-
Notifications
You must be signed in to change notification settings - Fork 12
/
train_post_process_predictor.py
513 lines (479 loc) · 23.5 KB
/
train_post_process_predictor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
from torch import nn
from cldm.cldm import ControlLDM
import torch
import pytorch_lightning as pl
import os
import numpy as np
from PIL import Image
from ldm.modules.diffusionmodules.openaimodel import (ResBlock, TimestepEmbedSequential, AttentionBlock,
Upsample, SpatialTransformer, Downsample)
from ldm.modules.diffusionmodules.util import (
checkpoint,
conv_nd,
linear,
avg_pool_nd,
zero_module,
normalization,
timestep_embedding,
)
from ldm.util import exists
class Post_Process_Net(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
out_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
num_classes=None,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
self.out_channels = out_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.num_classes = num_classes
self.use_checkpoint = use_checkpoint
self.dtype = torch.float16 if use_fp16 else torch.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
linear(model_channels, time_embed_dim),
nn.SiLU(),
linear(time_embed_dim, time_embed_dim),
)
if self.num_classes is not None:
if isinstance(self.num_classes, int):
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
elif self.num_classes == "continuous":
print("setting up linear c_adm embedding layer")
self.label_emb = nn.Linear(1, time_embed_dim)
else:
raise ValueError()
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
if resblock_updown:
stage_last_block = ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
else:
stage_last_block = Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
self.input_blocks.append(
TimestepEmbedSequential(stage_last_block)
)
ch = out_ch
input_block_chans.append(ch)
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self._feature_size += ch
self.output_blocks1 = nn.ModuleList([])
self.output_blocks2 = nn.ModuleList([])
for level, mult in list(enumerate(channel_mult))[::-1]:
for i in range(self.num_res_blocks[level] + 1):
ich = input_block_chans.pop()
layers1 = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
layers2 = [
ResBlock(
ch + ich,
time_embed_dim,
dropout,
out_channels=model_channels * mult,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = model_channels * mult
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
#num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if exists(disable_self_attentions):
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if not exists(num_attention_blocks) or i < num_attention_blocks[level]:
layers1.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
layers2.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads_upsample,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
if level and i == self.num_res_blocks[level]:
out_ch = ch
layers1.append(ResBlock(ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
) if resblock_updown else
Upsample(ch, conv_resample, dims=dims, out_channels=out_ch))
layers2.append(ResBlock(ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
up=True,
) if resblock_updown else
Upsample(ch, conv_resample, dims=dims, out_channels=out_ch))
ds //= 2
self.output_blocks1.append(TimestepEmbedSequential(*layers1))
self.output_blocks2.append(TimestepEmbedSequential(*layers2))
self._feature_size += ch
self.out1 = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, 3, 3, padding=1)),
)
self.out2 = nn.Sequential(
normalization(ch),
nn.SiLU(),
zero_module(conv_nd(dims, model_channels, 1, 3, padding=1)),
)
if self.predict_codebook_ids:
self.id_predictor = nn.Sequential(
normalization(ch),
conv_nd(dims, model_channels, n_embed, 1),
#nn.LogSoftmax(dim=1) # change to cross_entropy and produce non-normalized logits
)
def forward(self, x, timesteps=None, context=None, y=None,**kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for module in self.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = self.middle_block(h, emb, context)
h1 = h2 = h
for module1, module2 in zip(self.output_blocks1, self.output_blocks2):
pre_h = hs.pop()
h1 = torch.cat([h1, pre_h], dim=1)
h1 = module1(h1, emb, context)
h2 = torch.cat([h2, pre_h], dim=1)
h2 = module2(h2, emb, context)
h1 = h1.type(x.dtype)
h2 = h2.type(x.dtype)
return torch.cat([self.out1(h1), self.out2(h2)], dim=1)
class PostProcess(pl.LightningModule):
def __init__(self, infe_steps=50, *args, **kwargs):
super().__init__(*args, **kwargs)
self.post_process_net = Post_Process_Net(image_size=256,
in_channels=7,
out_channels=4,
model_channels=96,
attention_resolutions=[],
num_res_blocks=2,
channel_mult=[ 1, 2, 2, 4 ],
num_head_channels=64,
use_spatial_transformer=False,
use_linear_in_transformer=True,
transformer_depth=1,
context_dim=320,
legacy=False,
use_checkpoint=True)
self.learning_rate = 1e-5
self.model = None
self.infe_steps = infe_steps
self.generated_image_path = "/data/youjunqi/Foreground-Reconstruction/output"
def training_step(self, batch, batch_idx):
self.post_process_net.train()
# b,h,w,c
comp_img_scaled = batch['hint'][:, :, :, :3]
gt_mask_scaled = batch["gt_mask"]
gt_img_scaled = batch['jpg']
obj_mask = batch['hint'][:, :, :, 3:]
comp_img, gt_mask, gt_img = restore_img(comp_img_scaled, gt_mask_scaled, gt_img_scaled)
batch_size = gt_mask.shape[0]
with torch.no_grad():
if os.path.exists(os.path.join(self.generated_image_path, batch['name'][0])):
images = []
for name in batch['name']:
img_path = os.path.join(self.generated_image_path, name)
image = Image.open(img_path).convert('RGB').resize((256, 256),Image.NEAREST)
image = np.array(image)
images.append(torch.tensor(image[None, :, : ,:]))
image = torch.clamp(torch.concat(images, dim=0).to(comp_img.device) + 10, 0, 255)
image_scaled = (image / 127.5) - 1
else:
images = self.model.log_images(batch, mode='pndm', input=(comp_img_scaled*2-1).permute(0,3,1,2),
ddim_steps=self.infe_steps, add_noise_strength=1)
image_scaled = images['samples_cfg_scale_9.00'].permute(0,2,3,1)
image = torch.clamp(image_scaled, -1., 1.)
image = (image + 1.0) / 2.0
image = (image * 255).int() # bchw -> bhwc
for i in range(batch_size):
image_to_save = np.array(image[i].detach().cpu(), dtype=np.uint8)
img_path = os.path.join(self.generated_image_path, batch['name'][i])
image_to_save = Image.fromarray(image_to_save)
image_to_save.save(img_path)
image.to(comp_img.device)
input = torch.concat([image_scaled, comp_img_scaled * 2 - 1, obj_mask], dim=-1)
null_timeteps = torch.zeros(batch_size, device=input.device)
output = self.post_process_net(input.permute(0,3,1,2), timesteps=null_timeteps)
output = output.permute(0,2,3,1)
pred_mask = output[:, :, :, 3]
adjusted_img = output[:, :, :, :3]
loss1 = nn.functional.l1_loss(pred_mask, gt_mask_scaled * 2 - 1)
loss2 = nn.functional.l1_loss(adjusted_img, gt_img_scaled, reduction='none')
loss = loss1 + loss2.mean()
return loss
def configure_optimizers(self):
lr = self.learning_rate
params = list(self.post_process_net.parameters())
opt = torch.optim.AdamW(params, lr=lr)
return opt
# get pred_mask, adjusted img and new composite img for logging sake
def get_log(self, batch, batch_idx, log_num=1):
comp_img_scaled = batch['hint'][:, :, :, :3][:log_num]
gt_mask_scaled = batch["gt_mask"][:log_num]
gt_img_scaled = batch['jpg'][:log_num]
obj_mask = batch['hint'][:, :, :, 3:][:log_num]
comp_img, gt_mask, gt_img = restore_img(comp_img_scaled, gt_mask_scaled, gt_img_scaled)
trimed_batch = {}
for key, dataset in batch.items():
trimed_batch[key] = dataset[:log_num]
self.post_process_net.eval()
with torch.no_grad():
if os.path.exists(os.path.join(self.generated_image_path, trimed_batch['name'][0])):
images = []
for name in trimed_batch['name']:
img_path = os.path.join(self.generated_image_path, name)
image = Image.open(img_path).convert('RGB').resize((256, 256),Image.NEAREST)
image = np.array(image)
images.append(torch.tensor(image[None, :, : ,:]))
image = torch.clamp(torch.concat(images, dim=0).to(comp_img.device) + 10, 0, 255)
image_scaled = (image / 127.5) - 1
else:
images = self.model.log_images(trimed_batch, mode='pndm', input=(comp_img_scaled*2-1).permute(0,3,1,2),
ddim_steps=self.infe_steps, add_noise_strength=1)
image_scaled = images['samples_cfg_scale_9.00'].permute(0,2,3,1)
image = torch.clamp(image_scaled, -1., 1.)
image = (image + 1.0) / 2.0
image = (image * 255).int()
input = torch.concat([image_scaled, comp_img_scaled * 2 - 1, obj_mask], dim=-1)
null_timeteps = torch.zeros(log_num, device=input.device)
output = self.post_process_net(input.permute(0,3,1,2), timesteps=null_timeteps)
output = output.permute(0,2,3,1)
pred_mask = torch.greater_equal(output[:, :, :, 3], -0.1).int()
adjusted_img = output[:, :, :, :3]
adjusted_img = torch.clamp(adjusted_img, -1., 1.)
adjusted_img = (adjusted_img + 1.0) / 2.0
adjusted_img = (adjusted_img * 255).int()
new_composite_img = adjusted_img * pred_mask.unsqueeze(3) + (1-pred_mask.unsqueeze(3)) * comp_img
self.post_process_net.train()
log_info = {"gt_img": gt_img, "gt_mask":gt_mask, "original_pred_img":image, "adjusted_imgs":adjusted_img,
"new_comp_imgs": new_composite_img, "pred_masks":pred_mask*255}
for key, k in log_info.items():
log_info[key] = k.detach().cpu()
return log_info
@torch.no_grad()
def restore_img(comp_img, gt_mask, gt_img):
assert torch.all(torch.greater_equal(comp_img, 0)) and torch.all(torch.less_equal(comp_img, 1)), "wrong scale for comp_img"
assert torch.all(torch.greater_equal(gt_img, -1) ) and torch.all(torch.less_equal(gt_img, 1)), "wrong scale for gt_img"
assert torch.all(torch.greater_equal(gt_mask, 0) ) and torch.all(torch.less_equal(gt_mask, 1)), "wrong scale for gt_mask"
comp_img = comp_img * 255
gt_mask = gt_mask * 255
gt_img = (gt_img + 1) * 127.5
return comp_img, gt_mask, gt_img