-
Notifications
You must be signed in to change notification settings - Fork 0
/
crypto.h
358 lines (309 loc) · 13.1 KB
/
crypto.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*******************************************************************************
*
* Copyright (c) 2011, 2012, 2013, 2014, 2015 Olaf Bergmann (TZI) and others.
* All rights reserved. This program and the accompanying materials
* are made available under the terms of the Eclipse Public License v1.0
* and Eclipse Distribution License v. 1.0 which accompanies this distribution.
*
* The Eclipse Public License is available at http://www.eclipse.org/legal/epl-v10.html
* and the Eclipse Distribution License is available at
* http://www.eclipse.org/org/documents/edl-v10.php.
*
* Contributors:
* Olaf Bergmann - initial API and implementation
* Hauke Mehrtens - memory optimization, ECC integration
*
*******************************************************************************/
#ifndef _DTLS_CRYPTO_H_
#define _DTLS_CRYPTO_H_
#include <stdlib.h> /* for rand() and srand() */
#include <stdint.h>
#include "aes/rijndael.h"
#include "tinydtls.h"
#include "global.h"
#include "state.h"
#include "numeric.h"
#include "hmac.h"
#include "ccm.h"
/* TLS_PSK_WITH_AES_128_CCM_8 */
#define DTLS_MAC_KEY_LENGTH 0
#define DTLS_KEY_LENGTH 16 /* AES-128 */
#define DTLS_BLK_LENGTH 16 /* AES-128 */
#define DTLS_MAC_LENGTH DTLS_HMAC_DIGEST_SIZE
#define DTLS_IV_LENGTH 4 /* length of nonce_explicit */
/**
* Maximum size of the generated keyblock. Note that MAX_KEYBLOCK_LENGTH must
* be large enough to hold the pre_master_secret, i.e. twice the length of the
* pre-shared key + 1.
*/
#define MAX_KEYBLOCK_LENGTH \
(2 * DTLS_MAC_KEY_LENGTH + 2 * DTLS_KEY_LENGTH + 2 * DTLS_IV_LENGTH)
/** Length of DTLS master_secret */
#define DTLS_MASTER_SECRET_LENGTH 48
#define DTLS_RANDOM_LENGTH 32
typedef enum { AES128=0
} dtls_crypto_alg;
typedef enum {
DTLS_ECDH_CURVE_SECP256R1
} dtls_ecdh_curve;
/** Crypto context for TLS_PSK_WITH_AES_128_CCM_8 cipher suite. */
typedef struct {
rijndael_ctx ctx; /**< AES-128 encryption context */
} aes128_ccm_t;
typedef struct dtls_cipher_context_t {
/** numeric identifier of this cipher suite in host byte order. */
aes128_ccm_t data; /**< The crypto context */
} dtls_cipher_context_t;
typedef struct {
uint8 own_eph_priv[32];
uint8 other_eph_pub_x[32];
uint8 other_eph_pub_y[32];
uint8 other_pub_x[32];
uint8 other_pub_y[32];
} dtls_handshake_parameters_ecdsa_t;
/* This is the maximal supported length of the psk client identity and psk
* server identity hint */
#define DTLS_PSK_MAX_CLIENT_IDENTITY_LEN 32
/* This is the maximal supported length of the pre-shared key. */
#define DTLS_PSK_MAX_KEY_LEN DTLS_KEY_LENGTH
typedef struct {
uint16_t id_length;
unsigned char identity[DTLS_PSK_MAX_CLIENT_IDENTITY_LEN];
} dtls_handshake_parameters_psk_t;
typedef struct {
uint64_t cseq;
uint64_t bitfield;
} seqnum_t;
typedef struct {
dtls_compression_t compression; /**< compression method */
dtls_cipher_t cipher; /**< cipher type */
uint16_t epoch; /**< counter for cipher state changes*/
uint64_t rseq; /**< sequence number of last record sent */
/**
* The key block generated from PRF applied to client and server
* random bytes. The actual size is given by the selected cipher and
* can be calculated using dtls_kb_size(). Use \c dtls_kb_ macros to
* access the components of the key block.
*/
uint8 key_block[MAX_KEYBLOCK_LENGTH];
seqnum_t cseq; /**<sequence number of last record received*/
} dtls_security_parameters_t;
struct netq_t;
typedef struct {
union {
struct random_t {
uint8 client[DTLS_RANDOM_LENGTH]; /**< client random gmt and bytes */
uint8 server[DTLS_RANDOM_LENGTH]; /**< server random gmt and bytes */
} random;
/** the session's master secret */
uint8 master_secret[DTLS_MASTER_SECRET_LENGTH];
} tmp;
struct netq_t *reorder_queue; /**< the packets to reorder */
dtls_hs_state_t hs_state; /**< handshake protocol status */
dtls_compression_t compression; /**< compression method */
dtls_cipher_t cipher; /**< cipher type */
unsigned int do_client_auth:1;
union {
#ifdef DTLS_ECC
dtls_handshake_parameters_ecdsa_t ecdsa;
#endif /* DTLS_ECC */
#ifdef DTLS_PSK
dtls_handshake_parameters_psk_t psk;
#endif /* DTLS_PSK */
} keyx;
} dtls_handshake_parameters_t;
/* The following macros provide access to the components of the
* key_block in the security parameters. */
#define dtls_kb_client_mac_secret(Param, Role) ((Param)->key_block)
#define dtls_kb_server_mac_secret(Param, Role) \
(dtls_kb_client_mac_secret(Param, Role) + DTLS_MAC_KEY_LENGTH)
#define dtls_kb_remote_mac_secret(Param, Role) \
((Role) == DTLS_SERVER \
? dtls_kb_client_mac_secret(Param, Role) \
: dtls_kb_server_mac_secret(Param, Role))
#define dtls_kb_local_mac_secret(Param, Role) \
((Role) == DTLS_CLIENT \
? dtls_kb_client_mac_secret(Param, Role) \
: dtls_kb_server_mac_secret(Param, Role))
#define dtls_kb_mac_secret_size(Param, Role) DTLS_MAC_KEY_LENGTH
#define dtls_kb_client_write_key(Param, Role) \
(dtls_kb_server_mac_secret(Param, Role) + DTLS_MAC_KEY_LENGTH)
#define dtls_kb_server_write_key(Param, Role) \
(dtls_kb_client_write_key(Param, Role) + DTLS_KEY_LENGTH)
#define dtls_kb_remote_write_key(Param, Role) \
((Role) == DTLS_SERVER \
? dtls_kb_client_write_key(Param, Role) \
: dtls_kb_server_write_key(Param, Role))
#define dtls_kb_local_write_key(Param, Role) \
((Role) == DTLS_CLIENT \
? dtls_kb_client_write_key(Param, Role) \
: dtls_kb_server_write_key(Param, Role))
#define dtls_kb_key_size(Param, Role) DTLS_KEY_LENGTH
#define dtls_kb_client_iv(Param, Role) \
(dtls_kb_server_write_key(Param, Role) + DTLS_KEY_LENGTH)
#define dtls_kb_server_iv(Param, Role) \
(dtls_kb_client_iv(Param, Role) + DTLS_IV_LENGTH)
#define dtls_kb_remote_iv(Param, Role) \
((Role) == DTLS_SERVER \
? dtls_kb_client_iv(Param, Role) \
: dtls_kb_server_iv(Param, Role))
#define dtls_kb_local_iv(Param, Role) \
((Role) == DTLS_CLIENT \
? dtls_kb_client_iv(Param, Role) \
: dtls_kb_server_iv(Param, Role))
#define dtls_kb_iv_size(Param, Role) DTLS_IV_LENGTH
#define dtls_kb_size(Param, Role) \
(2 * (dtls_kb_mac_secret_size(Param, Role) + \
dtls_kb_key_size(Param, Role) + dtls_kb_iv_size(Param, Role)))
/* just for consistency */
#define dtls_kb_digest_size(Param, Role) DTLS_MAC_LENGTH
/**
* Expands the secret and key to a block of DTLS_HMAC_MAX
* size according to the algorithm specified in section 5 of
* RFC 4346.
*
* \param h Identifier of the hash function to use.
* \param key The secret.
* \param keylen Length of \p key.
* \param seed The seed.
* \param seedlen Length of \p seed.
* \param buf Output buffer where the result is XORed into
* The buffe must be capable to hold at least
* \p buflen bytes.
* \return The actual number of bytes written to \p buf or 0
* on error.
*/
size_t dtls_p_hash(dtls_hashfunc_t h,
const unsigned char *key, size_t keylen,
const unsigned char *label, size_t labellen,
const unsigned char *random1, size_t random1len,
const unsigned char *random2, size_t random2len,
unsigned char *buf, size_t buflen);
/**
* This function implements the TLS PRF for DTLS_VERSION. For version
* 1.0, the PRF is P_MD5 ^ P_SHA1 while version 1.2 uses
* P_SHA256. Currently, the actual PRF is selected at compile time.
*/
size_t dtls_prf(const unsigned char *key, size_t keylen,
const unsigned char *label, size_t labellen,
const unsigned char *random1, size_t random1len,
const unsigned char *random2, size_t random2len,
unsigned char *buf, size_t buflen);
/**
* Calculates MAC for record + cleartext packet and places the result
* in \p buf. The given \p hmac_ctx must be initialized with the HMAC
* function to use and the proper secret. As the DTLS mac calculation
* requires data from the record header, \p record must point to a
* buffer of at least \c sizeof(dtls_record_header_t) bytes. Usually,
* the remaining packet will be encrypted, therefore, the cleartext
* is passed separately in \p packet.
*
* \param hmac_ctx The HMAC context to use for MAC calculation.
* \param record The record header.
* \param packet Cleartext payload to apply the MAC to.
* \param length Size of \p packet.
* \param buf A result buffer that is large enough to hold
* the generated digest.
*/
void dtls_mac(dtls_hmac_context_t *hmac_ctx,
const unsigned char *record,
const unsigned char *packet, size_t length,
unsigned char *buf);
/**
* Encrypts the specified \p src of given \p length, writing the
* result to \p buf. The cipher implementation may add more data to
* the result buffer such as an initialization vector or padding
* (e.g. for block cipers in CBC mode). The caller therefore must
* ensure that \p buf provides sufficient storage to hold the result.
* Usually this means ( 2 + \p length / blocksize ) * blocksize. The
* function returns a value less than zero on error or otherwise the
* number of bytes written.
*
* \param ctx The cipher context to use.
* \param src The data to encrypt.
* \param length The actual size of of \p src.
* \param buf The result buffer. \p src and \p buf must not
* overlap.
* \param aad additional data for AEAD ciphers
* \param aad_length actual size of @p aad
* \return The number of encrypted bytes on success, less than zero
* otherwise.
*/
int dtls_encrypt(const unsigned char *src, size_t length,
unsigned char *buf,
unsigned char *nounce,
unsigned char *key, size_t keylen,
const unsigned char *aad, size_t aad_length);
/**
* Decrypts the given buffer \p src of given \p length, writing the
* result to \p buf. The function returns \c -1 in case of an error,
* or the number of bytes written. Note that for block ciphers, \p
* length must be a multiple of the cipher's block size. A return
* value between \c 0 and the actual length indicates that only \c n-1
* block have been processed. Unlike dtls_encrypt(), the source
* and destination of dtls_decrypt() may overlap.
*
* \param ctx The cipher context to use.
* \param src The buffer to decrypt.
* \param length The length of the input buffer.
* \param buf The result buffer.
* \param aad additional authentication data for AEAD ciphers
* \param aad_length actual size of @p aad
* \return Less than zero on error, the number of decrypted bytes
* otherwise.
*/
int dtls_decrypt(const unsigned char *src, size_t length,
unsigned char *buf,
unsigned char *nounce,
unsigned char *key, size_t keylen,
const unsigned char *a_data, size_t a_data_length);
/* helper functions */
/**
* Generates pre_master_sercet from given PSK and fills the result
* according to the "plain PSK" case in section 2 of RFC 4279.
* Diffie-Hellman and RSA key exchange are currently not supported.
*
* @param key The shared key.
* @param keylen Length of @p key in bytes.
* @param result The derived pre master secret.
* @return The actual length of @p result.
*/
int dtls_psk_pre_master_secret(unsigned char *key, size_t keylen,
unsigned char *result, size_t result_len);
#define DTLS_EC_KEY_SIZE 32
int dtls_ecdh_pre_master_secret(unsigned char *priv_key,
unsigned char *pub_key_x,
unsigned char *pub_key_y,
size_t key_size,
unsigned char *result,
size_t result_len);
void dtls_ecdsa_generate_key(unsigned char *priv_key,
unsigned char *pub_key_x,
unsigned char *pub_key_y,
size_t key_size);
void dtls_ecdsa_create_sig_hash(const unsigned char *priv_key, size_t key_size,
const unsigned char *sign_hash, size_t sign_hash_size,
uint32_t point_r[9], uint32_t point_s[9]);
void dtls_ecdsa_create_sig(const unsigned char *priv_key, size_t key_size,
const unsigned char *client_random, size_t client_random_size,
const unsigned char *server_random, size_t server_random_size,
const unsigned char *keyx_params, size_t keyx_params_size,
uint32_t point_r[9], uint32_t point_s[9]);
int dtls_ecdsa_verify_sig_hash(const unsigned char *pub_key_x,
const unsigned char *pub_key_y, size_t key_size,
const unsigned char *sign_hash, size_t sign_hash_size,
unsigned char *result_r, unsigned char *result_s);
int dtls_ecdsa_verify_sig(const unsigned char *pub_key_x,
const unsigned char *pub_key_y, size_t key_size,
const unsigned char *client_random, size_t client_random_size,
const unsigned char *server_random, size_t server_random_size,
const unsigned char *keyx_params, size_t keyx_params_size,
unsigned char *result_r, unsigned char *result_s);
int dtls_ec_key_from_uint32_asn1(const uint32_t *key, size_t key_size,
unsigned char *buf);
dtls_handshake_parameters_t *dtls_handshake_new(void);
void dtls_handshake_free(dtls_handshake_parameters_t *handshake);
dtls_security_parameters_t *dtls_security_new(void);
void dtls_security_free(dtls_security_parameters_t *security);
void crypto_init(void);
#endif /* _DTLS_CRYPTO_H_ */