Skip to content

bastian1209/embedded_final

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Embedded Systems and Applications Final Project 2020

self-supervised contrastive learning with improved InfoNCE

Requirements

  • python == 3.6
  • pytorch == 1.1.0
  • torchvision == 0.3.0
  • tensorboard == 2.4.0
  • numpy == 1.19.2
  • pillow == 8.0.1
  • tqdm == 4.52.0
  • yaml == 0.2.5
  • yacs == 0.1.8

Experiment environment

  • 2 Titan X GPUs
  • CUDA 10.1

Self-Supervised Pre-training

  • ex) MoCo with EqCo (K=512, alpha=16348) and DCL, dataset : CIFAR10, encoder : resnet18
python3 main.py --method moco --data cifar --arch resnet18 
                 --use_eqco true --eqco_k 512 --use_dcl true
                --world-size 1 --rank 0 --dist-url tcp://localhost:10001
                --experiment_name moco_dcl_eqco_512_cifar_r18

Linear Evaluation

  • ex) run linear evaluation on pre-trained MoCo
python3 linear_eval.py --method moco 
                       --model-path ./save/{path to experiment}/{encoder arcitecture}_final.pth.tar 
                       --data cifar
                       --batch-size 128
                       --lr 10

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages