forked from NCAR/wxgen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
wxgen.py
executable file
·69 lines (55 loc) · 2.07 KB
/
wxgen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
#!/usr/bin/env python
#
# Script: wxgen.py
# Author: Brian Vanderwende
# Last Revised: 15:33, 13 Apr 2018
#
# This code generates a fake weather forecast for Boulder, CO
#
# Libraries
import json, sys
from random import gauss, random
from datetime import datetime
# User settings
city_list = ["boulder","philadelphia"]
fcst_path = "forecasts/{}.txt"
num_days = 7
#
## FUNCTION DEFINITIONS
#
def read_city_data(city_name):
try:
with open("cities/{}.json".format(city_name), 'r') as city_file:
city_data = json.load(city_file)
except IOError:
print("Error: no JSON file for city {}. Exiting...".format(city_name))
sys.exit(1)
return city_data
#
# MAIN PROGRAM
#
if __name__ == "__main__":
gen_time = datetime.utcnow().strftime("%H%MZ - %d %b %Y")
for city in city_list:
# Read settings and specify output file
csd = read_city_data(city)
fcst_file = fcst_path.format(city)
with open(fcst_file, 'w') as ffo:
ffo.write("Forecast for {}, {}\n".format(csd["name"], csd["state"]))
ffo.write("Generated at {}\n".format(gen_time))
for day in range(num_days):
# Produce temperature forecasts
high = gauss(csd["high"]["avg"], csd["high"]["std"])
low = gauss(csd["low"]["avg"], csd["low"]["std"])
# Will rain/snow occur?
precip = 0.0
p_chc = csd["precip"]["days"] / 365.0
p_avg = csd["precip"]["yamt"] / csd["precip"]["days"]
# If precip occurs, use folded normal distribution
if random() < p_chc:
precip = abs(gauss(p_avg, csd["precip"]["std"]))
ffo.write("\nDay {}".format(day + 1))
ffo.write("\n High: {:5.2f} deg C".format(high))
ffo.write("\n Low: {:5.2f} deg C".format(low))
ffo.write("\n Precip: {:5.2f} mm\n".format(precip))
print("Forecast generated in {}".format(fcst_file))