This repository has been archived by the owner on Feb 28, 2018. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtransport.py
367 lines (286 loc) · 11.1 KB
/
transport.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python
import os, sys, traceback
from mpl_toolkits.mplot3d import axes3d
import matplotlib.pylab as pylab
import numpy as np
import pylab as pl
import scipy as sci
import scipy.optimize.linesearch as ln
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.neighbors import kneighbors_graph as kn_graph
from cvxopt import matrix, spmatrix, solvers, printing
solvers.options['show_progress'] = False
### ------------------------------- Optimal Transport ---------------------------------------
########### Compute transport with a LP Solver
def computeTransportLP(distribWeightS,distribWeightT, distances):
# init data
Nini = len(distribWeightS)
Nfin = len(distribWeightT)
# generate probability distribution of each class
p1p2 = np.concatenate((distribWeightS,distribWeightT))
p1p2 = p1p2[0:-1]
# generate cost matrix
costMatrix = distances.flatten()
# express the constraints matrix
I = []
J = []
for i in range(Nini):
for j in range(Nfin):
I.append(i)
J.append(i*Nfin+j)
for i in range(Nfin-1):
for j in range(Nini):
I.append(i+Nini)
J.append(j*Nfin+i)
A = spmatrix(1.0,I,J)
# positivity condition
G = spmatrix(-1.0,range(Nini*Nfin),range(Nini*Nfin))
sol = solvers.lp(matrix(costMatrix),G,matrix(np.zeros(Nini*Nfin)),A,matrix(p1p2))
S = np.array(sol['x'])
Gamma = np.reshape([l[0] for l in S],(Nini,Nfin))
return Gamma
########### Compute transport with the Sinkhorn algorithm
## ref "Sinkhorn distances: Lightspeed computation of Optimal Transport", NIPS 2013, Marco Cuturi
def computeTransportSinkhorn(distribS,distribT, M, reg,Mmax=0,numItermax = 200,stopThr=1e-9):
# init data
Nini = len(distribS)
Nfin = len(distribT)
cpt = 0
# we assume that no distances are null except those of the diagonal of distances
u = np.ones(Nini)/Nini
v = np.ones(Nfin)/Nfin
uprev=np.zeros(Nini)
vprev=np.zeros(Nini)
if Mmax:
regmax=300./Mmax
else:
regmax=300./np.max(M)
reg=regmax*(1-np.exp(-reg/regmax))
#print reg
K = np.exp(-reg*M)
#print np.min(K)
Kp = np.dot(np.diag(1/distribS),K)
transp = K
cpt = 0
err=1
while (err>stopThr and cpt<numItermax):
if np.any(np.dot(K.T,u)==0) or np.any(np.isnan(u)) or np.any(np.isnan(v)):
# we have reached the machine precision
# come back to previous solution and quit loop
print('Warning: numerical errrors')
if cpt!=0:
u = uprev
v = vprev
break
uprev = u
vprev = v
v = np.divide(distribT,np.dot(K.T,u))
u = 1./np.dot(Kp,v)
if cpt%10==0:
# we can speed up the process by checking for the error only all the 10th iterations
transp = np.dot(np.diag(u),np.dot(K,np.diag(v)))
err = np.linalg.norm((np.sum(transp,axis=0)-distribT))**2
cpt = cpt +1
#print 'err=',err,' cpt=',cpt
return np.dot(np.diag(u),np.dot(K,np.diag(v)))
########### Compute transport with the Sinkhorn algorithm + Class regularization
## ref "Domain adaptation with regularized optimal transport ", ECML 2014,
def indices(a, func):
return [i for (i, val) in enumerate(a) if func(val)]
def computeTransportSinkhornLabelsLpL1(distribS,LabelsS, distribT, M, reg, eta=0.1,nbitermax=10):
p=0.5
epsilon = 1e-3
# init data
Nini = len(distribS)
Nfin = len(distribT)
W=np.zeros(M.shape)
for cpt in range(nbitermax):
Mreg = M + eta*W
transp=computeTransportSinkhorn(distribS,distribT,Mreg,reg,numItermax = 200)
# the transport has been computed. Check if classes are really separated
W = np.ones((Nini,Nfin))
for t in range(Nfin):
for c in np.unique(LabelsS):
maj = p*((np.sum(transp[LabelsS==c,t])+epsilon)**(p-1))
W[LabelsS==c,t]=maj
return transp
########### Compute transport with the Generalized conditionnal gradient method + Group-Lasso Class regularization
## ref "Optimal transport for Domain Adaptation ", T PAMI 2016
def get_W_L1L2(transp,labels,lstlab):
W=np.zeros(transp.shape)
for i in range(transp.shape[1]):
for lab in lstlab:
temp=transp[labels==lab,i]
n=np.linalg.norm(temp)
if n:
W[labels==lab,i]=temp/n
return W
def loss_L1L2(transp,labels,lstlab):
res=0
for i in range(transp.shape[1]):
for lab in lstlab:
temp=transp[labels==lab,i]
#W[]
res+=np.linalg.norm(temp)
return res
def computeTransportL1L2_CGS(distribS,LabelsS, distribT, M, reg, eta=0.1,nbitermax=10,thr_stop=1e-8,**kwargs):
Nini = len(distribS)
Nfin = len(distribT)
W=np.zeros(M.shape)
maxdist = np.max(M)
distances=M
lstlab=np.unique(LabelsS)
regmax=300./maxdist
reg0=regmax*(1-np.exp(-reg/regmax))
transp= computeTransportSinkhorn(distribS,distribT,distances,reg,maxdist)
niter=1;
while True:
old_transp=transp.copy()
W = get_W_L1L2(old_transp,LabelsS,lstlab)
G=eta*W
transp0= computeTransportSinkhorn(distribS,distribT,distances + G,reg,maxdist)
deltatransp = transp0 - old_transp
# do a line search for best tau
def f(tau):
T = old_transp+tau*deltatransp
return np.sum(T*distances)+1./reg0*np.sum(T*np.log(T))+eta*loss_L1L2(T,LabelsS,lstlab)
# compute f'(0)
res=0
for i in range(transp.shape[1]):
for lab in lstlab:
temp1=old_transp[LabelsS==lab,i]
temp2=deltatransp[LabelsS==lab,i]
res+=np.dot(temp1,temp2)/np.linalg.norm(temp1)
derphi_zero = np.sum(deltatransp*distances) + np.sum(deltatransp*(1+np.log(old_transp)))/reg0 + eta*res
tau,cost = ln.scalar_search_armijo(f, f(0), derphi_zero,alpha0=0.99)
if tau is None:
break
transp=(1-tau)*old_transp+tau*transp0
if niter>=nbitermax or np.sum(np.fabs(deltatransp))<thr_stop:
break
niter+=1
#print 'nbiter=',niter
return transp
########### Compute transport with the Generalized conditionnal gradient method + Laplacian regularization
## ref "Optimal transport for Domain Adaptation ", T PAMI 2016
def get_sim(x,sim,**kwargs):
if sim=='gauss':
try:
rbfparam=kwargs['rbfparam']
except KeyError:
rbfparam=1
S=rbf_kernel(x,x,rbfparam)
elif sim=='gaussthr':
try:
rbfparam=kwargs['rbfparam']
except KeyError:
rbfparam=1
try:
thrg=kwargs['thrg']
except KeyError:
thrg=.5
S=np.float64(rbf_kernel(x,x,rbfparam)>thrg)
elif sim=='gaussclass':
try:
rbfparam=kwargs['rbfparam']
except KeyError:
rbfparam=1
try:
y=kwargs['labels']
except KeyError:
raise KeyError('sim="gaussclass" require the source labels "labels" to be passed as parameters')
S=rbf_kernel(x,x,rbfparam)
temp=np.tile(y.T,(y.shape[0],1))
temp2=temp==temp.T
S=S*temp2
elif sim=='knn':
try:
num_neighbors=kwargs['nn']
except KeyError('sim="knn" requires the number of neighbors nn to be set'):
num_neighbors=3
S=kn_graph(x,num_neighbors,include_self=True).toarray()
S=(S+S.T)/2
elif sim=='knnclass':
try:
num_neighbors=kwargs['nn']
except KeyError('sim="knnclass" requires the number of neighbors nn to be set'):
num_neighbors=3
try:
y=kwargs['labels']
except KeyError:
raise KeyError('sim="gaussclass" requires the source labels "labels" to be passed as parameters')
S=kn_graph(x,num_neighbors,include_self=True).toarray()
# handle unlabelled data (class=-1)
temp=np.tile(y.T,(y.shape[0],1))
temp2=(temp==temp.T)* (temp!=-1)
S=(S+S.T)/2
S=S*temp2
return S
def get_gradient(transp,K):
s=transp.shape
res=np.dot(K,transp.flatten())
return res.reshape(s)
def get_gradient1(L,X,transp):
"""
Compute gradient for the laplacian reg term on transported sources
"""
return np.dot(L+L.T,np.dot(transp,np.dot(X,X.T)))
def get_gradient2(L,X,transp):
"""
Compute gradient for the laplacian reg term on transported targets
"""
return np.dot(X,np.dot(X.T,np.dot(transp,L+L.T)))
def get_laplacian(S):
L=np.diag(np.sum(S,axis=0))-S
return L
def quadloss(transp,K):
"""
Compute quadratic loss with matrix K
"""
return np.sum(transp.flatten()*np.dot(K,transp.flatten()))
def quadloss1(transp,L,X):
"""
Compute loss for the laplacian reg term on transported sources
"""
return np.trace(np.dot(X.T,np.dot(transp.T,np.dot(L,np.dot(transp,X)))))
def quadloss2(transp,L,X):
"""
Compute loss for the laplacian reg term on transported sources
"""
return np.trace(np.dot(X.T,np.dot(transp,np.dot(L,np.dot(transp.T,X)))))
def get_laplacian(S):
L=np.diag(np.sum(S,axis=0))-S
return L
def computeTransportLaplacian_CGS(distribS,LabelsS, distribT,distances,xs,xt,reg=1e-9,regls=0,reglt=0,nbitermax=10,thr_stop=1e-8,**kwargs):
Ss=get_sim(xs,'knnclass',nn=7,labels=LabelsS)
St=get_sim(xt,'knn',nn=7)
Ls=get_laplacian(Ss)
Lt=get_laplacian(St)
maxdist = np.max(distances)
regmax=300./maxdist
reg0=regmax*(1-np.exp(-reg/regmax))
transp= computeTransportSinkhorn(distribS,distribT,distances,reg,maxdist)
niter=1;
while True:
old_transp=transp.copy()
G=regls*get_gradient1(Ls,xt,old_transp)+reglt*get_gradient2(Lt,xs,old_transp)
transp0= computeTransportSinkhorn(distribS,distribT,distances + G,reg,maxdist)
E=transp0-old_transp
# do a line search for best tau
def f(tau):
T = (1-tau)*old_transp+tau*transp0
return np.sum(T*distances)+1./reg0*np.sum(T*np.log(T))+regls*quadloss1(T,Ls,xt)+reglt*quadloss2(T,Lt,xs)
# compute f'(0)
res = regls*(np.trace(np.dot(xt.T,np.dot(E.T,np.dot(Ls,np.dot(old_transp,xt)))))+\
np.trace(np.dot(xt.T,np.dot(old_transp.T,np.dot(Ls,np.dot(E,xt))))))\
+reglt*(np.trace(np.dot(xs.T,np.dot(E,np.dot(Lt,np.dot(old_transp.T,xs)))))+\
np.trace(np.dot(xs.T,np.dot(old_transp,np.dot(Lt,np.dot(E.T,xs))))))
derphi_zero = np.sum(E*distances) + np.sum(E*(1+np.log(old_transp)))/reg0 + res
tau,cost = ln.scalar_search_armijo(f, f(0),derphi_zero,alpha0=0.99)
if tau is None:
break
transp=(1-tau)*old_transp+tau*transp0
if niter>=nbitermax or np.sum(np.fabs(E))<thr_stop:
break
niter+=1
return transp