If you need to onboard a new entity to search, refer to How to onboard to GMA Search.
For this exercise, we'll add a new field to an existing aspect of corp users and search over this field. Your use case might require searching over an existing field of an aspect or create a brand new aspect and search over it's field(s). For such use cases, similar steps should be followed.
This document will also guide you on how to leverage an existing field for faceted search i.e. use the field in aggregations, sorting or in a script.
For this example, we will add new field courses
to CorpUserEditableInfo which is an aspect of corp user entity.
namespace com.linkedin.identity
/**
* Linkedin corp user information that can be edited from UI
*/
@Aspect.EntityUrns = [ "com.linkedin.common.CorpuserUrn" ]
record CorpUserEditableInfo {
...
/**
* Courses that the user has taken e.g. AI200: Introduction to Artificial Intelligence
*/
courses: array[string] = [ ]
}
For this example, we will add field courses
to CorpUserInfoDocument.pdl which is the search document model for corp user entity.
namespace com.linkedin.metadata.search
/**
* Data model for CorpUserInfo entity search
*/
record CorpUserInfoDocument includes BaseDocument {
...
/**
* Courses that the user has taken e.g. AI200: Introduction to Artificial Intelligence
*/
courses: optional array[string]
}
Now, we will modify the mapping of corp user search index. Use the following Elasticsearch command to add new field to an existing index.
curl http://localhost:9200/corpuserinfodocument/doc/_mapping? --data '
{
"properties": {
"courses": {
"type": "text"
}
}
}'
If this field needs to be a facet i.e. you want to enable sorting, aggregations on this field or use it in scripts, then your mapping may be different depending on the type of field. For text fields you will need to enable fielddata (disabled by default), as shown below
curl http://localhost:9200/corpuserinfodocument/doc/_mapping? --data '
{
"properties": {
"courses": {
"type": "text",
"fielddata": true
}
}
}'
However fielddata enablement could consume significant heap space. If possible, use unanalyzed keyword field as a facet. For the current example, you could either choose keyword type for the field courses or create a subfield of type keyword under courses and use the same for sorting, aggregations, etc (second approach described below)
curl http://localhost:9200/corpuserinfodocument/doc/_mapping? --data '
{
"properties": {
"courses": {
"type": "text",
"fields": {
"subfield": {
"type": "keyword"
}
}
}
}
}'
More on this is explained in ES guides.
If you want corp user search index to contain this new field courses
next time docker containers are brought up, we need to add this field to corpuser mappings.
{
"properties": {
...
"courses": {
"type": "text"
}
}
}
Choose your analyzer wisely. For this example, we store the field courses
as an array of string and hence use text
data type. Default analyzer is standard
and it provides grammar based tokenization.
Index builder is where the logic to transform an aspect to search document model is defined. For this example, we will add the logic in CorpUserInfoIndexBuilder.
package com.linkedin.metadata.builders.search;
@Slf4j
public class CorpUserInfoIndexBuilder extends BaseIndexBuilder<CorpUserInfoDocument> {
public CorpUserInfoIndexBuilder() {
super(Collections.singletonList(CorpUserSnapshot.class), CorpUserInfoDocument.class);
}
...
@Nonnull
private CorpUserInfoDocument getDocumentToUpdateFromAspect(@Nonnull CorpuserUrn urn,
@Nonnull CorpUserEditableInfo corpUserEditableInfo) {
final String aboutMe = corpUserEditableInfo.getAboutMe() == null ? "" : corpUserEditableInfo.getAboutMe();
return new CorpUserInfoDocument()
.setUrn(urn)
.setAboutMe(aboutMe)
.setTeams(corpUserEditableInfo.getTeams())
.setSkills(corpUserEditableInfo.getSkills())
.setCourses(corpUserEditableInfo.getCourses());
}
...
}
For this example, we will modify corpUserESSearchQueryTemplate.json to start searching over the field courses
. Here is an example.
{
"function_score": {
"query": {
"query_string": {
"query": "$INPUT",
"fields": [
"fullName^4",
"ldap^2",
"managerLdap",
"skills",
"courses"
"teams",
"title"
],
"default_operator": "and",
"analyzer": "standard"
}
},
"functions": [
{
"filter": {
"term": {
"active": true
}
},
"weight": 2
}
],
"score_mode": "multiply"
}
}
As you can see in the above query template, corp user search is performed across multiple fields, to which the field courses
has been added.
We define the list of facets in search config. If your field needs to be a facet, add it to the set of facets defined in method getFacetFields. For this example, we will add the logic in CorpUserSearchConfig.
package com.linkedin.metadata.configs;
public class CorpUserSearchConfig extends BaseSearchConfig<CorpUserInfoDocument> {
@Override
@Nonnull
public Set<String> getFacetFields() {
return Collections.unmodifiableSet(new HashSet<>(Arrays.asList("courses"));
}
...
}
Make sure relevant docker containers are rebuilt before testing the changes.
If this is a new field that has been added to an existing snapshot, then you can test by ingesting data that contains this new field. Here is an example of ingesting to /corpUsers
endpoint, with the new field courses
.
curl 'http://localhost:8080/corpUsers?action=ingest' -X POST -H 'X-RestLi-Protocol-Version:2.0.0' --data '
{
"snapshot": {
"aspects": [
{
"com.linkedin.identity.CorpUserEditableInfo": {
"courses": [
"Docker for Data Scientists",
"AI100: Introduction to Artificial Intelligence"
],
"skills": [
],
"pictureLink": "https://raw.githubusercontent.com/linkedin/datahub/master/datahub-web/packages/data-portal/public/assets/images/default_avatar.png",
"teams": [
]
}
}
],
"urn": "urn:li:corpuser:datahub"
}
}'
Once the ingestion is done, you can test your changes by issuing search queries. Here is an example query with response.
curl "http://localhost:8080/corpUsers?q=search&input=ai100" -H 'X-RestLi-Protocol-Version: 2.0.0' -s | jq
Response:
{
"metadata": {
"urns": [
"urn:li:corpuser:datahub"
],
"searchResultMetadatas": [
]
},
"elements": [
{
"editableInfo": {
"skills": [
],
"courses": [
"Docker for Data Scientists",
"AI100: Introduction to Artificial Intelligence"
],
"pictureLink": "https://raw.githubusercontent.com/linkedin/datahub/master/datahub-web/packages/data-portal/public/assets/images/default_avatar.png",
"teams": [
]
},
"username": "datahub",
"info": {
"active": true,
"fullName": "Data Hub",
"title": "CEO",
"displayName": "Data Hub",
"email": "[email protected]"
}
}
],
"paging": {
"count": 10,
"start": 0,
"total": 1,
"links": [
]
}
}
Inside the PersonEntity
render-props.ts
{
"search": {
"showFacets": true
}
}
make sure showFacets
property is set to true
.
In Search.java add the desired fields here:
private static final Set<String> CORP_USER_FACET_FIELDS = ImmutableSet.of("courses");
In person-entity.ts, add your new property
@alias('entity.courses')
courses?: Array<string>;
Inside the PersonEntity
render-props.ts, add your new property:
{
"showInAutoCompletion": true,
"fieldName": "courses",
"showInResultsPreview": true,
"displayName": "Courses",
"showInFacets": true,
"desc": "Courses description of the field",
"example": "courses:value"
}