-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadd_dino_features_to_backbone_results.py
100 lines (72 loc) · 4.07 KB
/
add_dino_features_to_backbone_results.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import pickle
import torch
import numpy as np
import os
import scipy.io as sio
import random
from tqdm import tqdm
from torch.optim.lr_scheduler import ReduceLROnPlateau
from dataloader.action_genome import AG, cuda_collate_fn
from pytictoc import TicToc
from lib.config import Config
conf = Config()
for i in conf.args:
print(i,':', conf.args[i])
gpu_device = torch.device('cuda:0')
# some parameters
tr = []
def add_frame_keys(pred, frame_names):
pred['frame_list'] = []
final_frame_ind = int(pred['im_idx'][-1] + 1)
for i in range(0,final_frame_ind):
pred['frame_list'].append(frame_names[i])
return pred
def add_dino_features(in_folder,out_folder,dataloader,dino_feat_length = 1536):
for b, data in enumerate(tqdm(dataloader)):
frame_names = data[5]
filename = frame_names[0].split('/')[0]
filename = filename.split('.')[0] + '.pt'
results = torch.load(in_folder + filename , map_location=torch.device('cpu'))
pred_all = results[1]
print(pred_all.keys())
pred_all = add_frame_keys(pred_all, frame_names)
gt_annotation = results[0]
print(pred_all['rel_feat'].shape)
final_frame_ind = int(pred_all['im_idx'][-1] + 1)
dino_catted_pred_rel_feat_all = torch.zeros([pred_all['rel_feat'].shape[0], dino_feat_length + pred_all['rel_feat'].shape[1]])
for frame_ind in range(0, final_frame_ind):
pred_frame_ind = pred_all['im_idx'] == frame_ind
pred_pairs = pred_all['pair_idx'][pred_frame_ind].cpu().clone().numpy()
no_rels = pred_pairs.shape[0]
vid_name = pred_all['frame_list'][frame_ind].split('/')[0].split('.')[0]
frame_name = pred_all['frame_list'][frame_ind].split('/')[1].split('.')[0]
dino_feat_path = os.path.join('results/dino_features', vid_name, frame_name)
dino_feat = torch.tensor(np.load(dino_feat_path))
pred_rel_feat = pred_all['rel_feat'][pred_frame_ind]
dino_catted_pred_rel_feat = torch.zeros([pred_rel_feat.shape[0],dino_feat.shape[1]+pred_rel_feat.shape[1]])
for l in range(0, no_rels):
curr_feat = pred_rel_feat[l].flatten().reshape(1, -1)
curr_feat = torch.cat((curr_feat, dino_feat), 1)
dino_catted_pred_rel_feat[l, :] = curr_feat
dino_catted_pred_rel_feat_all[pred_frame_ind] = dino_catted_pred_rel_feat
pred_all['rel_feat'] = dino_catted_pred_rel_feat_all
print(pred_all['rel_feat'].shape)
result = [gt_annotation, pred_all]
torch.save(result, out_folder + filename)
if __name__ == "__main__":
train_data_folder = 'results/' + conf.mode + '_backbone_training/'
train_data_folder_with_dino = 'results/' + conf.mode + '_backbone_training_with_dino/'
if not os.path.exists(train_data_folder_with_dino):
os.makedirs(train_data_folder_with_dino)
AG_dataset = AG(mode="train", datasize=conf.datasize, data_path=conf.data_path, filter_nonperson_box_frame=True,
filter_small_box=False if conf.mode == 'predcls' else True)
dataloader = torch.utils.data.DataLoader(AG_dataset, shuffle=False, num_workers=0, collate_fn=cuda_collate_fn)
add_dino_features(in_folder=train_data_folder, out_folder=train_data_folder_with_dino, dataloader=dataloader)
test_data_folder = 'results/' + conf.mode + '_backbone_testing/'
test_data_folder_with_dino = 'results/' + conf.mode + '_backbone_testing_with_dino/'
if not os.path.exists(test_data_folder_with_dino):
os.makedirs(test_data_folder_with_dino)
AG_dataset = AG(mode="test", datasize=conf.datasize, data_path=conf.data_path, filter_nonperson_box_frame=True,
filter_small_box=False if conf.mode == 'predcls' else True)
dataloader = torch.utils.data.DataLoader(AG_dataset, shuffle=False, num_workers=0, collate_fn=cuda_collate_fn)
add_dino_features(in_folder=test_data_folder, out_folder=test_data_folder_with_dino, dataloader=dataloader)