# Run the main file (at the root of the project)
python main_molecules_graph_regression.py --dataset ZINC --config 'configs/molecules_graph_regression_GatedGCN_ZINC.json' # for CPU
python main_molecules_graph_regression.py --dataset ZINC --gpu_id 0 --config 'configs/molecules_graph_regression_GatedGCN_ZINC.json' # for GPU
The training and network parameters for each dataset and network is stored in a json file in the configs/
directory.
# Run the notebook file (at the root of the project)
conda activate benchmark_gnn
jupyter notebook
Use main_molecules_graph_regression.ipynb
notebook to explore the code and do the training interactively.
Output results are located in the folder defined by the variable out_dir
in the corresponding config file (eg. configs/molecules_graph_regression_GatedGCN_ZINC.json
file).
If out_dir = 'out/molecules_graph_regression/'
, then
- Go to
out/molecules_graph_regression/results
to view all result text files. - Directory
out/molecules_graph_regression/checkpoints
contains model checkpoints.
- Go to the logs directory, i.e.
out/molecules_graph_regression/logs/
- Run the command
tensorboard --logdir='./'
- Open
http://localhost:6006
in your browser. Note that the port information (here 6006) appears on the terminal immediately after running Step 2.
# At the root of the project
bash script_one_code_to_rull_them_all.sh # run all datasets and all GNNs
See script script_one_code_to_rull_them_all.sh.
# At the root of the project
bash script_main_TUs_graph_classification.sh # run TU datasets
bash script_main_superpixels_graph_classification_MNIST.sh # run MNIST dataset
bash script_main_superpixels_graph_classification_CIFAR10.sh # run CIFAR10 dataset
bash script_main_molecules_graph_regression_ZINC.sh # run ZINC dataset
bash script_main_SBMs_node_classification_PATTERN.sh # run PATTERN dataset
bash script_main_SBMs_node_classification_CLUSTER.sh # run CLUSTER dataset
bash script_main_TSP_edge_classification.sh # run TSP dataset
Scripts are located at the root of the repository.