-
Notifications
You must be signed in to change notification settings - Fork 8
/
dssm.py
54 lines (39 loc) · 2.28 KB
/
dssm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import torch.nn.functional as F
from .PLBaseModel import PLBaseModel
from deepctr_torch.layers import DNN
from ..utils import combined_dnn_input
class DSSM(PLBaseModel):
def __init__(self, user_feature_columns, item_feature_columns,
dnn_hidden_units, dnn_activation="relu", gamma=0.01,
l2_reg_linear=0.00001, l2_reg_embedding=0.00001, init_std=0.0001, seed=1024, task='binary', device='cpu', **kwargs):
super().__init__(user_feature_columns, item_feature_columns, l2_reg_linear=l2_reg_linear, l2_reg_embedding=l2_reg_embedding, init_std=init_std, seed=seed, task=task, device=device, **kwargs)
self.user_dnn = DNN(self.compute_input_dim(user_feature_columns), dnn_hidden_units,
activation=dnn_activation, init_std=init_std, device=device)
self.item_dnn = DNN(self.compute_input_dim(item_feature_columns), dnn_hidden_units,
activation=dnn_activation, init_std=init_std, device=device)
def forward(self, inputs):
item_embedding = self.item_tower(inputs)
user_embedding = self.user_tower(inputs)
if self.mode == "user_representation":
return user_embedding
if self.mode == "item_representation":
return item_embedding
score = F.cosine_similarity(item_embedding, user_embedding, dim=1)
# shape is (batch)
return score
def user_tower(self, inputs):
if self.mode == "item_representation":
return None
user_sparse_embedding_list, user_dense_value_list = \
self.input_from_feature_columns(inputs, self.user_feature_columns, self.embedding_dict)
user_dnn_input = combined_dnn_input(user_sparse_embedding_list, user_dense_value_list)
user_embedding = self.user_dnn(user_dnn_input)
return user_embedding
def item_tower(self, inputs):
if self.mode == "user_representation":
return None
item_sparse_embedding_list, item_dense_value_list = \
self.input_from_feature_columns(inputs, self.item_feature_columns, self.embedding_dict)
item_dnn_input = combined_dnn_input(item_sparse_embedding_list, item_dense_value_list)
item_embedding = self.item_dnn(item_dnn_input)
return item_embedding