, metricTotals, metrics)
##Averaging metrics
num = 1/(overlap**2)
newMetric = [a/num for a in metricTotals]
##Put all metrics metrics in an array. One metric per row.
for index in range(len(metricTotals)):
metricArray[index,int(i/(overlap*n) + j*(width-n)/((overlap*n)**2))] = newMetric[index]
#print(metricArray )
return metricArray
def calcMetrics(imageName, tileSize, overlap):
"""wrapper function to calculate metrics for each tile of the image.
returns an array containing metric vectors in order by coordinates
of the upper left hand of the tile desired. Also returns a scalar object
for scaling future input data. """
im = Image.open(imageName)
subDict = getSub(tileSize, imageName, overlap) #Get a dictionary of metrics for small tiles
finalMetrics = allMetrics(subDict, tileSize, im, overlap, NUMBERMETRICS) #calculate metrics on larger tiles
#scaled, scaler = scaleMetrics(finalMetrics) ##Scale metrics
totalSize = finalMetrics.size #Find the size of this scaled metric array
numCols = totalSize/NUMBERMETRICS #Find the number of tiles =number of cols
returnList = []
for i in range(numCols): ##Change output into a list of lists
currentMetric = []
for metric in range(NUMBERMETRICS):
currentMetric += [finalMetrics[metric, i]]
returnList += [currentMetric]
return returnList #return the metrics for later
def scaleMetrics(metricArray):
"""Takes in a array of metrics, scales them to have
mean 0 and stdev 1. returns both the metrics and the scaler object
which can be used to transform later data. """
#First put all metrics into arrays with one metric
scaler = preprocessing.StandardScaler().fit(metricArray)
scaledArray = scaler.transform(metricArray)
return scaledArray, scaler
#######################Debugging Functions#############################
def oneDensOverlap(i, n, imageName, overlap, subTileDict, fit, scaler):
"""Computes the density of one tile with overlap"""
i,j=i
#Note that this algorithm assumes 1/overlap is an integer
shiftSize = int(n*overlap)
#How many subtiles are in the width of the image?
numTiles =int( 1/overlap )
metricTotal = len(subTileDict[(0,0)])*[0.0]
for k in range(numTiles):
for m in range(numTiles):
# print (k,m)
newMetrics = subTileDict[(i + m*shiftSize, j + k*shiftSize)]
metricTotal = map(add, metricTotal, newMetrics)
num = 1/(overlap**2)
avgMetric = [a/num for a in metricTotal] #Compute the average
scaledMetric = scaler.transform(avgMetric) #Scale the metric
density = fit.predict(scaledMetric)
return list(density)
def allDensOverlap(n, imageName, overlap, densityList, metricList, fit, scaler):
"""Computes all densities on a map with tilesize n, the given image as the map, and an overlap 1-overlap."""
image = Image.open(imageName)
imageSize = image.size
width = imageSize[0]
height = imageSize[1]
subTileDict = getSub(n, imageName, overlap) #Compute the metrics on subtiles
allDensities = []
shiftSize = int(n*overlap)
for k in range(0, height -n, shiftSize):
for m in range(0, width - n, shiftSize):
currentDensity = oneDensOverlap((m,k), n, imageName, overlap, subTileDict, fit, scaler)
allDensities += currentDensity
return allDensities
######TRAINING SET CALCULATIONS#########################
def trainMetrics(imageName, density):
"""Simple helper function. Opens the input image and calculates metrics on it. Then returns the metrics and associated data."""
image = Image.open(imageName) #open the relevant image as a PIL image.
metrics = getMetrics(image) #get all of the metrics calculated on this image.
return [metrics, density]
def allTrainMetrics(imageList, densityList):
"""Similar to train metrics, but takes in a series of images stored in a list and calculates metrics for all of them."""
metricsList = []
print('images ', imageList )
print('densityList ', densityList)
for i in range(len(imageList)):
imageName = imageList[i]
[metrics, density] = trainMetrics(imageName, densityList[i])
metricsList += [metrics]
return metricsList, densityList
def allTrainMetricsTransect(imageList, densityList):
"""takes in a list of images from a transect and calculates metrics for them.
Outputs a list of metrics and a list of the associated data."""
metricsList = []
for i in range(len(imageList)): #for all of the training images.
image = imageList[i] #pull out the next one.
metrics = getMetrics(image) #get the metrics for this image.
metricsList += [metrics] #add to the full metric list.
return metricsList, densityList #return an ordered list of metrics and corresponding density or species.
######################Start of helper functions for computing features. ##################################
#########################################################################################################
def colorAvg(im):
"""Takes in a string containing an image file name, returns the average red, blue, and green
values for all the pixels in that image."""
imStats = ImageStat.Stat(im)
(redAv, greenAv, blueAv) = imStats.mean
return redAv, greenAv, blueAv
def colorVariance(im):
'''Calculates the diversity in color using a hue histogram'''
# load image pixels
pix = im.load()
width, height = im.size
# create empty histogram to be filled with frequencies
histogram = [0]*360
pixelHue = 0
for i in range(width):
for j in range(height):
(r,g,b) = pix[i,j] #pull out the current r,g,b values
(h,s,v) = rgb_to_hsv(r/255.,g/255.,b/255.)
pixelHue = int(360*h)
#build histogram
histogram[pixelHue] += 1
#print histogram
# calculate standard deviation of histogram
return numpy.std(histogram)
def countEdgePixels(im):
''' counts the number of pixels that make up the edges of features'''
# define threshold for edges
threshold = 150
# open image and filter
im2 = im.filter(ImageFilter.FIND_EDGES)
im2 = im2.convert("L")
# load pixels and count edge pixels
pix = im2.load()
pixels = 0
for x in range(0,im.size[0]):
for y in range(0, im.size[1]):
if pix[x,y] > threshold:
pixels += 1
return float(pixels) / (im.size[0]*im.size[1])
def textureAnalysis(im):
''' determines the proportion of the image that has texture'''
# define texture threshold and grid size
threshold = 100
n = 7
# open image
width, height = im.size
# loop across image
count = 0
pixList = []
for i in range(0,width-n,n):
for j in range(0,height-n,n):
# divide into small grids
box = (i,j,i+n,j+n)
imTemp = im.crop(box)
# calculate intensity from RGB data
pixels = list(imTemp.getdata())
intensity = [pixels[i][0]+pixels[i][1]+pixels[i][2] for i in range(len(pixels))]
# count as high texture if difference in intensity is
# greater than threshold
if ((max(intensity) - min(intensity)) > threshold):
count += 1
pixList += [(i,j)]
# calculate the percentage of high texture grids
if width/n == 0: #if width is less than n something is wrong! Check the width and make sure n is a reasonable value.
print(width)
raw_input('Oops')
return float(count)/((width/n)*(height/n))
def findYellowFast(im):
"""counts the number of a given color pixels in the given image."""
# im = Image.open(imageName)
#define HSV value ranges for yellow
#for now just base of Hue - refine for actual yellows seen in field?
minHue = 20/360.
maxHue = 150/360.
minSat = 5/360.
# maxSat = 0.4
minV = 190/360.
width, height = im.size #find the size of the image
count = 0 #initialize a counter for yellow pixels.
rgbList = list(im.getdata())
hsvList = map(getHSV, rgbList)
for (h,s,v) in hsvList:
if minHue <h and h<maxHue and minSat<s and minV<v:
count += 1
totalPix = width*height
portion = float(count)/totalPix
return portion
def getHSV(colors):
r,g,b=colors
return rgb_to_hsv(r/255., g/255., b/255.)
def GLCM(im):
"""Calculate the grey level co-occurrence matrices and output values for
contrast, dissimilarity, homogeneity, energy, correlation, and ASM in a list"""
newIm = im.convert('L') #Conver to a grey scale image
glcm = greycomatrix(newIm, [5], [0]) #calcualte the glcm
#Compute all of the grey co occurrence features.
contrast = greycoprops(glcm, 'contrast')[0][0]
if numpy.isnan(contrast): #Make sure that no value is recorded as NAN.
contrast = 0 #if it is replace with 0.
dissim = greycoprops(glcm, 'dissimilarity')[0][0]
if numpy.isnan(dissim):
dissim = 0
homog = greycoprops(glcm, 'homogeneity')[0][0]
if numpy.isnan(homog):
homog = 0
energy = greycoprops(glcm, 'energy')[0][0]
if numpy.isnan(energy):
energy = 0
corr = greycoprops(glcm, 'correlation')[0][0]
if numpy.isnan(corr):
corr = 0
ASM = greycoprops(glcm, 'ASM')[0][0]
if numpy.isnan(ASM):
ASM = 0
return numpy.concatenate(([contrast], [dissim], [homog], [energy], [corr], [ASM]), 0) #concatenate into one list along axis 0 and return
def colorMoment(im):
"""Calculates the 2nd and 3rd color moments of the input image and returns values in a list."""
#The first color moment is the mean. This is already considered as a metric for
#the red, green, and blue channels, so this is not included here.
#Only the 2nd and 3rd moments will be calculated here.
newIm = matplotlib.colors.rgb_to_hsv(im) #convert to HSV space
#Pull out each channel from the image to analyze seperately.
HChannel = newIm[:,:,0]
SChannel = newIm[:,:,1]
VChannel = newIm[:,:,2]
#2nd moment = standard deviation.
Hstd = numpy.std(HChannel)
Sstd = numpy.std(SChannel)
Vstd = numpy.std(VChannel)
#3rd Moment = "Skewness". Calculate the skew, which gives an array.
#Then take the mean of that array to get a single value for each channel.
Hskew = numpy.mean(skew(HChannel))
Sskew = numpy.mean(skew(SChannel))
Vskew = numpy.mean(skew(VChannel))
return [Hstd, Sstd, Vstd, Hskew, Sskew, Vskew] #return all of the metrics.