-
Notifications
You must be signed in to change notification settings - Fork 0
/
finalattentionresidualce.py
143 lines (109 loc) · 5.48 KB
/
finalattentionresidualce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Aug 20 17:53:10 2018
@author: ck807
"""
import numpy as np
import tensorflow as tf
from keras.models import Model
import matplotlib.pyplot as plt
import keras
from keras.layers.convolutional import Conv2D, UpSampling2D
from keras.layers.pooling import MaxPooling2D
from keras.layers import Input, Dropout
from keras.optimizers import SGD
from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau
from residualblockwithlayernames import initial_conv_block1, Residual2, Residual3, Residual4, Residual5, Residual6
from residualblockwithlayernames import Residual7, Residual8, Residual9, Residual10, Residual11, Residual12
from residualblockwithlayernames import Residual13, Residual14, Residual15, Residual16, Residual17, Residual18, Residual19
import keras.backend as K
print('Loading the data..')
trainData = np.load('trainData.npy')
trainMask = np.load('trainMask.npy')
valData = np.load('valData.npy')
valMask = np.load('valMask.npy')
print('Building and compiling the model..')
smooth = 1.
def dice_coef(y_true, y_pred):
y_true_f = K.flatten(y_true)
y_pred_f = K.flatten(y_pred)
intersection = K.sum(y_true_f * y_pred_f)
return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
def dice_coef_loss(y_true, y_pred):
return -dice_coef(y_true, y_pred)
def jaccard_coef(y_true, y_pred):
intersection = K.sum(y_true * y_pred, axis=[0, -1, -2])
sum_ = K.sum(y_true + y_pred, axis=[0, -1, -2])
jac = (intersection + smooth) / (sum_ - intersection + smooth)
return K.mean(jac)
def get_unet():
with tf.device('/device:GPU:1'):
inputs = Input((192, 192, 3), name='Input')
conv1 = initial_conv_block1(inputs)
conv1 = Residual2(16, 32, conv1)
pool1 = MaxPooling2D(pool_size=(2, 2), name='MaxPool1')(conv1)
conv2 = Residual3(32, 32, pool1)
conv2 = Residual4(32, 64, conv2)
pool2 = MaxPooling2D(pool_size=(2, 2), name='MaxPool2')(conv2)
conv3 = Residual5(64, 64, pool2)
conv3 = Residual6(64, 128, conv3)
pool3 = MaxPooling2D(pool_size=(2, 2), name='MaxPool3')(conv3)
conv4 = Residual7(128, 128, pool3)
conv4 = Residual8(128, 256, conv4)
drop4 = Dropout(0.2, name='Dropout1')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2), name='MaxPool4')(drop4)
conv5 = Residual9(256, 256, pool4)
conv5 = Residual10(256, 128, conv5)
drop5 = Dropout(0.2, name='Dropout2')(conv5)
up6 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal', name='UpConv1')(UpSampling2D(size = (2,2), name='Up1')(drop5))
merge6 = keras.layers.Concatenate(name='Concat1')([drop4,up6])
conv6 = Residual11(384, 128, merge6)
conv6 = Residual12(128, 64, conv6)
up7 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal', name='UpConv2')(UpSampling2D(size = (2,2), name='Up2')(conv6))
merge7 = keras.layers.Concatenate(name='Concat2')([conv3,up7])
conv7 = Residual13(192, 64, merge7)
conv7 = Residual14(64, 32, conv7)
up8 = Conv2D(32, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal', name='UpConv3')(UpSampling2D(size = (2,2), name='Up3')(conv7))
merge8 = keras.layers.Concatenate(name='Concat3')([conv2,up8])
conv8 = Residual15(96, 32, merge8)
conv8 = Residual16(32, 16, conv8)
up9 = Conv2D(16, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal', name='UpConv4')(UpSampling2D(size = (2,2), name='Up4')(conv8))
merge9 = keras.layers.Concatenate(name='Concat4')([conv1,up9])
conv9 = Residual17(48, 16, merge9)
conv9 = Residual18(16, 2, conv9)
conv9 = Residual19(2, 1, conv9)
conv10 = Conv2D(1, 1, activation = 'sigmoid', name='Output')(conv9)
model = Model(inputs, conv10)
model.compile(loss='binary_crossentropy', optimizer=SGD(lr=0.03, momentum=0.9, nesterov=True), metrics=[dice_coef,jaccard_coef])
return model
model = get_unet()
callbacks = [
EarlyStopping(monitor='val_loss', patience=10, verbose=1),
ModelCheckpoint("-val_loss_Residual_crossentropy_checkpoint.h5", monitor='val_loss', verbose=1, save_best_only=True, mode='auto'),
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, verbose=1, mode='auto', epsilon=0.01, cooldown=0, min_lr=1e-6)
]
history = model.fit(trainData, trainMask, validation_data=(valData, valMask), batch_size=32, epochs=200, verbose=1, shuffle=True, callbacks=callbacks)
model.save('final_Attention_crossentropy_Residual.h5')
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('Loss')
plt.xlabel('epoch')
plt.legend(['loss', 'val_loss'], loc='upper right')
plt.savefig('loss_cross_Autoencoder.png')
plt.plot(history.history['dice_coef'])
plt.plot(history.history['val_dice_coef'])
plt.title('Dice Coef Accuracy')
plt.xlabel('epoch')
plt.legend(['dice_coef', 'val_dice_coef'], loc='upper left')
plt.savefig('dice_coef_cross_autoEncoder.png')
plt.plot(history.history['jaccard_coef'])
plt.plot(history.history['val_jaccard_coef'])
plt.title('Jaccard Coef Accuracy')
plt.xlabel('epoch')
plt.legend(['jaccard_coef', 'val_jaccard_coef'], loc='upper left')
plt.savefig('jaccard_coef_cross_autoEncoder.png')
plt.plot(history.history['lr'])
plt.title('Learning Rate')
plt.xlabel('epoch')
plt.savefig('lr_cross_autoencoder.png')