-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata preprocessing.py
51 lines (44 loc) · 1.48 KB
/
data preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import gc
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import youtube_dl
import os
import scaper
# Generate Image Dataset (1) Due too Memory Usage, Split into 2
def extract_spectrogram(fname, iname):
audio, sr = librosa.load(fname, res_type='kaiser_fast')
S = librosa.feature.melspectrogram(audio, sr=sr, n_mels=128)
log_S = librosa.power_to_db(S, ref=np.max)
fig = plt.figure(figsize=[1, 1])
ax = fig.add_subplot(111)
fig.subplots_adjust(left=0, right=1, bottom=0, top=1)
ax.axis("off")
ax.axis("tight")
plt.margins(0)
librosa.display.specshow(log_S, sr=sr)
fig.savefig(iname, dpi=100, pad_inches=0)
plt.close(fig)
plt.close('all')
del audio, S, log_S, ax, fig
samples_folder = "soundscapes/"
images_folder = "images/"
already = os.listdir(images_folder)
d = os.listdir(samples_folder)
for i, f in enumerate(d):
if(f.split('.')[1] == 'wav'):
extract_spectrogram(
samples_folder+f, f"{images_folder}/{f.replace('.wav', '.png')}")
# Generate Image Dataset 2 Due too Memory Usage, Split into 2
samples_folder = "soundscapes/"
images_folder = "images/"
already = os.listdir(images_folder)
d = os.listdir(samples_folder)
for i, f in enumerate(d):
name = f.split('.')[0]
tipe, nomor = name.split('_')
print(name)
if(f.split('.')[1] == 'wav'):
if(tipe == 'soundscape' and int(nomor) > 300):
extract_spectrogram(
samples_folder+f, f"{images_folder}/{f.replace('.wav', '.png')}")