-
Notifications
You must be signed in to change notification settings - Fork 0
/
se_densenet.py
447 lines (380 loc) · 19.4 KB
/
se_densenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
'''DenseNet models for Keras.
# Reference
- [Densely Connected Convolutional Networks](https://arxiv.org/pdf/1608.06993.pdf)
- [The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation](https://arxiv.org/pdf/1611.09326.pdf)
'''
from __future__ import print_function
from __future__ import absolute_import
from __future__ import division
import warnings
from keras.models import Model
from keras.layers.core import Dense, Dropout, Activation, Reshape
from keras.layers.convolutional import Conv2D, Conv2DTranspose, UpSampling2D
from keras.layers.pooling import AveragePooling2D, MaxPooling2D
from keras.layers.pooling import GlobalAveragePooling2D
from keras.layers import Input
from keras.layers.merge import concatenate
from keras.layers.normalization import BatchNormalization
from keras.regularizers import l2
from keras.utils.layer_utils import convert_all_kernels_in_model, convert_dense_weights_data_format
from keras.utils.data_utils import get_file
from keras.engine.topology import get_source_inputs
from keras.applications.imagenet_utils import _obtain_input_shape
from keras.applications.imagenet_utils import decode_predictions
import keras.backend as K
from se import squeeze_excite_block
def preprocess_input(x, data_format=None):
"""Preprocesses a tensor encoding a batch of images.
# Arguments
x: input Numpy tensor, 4D.
data_format: data format of the image tensor.
# Returns
Preprocessed tensor.
"""
if data_format is None:
data_format = K.image_data_format()
assert data_format in {'channels_last', 'channels_first'}
if data_format == 'channels_first':
if x.ndim == 3:
# 'RGB'->'BGR'
x = x[::-1, ...]
# Zero-center by mean pixel
x[0, :, :] -= 103.939
x[1, :, :] -= 116.779
x[2, :, :] -= 123.68
else:
x = x[:, ::-1, ...]
x[:, 0, :, :] -= 103.939
x[:, 1, :, :] -= 116.779
x[:, 2, :, :] -= 123.68
else:
# 'RGB'->'BGR'
x = x[..., ::-1]
# Zero-center by mean pixel
x[..., 0] -= 103.939
x[..., 1] -= 116.779
x[..., 2] -= 123.68
x *= 0.017 # scale values
return x
def SEDenseNet(input_shape=None,
depth=40,
nb_dense_block=3,
growth_rate=12,
nb_filter=-1,
nb_layers_per_block=-1,
bottleneck=False,
reduction=0.0,
dropout_rate=0.0,
weight_decay=1e-4,
subsample_initial_block=False,
include_top=True,
weights=None,
input_tensor=None,
classes=10,
activation='softmax'):
'''Instantiate the SE DenseNet architecture
# Arguments
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(32, 32, 3)` (with `channels_last` dim ordering)
or `(3, 32, 32)` (with `channels_first` dim ordering).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 8.
E.g. `(200, 200, 3)` would be one valid value.
depth: number or layers in the DenseNet
nb_dense_block: number of dense blocks to add to end (generally = 3)
growth_rate: number of filters to add per dense block
nb_filter: initial number of filters. -1 indicates initial
number of filters is 2 * growth_rate
nb_layers_per_block: number of layers in each dense block.
Can be a -1, positive integer or a list.
If -1, calculates nb_layer_per_block from the network depth.
If positive integer, a set number of layers per dense block.
If list, nb_layer is used as provided. Note that list size must
be (nb_dense_block + 1)
bottleneck: flag to add bottleneck blocks in between dense blocks
reduction: reduction factor of transition blocks.
Note : reduction value is inverted to compute compression.
dropout_rate: dropout rate
weight_decay: weight decay rate
subsample_initial_block: Set to True to subsample the initial convolution and
add a MaxPool2D before the dense blocks are added.
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization) or
'imagenet' (pre-training on ImageNet)..
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
Note that if sigmoid is used, classes must be 1.
# Returns
A Keras model instance.
'''
if weights not in {'imagenet', None}:
raise ValueError('The `weights` argument should be either '
'`None` (random initialization) or `cifar10` '
'(pre-training on CIFAR-10).')
if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as ImageNet with `include_top`'
' as true, `classes` should be 1000')
if activation not in ['softmax', 'sigmoid']:
raise ValueError('activation must be one of "softmax" or "sigmoid"')
if activation == 'sigmoid' and classes != 1:
raise ValueError('sigmoid activation can only be used when classes = 1')
# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=32,
min_size=8,
data_format=K.image_data_format(),
require_flatten=include_top)
if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor
x = __create_dense_net(classes, img_input, include_top, depth, nb_dense_block,
growth_rate, nb_filter, nb_layers_per_block, bottleneck, reduction,
dropout_rate, weight_decay, subsample_initial_block, activation)
# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input
# Create model.
model = Model(inputs, x, name='se-densenet')
return model
def SEDenseNetImageNet121(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights=None,
input_tensor=None,
classes=1000,
activation='softmax'):
return SEDenseNet(input_shape, depth=121, nb_dense_block=4, growth_rate=32, nb_filter=64,
nb_layers_per_block=[6, 12, 24, 16], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
classes=classes, activation=activation)
def SEDenseNetImageNet169(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights=None,
input_tensor=None,
classes=1000,
activation='softmax'):
return SEDenseNet(input_shape, depth=169, nb_dense_block=4, growth_rate=32, nb_filter=64,
nb_layers_per_block=[6, 12, 32, 32], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
classes=classes, activation=activation)
def SEDenseNetImageNet201(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights=None,
input_tensor=None,
classes=1000,
activation='softmax'):
return SEDenseNet(input_shape, depth=201, nb_dense_block=4, growth_rate=32, nb_filter=64,
nb_layers_per_block=[6, 12, 48, 32], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
classes=classes, activation=activation)
def SEDenseNetImageNet264(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights=None,
input_tensor=None,
classes=1000,
activation='softmax'):
return SEDenseNet(input_shape, depth=201, nb_dense_block=4, growth_rate=32, nb_filter=64,
nb_layers_per_block=[6, 12, 64, 48], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
classes=classes, activation=activation)
def SEDenseNetImageNet161(input_shape=None,
bottleneck=True,
reduction=0.5,
dropout_rate=0.0,
weight_decay=1e-4,
include_top=True,
weights=None,
input_tensor=None,
classes=1000,
activation='softmax'):
return SEDenseNet(input_shape, depth=161, nb_dense_block=4, growth_rate=48, nb_filter=96,
nb_layers_per_block=[6, 12, 36, 24], bottleneck=bottleneck, reduction=reduction,
dropout_rate=dropout_rate, weight_decay=weight_decay, subsample_initial_block=True,
include_top=include_top, weights=weights, input_tensor=input_tensor,
classes=classes, activation=activation)
def __conv_block(ip, nb_filter, bottleneck=False, dropout_rate=None, weight_decay=1e-4):
''' Apply BatchNorm, Relu, 3x3 Conv2D, optional bottleneck block and dropout
Args:
ip: Input keras tensor
nb_filter: number of filters
bottleneck: add bottleneck block
dropout_rate: dropout rate
weight_decay: weight decay factor
Returns: keras tensor with batch_norm, relu and convolution2d added (optional bottleneck)
'''
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
x = Activation('relu')(x)
if bottleneck:
inter_channel = nb_filter * 4 # Obtained from https://github.com/liuzhuang13/DenseNet/blob/master/densenet.lua
x = Conv2D(inter_channel, (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
kernel_regularizer=l2(weight_decay))(x)
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
x = Activation('relu')(x)
x = Conv2D(nb_filter, (3, 3), kernel_initializer='he_normal', padding='same', use_bias=False)(x)
if dropout_rate:
x = Dropout(dropout_rate)(x)
return x
def __dense_block(x, nb_layers, nb_filter, growth_rate, bottleneck=False, dropout_rate=None, weight_decay=1e-4,
grow_nb_filters=True, return_concat_list=False):
''' Build a dense_block where the output of each conv_block is fed to subsequent ones
Args:
x: keras tensor
nb_layers: the number of layers of conv_block to append to the model.
nb_filter: number of filters
growth_rate: growth rate
bottleneck: bottleneck block
dropout_rate: dropout rate
weight_decay: weight decay factor
grow_nb_filters: flag to decide to allow number of filters to grow
return_concat_list: return the list of feature maps along with the actual output
Returns: keras tensor with nb_layers of conv_block appended
'''
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x_list = [x]
for i in range(nb_layers):
cb = __conv_block(x, growth_rate, bottleneck, dropout_rate, weight_decay)
x_list.append(cb)
x = concatenate([x, cb], axis=concat_axis)
if grow_nb_filters:
nb_filter += growth_rate
# squeeze and excite block
x = squeeze_excite_block(x)
if return_concat_list:
return x, nb_filter, x_list
else:
return x, nb_filter
def __transition_block(ip, nb_filter, compression=1.0, weight_decay=1e-4):
''' Apply BatchNorm, Relu 1x1, Conv2D, optional compression, dropout and Maxpooling2D
Args:
ip: keras tensor
nb_filter: number of filters
compression: calculated as 1 - reduction. Reduces the number of feature maps
in the transition block.
dropout_rate: dropout rate
weight_decay: weight decay factor
Returns: keras tensor, after applying batch_norm, relu-conv, dropout, maxpool
'''
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(ip)
x = Activation('relu')(x)
x = Conv2D(int(nb_filter * compression), (1, 1), kernel_initializer='he_normal', padding='same', use_bias=False,
kernel_regularizer=l2(weight_decay))(x)
x = AveragePooling2D((2, 2), strides=(2, 2))(x)
# squeeze and excite block
x = squeeze_excite_block(x)
return x
def __create_dense_net(nb_classes, img_input, include_top, depth=40, nb_dense_block=3, growth_rate=12, nb_filter=-1,
nb_layers_per_block=-1, bottleneck=False, reduction=0.0, dropout_rate=None, weight_decay=1e-4,
subsample_initial_block=False, activation='softmax'):
''' Build the DenseNet model
Args:
nb_classes: number of classes
img_input: tuple of shape (channels, rows, columns) or (rows, columns, channels)
include_top: flag to include the final Dense layer
depth: number or layers
nb_dense_block: number of dense blocks to add to end (generally = 3)
growth_rate: number of filters to add per dense block
nb_filter: initial number of filters. Default -1 indicates initial number of filters is 2 * growth_rate
nb_layers_per_block: number of layers in each dense block.
Can be a -1, positive integer or a list.
If -1, calculates nb_layer_per_block from the depth of the network.
If positive integer, a set number of layers per dense block.
If list, nb_layer is used as provided. Note that list size must
be (nb_dense_block + 1)
bottleneck: add bottleneck blocks
reduction: reduction factor of transition blocks. Note : reduction value is inverted to compute compression
dropout_rate: dropout rate
weight_decay: weight decay rate
subsample_initial_block: Set to True to subsample the initial convolution and
add a MaxPool2D before the dense blocks are added.
subsample_initial:
activation: Type of activation at the top layer. Can be one of 'softmax' or 'sigmoid'.
Note that if sigmoid is used, classes must be 1.
Returns: keras tensor with nb_layers of conv_block appended
'''
concat_axis = 1 if K.image_data_format() == 'channels_first' else -1
if reduction != 0.0:
assert reduction <= 1.0 and reduction > 0.0, 'reduction value must lie between 0.0 and 1.0'
# layers in each dense block
if type(nb_layers_per_block) is list or type(nb_layers_per_block) is tuple:
nb_layers = list(nb_layers_per_block) # Convert tuple to list
assert len(nb_layers) == (nb_dense_block), 'If list, nb_layer is used as provided. ' \
'Note that list size must be (nb_dense_block)'
final_nb_layer = nb_layers[-1]
nb_layers = nb_layers[:-1]
else:
if nb_layers_per_block == -1:
assert (depth - 4) % 3 == 0, 'Depth must be 3 N + 4 if nb_layers_per_block == -1'
count = int((depth - 4) / 3)
nb_layers = [count for _ in range(nb_dense_block)]
final_nb_layer = count
else:
final_nb_layer = nb_layers_per_block
nb_layers = [nb_layers_per_block] * nb_dense_block
# compute initial nb_filter if -1, else accept users initial nb_filter
if nb_filter <= 0:
nb_filter = 2 * growth_rate
# compute compression factor
compression = 1.0 - reduction
# Initial convolution
if subsample_initial_block:
initial_kernel = (7, 7)
initial_strides = (2, 2)
else:
initial_kernel = (3, 3)
initial_strides = (1, 1)
x = Conv2D(nb_filter, initial_kernel, kernel_initializer='he_normal', padding='same',
strides=initial_strides, use_bias=False, kernel_regularizer=l2(weight_decay))(img_input)
if subsample_initial_block:
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
x = Activation('relu')(x)
x = MaxPooling2D((3, 3), strides=(2, 2), padding='same')(x)
# Add dense blocks
for block_idx in range(nb_dense_block - 1):
x, nb_filter = __dense_block(x, nb_layers[block_idx], nb_filter, growth_rate, bottleneck=bottleneck,
dropout_rate=dropout_rate, weight_decay=weight_decay)
# add transition_block
x = __transition_block(x, nb_filter, compression=compression, weight_decay=weight_decay)
nb_filter = int(nb_filter * compression)
# The last dense_block does not have a transition_block
x, nb_filter = __dense_block(x, final_nb_layer, nb_filter, growth_rate, bottleneck=bottleneck,
dropout_rate=dropout_rate, weight_decay=weight_decay)
x = BatchNormalization(axis=concat_axis, epsilon=1.1e-5)(x)
x = Activation('relu')(x)
x = GlobalAveragePooling2D()(x)
if include_top:
x = Dense(nb_classes, activation=activation)(x)
return x