self-supervised contrastive learning with improved InfoNCE
- python == 3.6
- pytorch == 1.1.0
- torchvision == 0.3.0
- tensorboard == 2.4.0
- numpy == 1.19.2
- pillow == 8.0.1
- tqdm == 4.52.0
- yaml == 0.2.5
- yacs == 0.1.8
- 2 Titan X GPUs
- CUDA 10.1
- ex) MoCo with EqCo (K=512, alpha=16348) and DCL, dataset : CIFAR10, encoder : resnet18
python3 main.py --method moco --data cifar --arch resnet18
--use_eqco true --eqco_k 512 --use_dcl true
--world-size 1 --rank 0 --dist-url tcp://localhost:10001
--experiment_name moco_dcl_eqco_512_cifar_r18
- ex) run linear evaluation on pre-trained MoCo
python3 linear_eval.py --method moco
--model-path ./save/{path to experiment}/{encoder arcitecture}_final.pth.tar
--data cifar
--batch-size 128
--lr 10