-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcal_gan_metrics_from_files.py
408 lines (323 loc) · 17.1 KB
/
cal_gan_metrics_from_files.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import argparse
import data_with_matchingclassifier as origin_dataset
import data_for_augmentedimages_for_quality_evaluation as test_dataset
# from generation_builder import ExperimentBuilder
from GAN_Metrics_Tensorflow.frechet_kernel_Inception_distance import *
from GAN_Metrics_Tensorflow.inception_score import *
# from GAN_Metrics_Tensorflow.calculate_FID import *
from GAN_Metrics_Tensorflow.calculate_FID import *
from GAN_Metrics_Tensorflow.calculate_FID_tensorflow import *
from GAN_Metrics_Tensorflow.calculate_FID_starganv2 import *
import numpy as np
from glob import glob
import os
import cv2
import torch
# from torchvision import datasets, transforms
import torch.utils.data as data
import os
from PIL import Image
import numpy as np
import torchvision.datasets as datasets
import torch
import torchvision.transforms as transforms
import cv2
from scipy.io import loadmat
import os
import shutil
def find_classes(root_dir):
retour = []
# print('1', root_dir)
for (root, dirs, files) in os.walk(root_dir):
# print('origin file',files)
files.sort()
# print('origin file',files)
for f in files:
if (f.endswith("png")):
# if (f.endswith("jpg")):
r = root.split('/')
lr = len(r)
retour.append((f, r[lr - 2] + "/" + r[lr - 1], root))
print("== Found %d items " % len(retour))
return retour
def index_classes(items):
idx = {}
for i in items:
if (not i[1] in idx):
idx[i[1]] = len(idx)
print("== Found %d classes" % len(idx))
return idx
class FIGR_Omniglot(data.Dataset):
def __init__(self, root, dataset, transform=None, target_transform=None):
self.root = root
self.transform = transform
self.target_transform = target_transform
self.dataset = dataset
if self.dataset == 'Omniglot':
self.all_items = find_classes(os.path.join(self.root, 'processed'))
elif self.dataset == 'FIGR' or self.dataset == 'small_FIGR':
self.all_items = find_classes(self.root)
else:
self.all_items = find_classes(self.root)
self.idx_classes = index_classes(self.all_items)
def __getitem__(self, index):
filename = self.all_items[index][0]
img = str.join('/', [self.all_items[index][2], filename])
target = self.idx_classes[self.all_items[index][1]]
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self):
return len(self.all_items)
def one_channel_evaluation(data_dir, dataset, length, channels=1):
dset = FIGR_Omniglot(data_dir, dataset, transform=transforms.Compose([lambda x: Image.open(x).convert('L'),
lambda x: x.resize((length, length)),
lambda x: np.reshape(x, (
length, length, channels)),
]))
return dset
def three_channel_evaluation(data_dir, dataset, length, channels=1):
dset = FIGR_Omniglot(data_dir, dataset, transform=transforms.Compose([lambda x: cv2.imread(x),
lambda x: cv2.resize(x, (length, length),
interpolation=cv2.INTER_LINEAR)
]))
return dset
###### forming dataframe from the images files to adapt to our few-shot setting
def generate_image_label_pairs(dataroot, dataset, image_size, channels, each_class_total_samples):
if channels == 1:
dataloader = one_channel_evaluation(dataroot, dataset, image_size)
else:
dataloader = three_channel_evaluation(dataroot, dataset, image_size)
classes = len(dataloader)
temp = dict()
for (img, label) in dataloader:
if label in temp:
temp[label].append(img)
else:
temp[label] = [img]
dataloader = [] # Free memory
for classes in temp.keys():
# print('here',temp[list(temp.keys())[classes]])
dataloader.append(np.array(temp[list(temp.keys())[classes]]))
dataloader = np.array(dataloader)
temp = [] # Free memory
shuffle_classes = np.arange(dataloader.shape[0])
# np.random.shuffle(shuffle_classes)
dataloader = np.array(
[dataloader[i][:each_class_total_samples, :, :, :] for i in shuffle_classes if
np.shape(dataloader[i])[0] >= each_class_total_samples])
# print('data shape data_loader', np.shape(dataloader))
return dataloader
# samples_index = np.random.choice(self.datasets[dataset_name].shape[1], size=samples_number_each_category, replace=True)
# total_samples = np.zeros([shuffle_classes, each_class_total_samples, image_size, image_size, channels])
# for i in range(shuffle_classes):
# for j in range(each_class_total_samples):
# total_samples[i][j] = dataloader[i][j]
# total_samples = total_samples * 255
# print('data shape', np.shape(total_samples))
# return total_samples
# class generate_image_label_pairs():
# def __init__(self, dataroot, store_path, dataset, image_size, channels=1, each_class_total_samples=8):
# self.image_size = image_size
# self.channels = channels
# self.each_class_total_samples = each_class_total_samples
# self.dataroot = dataroot
# self.dataset = dataset
# self.npy_file = store_path
# if not os.path.exists(self.npy_file):
# os.makedirs(self.npy_file)
# def __call__(self, dataroot, store_path, dataset, image_size, channels=1, each_class_total_samples=8):
# if self.channels == 1:
# self.dataloader = one_channel_evaluation(dataroot, self.dataset, self.image_size)
# else:
# self.dataloader = three_channel_evaluation(dataroot, self.dataset, self.image_size)
# classes = len(self.dataloader)
# temp = dict()
# for (img, label) in self.dataloader:
# if label in temp:
# temp[label].append(img)
# else:
# temp[label] = [img]
# self.dataloader = [] # Free memory
# for classes in temp.keys():
# # print('here',temp[list(temp.keys())[classes]])
# self.dataloader.append(np.array(temp[list(temp.keys())[classes]]))
# self.dataloader = np.array(self.dataloader)
# temp = [] # Free memory
# shuffle_classes = np.arange(self.dataloader.shape[0])
# # np.random.shuffle(shuffle_classes)
# self.dataloader = np.array(
# [self.dataloader[i][:self.each_class_total_samples, :, :, :] for i in shuffle_classes if
# np.shape(self.dataloader[i])[0] >= self.each_class_total_samples])
# # print('data shape', np.shape(self.dataloader))
# # samples_index = np.random.choice(self.datasets[dataset_name].shape[1], size=samples_number_each_category, replace=True)
# total_samples = np.zeros([shuffle_classes, self.each_class_total_samples, self.image_size, self.image_size, self.channels])
# for i in range(shuffle_classes):
# for j in range(self.each_class_total_samples):
# total_samples[i][j] = self.dataloader[i][j]
# total_samples = total_samples * 255
# print('data shape', np.shape(total_samples))
# return total_samples
def resize_image(image):
image = cv2.resize(image, (299, 299), interpolation=cv2.INTER_LINEAR)
return image
def get_real_fake_images(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples):
real_images = generate_image_label_pairs(dataroot_real,dataset,image_size, channels, each_class_total_samples)
# real_images = origin_data.get_total_batch_images('test', args.samples_each_category)
print('real images shape', np.shape(real_images))
real_images_after = np.zeros([np.shape(real_images)[0],np.shape(real_images)[1], 299, 299, np.shape(real_images)[4]])
### real and fake images [category, samples, width, height, channel]
for i in range(np.shape(real_images)[0]):
for j in range(np.shape(real_images)[1]):
resized_image = resize_image(real_images[i][j])
if len(np.shape(resized_image)) < 3:
resized_image = np.expand_dims(resized_image, axis=-1)
real_images_after[i][j] = resized_image
real_images_after = 255 * (real_images_after / np.max(real_images_after))
real_images_after = np.transpose(real_images_after, axes=[0, 1, 4, 2, 3])
# fake_images = test_data.get_total_batch_images('test', args.samples_each_category)
fake_images = generate_image_label_pairs(dataroot_fake, dataset,image_size, channels, each_class_total_samples)
print('fake images shape', np.shape(fake_images))
fake_images_after = np.zeros([np.shape(fake_images)[0],np.shape(fake_images)[1], 299, 299, np.shape(fake_images)[4]])
for i in range(np.shape(fake_images)[0]):
for j in range(np.shape(fake_images)[1]):
resized_image = resize_image(fake_images[i][j])
if len(np.shape(resized_image)) < 3:
resized_image = np.expand_dims(resized_image, axis=-1)
fake_images_after[i][j] = resized_image
fake_images_after = 255 * (fake_images_after / np.max(fake_images_after))
fake_images_after = np.transpose(fake_images_after, axes=[0, 1, 4, 2, 3])
##### extending to three channel images for evaluation metrics
if np.shape(real_images_after)[2] < 3:
three_channel_real_images = np.concatenate([real_images_after, real_images_after, real_images_after], axis=1)
three_channel_fake_images = np.concatenate([fake_images_after, fake_images_after, fake_images_after], axis=1)
else:
three_channel_real_images = real_images_after
three_channel_fake_images = fake_images_after
# print('fake', np.max(three_channel_fake_images), np.min(three_channel_fake_images))
# print('real', np.max(three_channel_real_images), np.min(three_channel_real_images))
# print('real images', np.shape(three_channel_real_images))
# print('fake images', np.shape(three_channel_fake_images))
return three_channel_real_images, three_channel_fake_images
# return three_channel_fake_images, three_channel_fake_images
def inception_score(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples):
####only for generated images
_,images = get_real_fake_images(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples)
BATCH_SIZE = 32
images = np.reshape(images,[np.shape(images)[0]* np.shape(images)[1], np.shape(images)[2], np.shape(images)[3], np.shape(images)[4]])
inception_images = tf.placeholder(tf.float32, [BATCH_SIZE, 3, None, None])
logits = inception_logits(inception_images)
IS = get_inception_score(BATCH_SIZE, images, inception_images, logits, splits=10)
print("IS: ", IS)
return IS
def mean_fid(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples):
real_images, fake_images = get_real_fake_images(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples)
real_images_total = np.reshape(real_images, [np.shape(real_images)[0]*np.shape(real_images)[1], np.shape(real_images)[2],np.shape(real_images)[3],np.shape(real_images)[4]])
fake_images_total = np.reshape(fake_images, [np.shape(real_images)[0]*np.shape(real_images)[1], np.shape(real_images)[2],np.shape(real_images)[3],np.shape(real_images)[4]])
fid_value_total = calculate_fid_given_paths(real_images_total, fake_images_total)
# fid_value_total = calculate_fid_given_paths_tensorflow(paths = [real_images_total, fake_images_total])
print('total fid is', fid_value_total)
mFID = 0
i = 0
for i in range(np.shape(real_images)[0]):
# if i > 5:
# break
FID = calculate_fid_given_paths_tensorflow(paths = [real_images[i], fake_images[i]])
print('{}_category_fid'.format(i), FID)
mFID+= FID
i = i + 1
mFID = mFID / i
print("mean FID : ", mFID)
return fid_value_total, mFID
def mean_fid_tensorflow(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples, is_category):
# real_images, fake_images = get_real_fake_images(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples)
# real_images_total = np.reshape(real_images, [np.shape(real_images)[0]*np.shape(real_images)[1], np.shape(real_images)[2],np.shape(real_images)[3],np.shape(real_images)[4]])
# fake_images_total = np.reshape(fake_images, [np.shape(real_images)[0]*np.shape(real_images)[1], np.shape(real_images)[2],np.shape(real_images)[3],np.shape(real_images)[4]])
# print('maxmium',np.max(real_images_total),np.max(fake_images_total))
# fid_value_total = calculate_fid_given_paths(real_images_total, fake_images_total)
# fid_value_total = calculate_fid_given_paths_tensorflow(paths = [dataroot_real, dataroot_fake], samples_each_categpry=each_class_total_samples)
# print('total fid is', fid_value_total)
mFID = 0
i = 0
path_list_real=os.listdir(dataroot_real)
path_list_real.sort()
# print('real',path_list_real)
path_list_fake=os.listdir(dataroot_fake)
path_list_fake.sort()
# print('fake',path_list_fake)
for filename in path_list_real:
current_real_path = dataroot_real + filename
current_fake_path = dataroot_fake + filename
FID = calculate_fid_given_paths_tensorflow(paths = [current_real_path, current_fake_path], samples_each_categpry=each_class_total_samples)
# FID = calculate_fid_given_paths_tensorflow(paths = [real_images[i], fake_images[i]])
print('{}_category_fid'.format(i), FID)
mFID+= FID
i = i + 1
mFID = mFID / i
print("mean FID : ", mFID)
def calculate_fid_starganv2(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples, is_category):
print('Calculating FID for all images...')
fid_value_total = calculate_fid_given_paths_starganv2(
paths=[dataroot_real, dataroot_fake],
img_size=128,
batch_size=32)
print('total fid', fid_value_total)
mFID = 0
if is_category:
print('Calculating FID for each category...')
path_list_real=os.listdir(dataroot_real)
path_list_real.sort()
path_list_fake=os.listdir(dataroot_fake)
path_list_fake.sort()
fid_values = 0
i = 0
for filename in path_list_real:
path_real = os.path.join(dataroot_real, filename)
path_fake = os.path.join(dataroot_fake, filename)
fid_value = calculate_fid_given_paths_starganv2(
paths=[path_real, path_fake],
img_size=256,
batch_size=32)
fid_value += fid_value
print('category_{} fid'.format(i),fid_value)
i = i + 1
# calculate the average FID for all tasks
mFID = fid_value / len(path_list_fake)
print('mean fid', mFID)
return fid_value_total, mFID
def frechet_inception_distance(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples, is_category):
real_images, fake_images = get_real_fake_images(dataroot_real, dataroot_fake, dataset,image_size, channels,each_class_total_samples)
BATCH_SIZE = 32
# Run images through Inception.
inception_images = tf.placeholder(tf.float32, [BATCH_SIZE, 3, None, None])
real_activation = tf.placeholder(tf.float32, [None, None], name='activations1')
fake_activation = tf.placeholder(tf.float32, [None, None], name='activations2')
fcd = frechet_classifier_distance_from_activations(real_activation, fake_activation)
activations = inception_activations(inception_images)
##### total FID
real_images_total = np.reshape(real_images, [np.shape(real_images)[0]*np.shape(real_images)[1], np.shape(real_images)[2],np.shape(real_images)[3],np.shape(real_images)[4]])
fake_images_total = np.reshape(fake_images, [np.shape(real_images)[0]*np.shape(real_images)[1], np.shape(real_images)[2],np.shape(real_images)[3],np.shape(real_images)[4]])
total_FID = get_fid(fcd, BATCH_SIZE, real_images_total, fake_images_total, inception_images, real_activation, fake_activation,
activations)
print('total FID:', total_FID)
mFID = 0
i = 0
category_FID = []
repeat_num = int(np.shape(real_images)[0])
if is_category:
for i in range(np.shape(real_images)[0]):
# if i > 5:
# break
FID = get_fid(fcd, BATCH_SIZE, real_images[i], fake_images[i], inception_images, real_activation, fake_activation,
activations)
category_FID.append(FID)
print('{}_category_fid'.format(i), FID)
mFID+= FID
i = i + 1
mFID = mFID / i
else:
category_FID.append(0)
print("mean FID : ", mFID)
return total_FID, mFID, category_FID