-
Notifications
You must be signed in to change notification settings - Fork 1
/
apeglm.R
762 lines (705 loc) · 29.5 KB
/
apeglm.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
#' Approximate posterior estimation for GLM coefficients
#'
#' apeglm provides Bayesian shrinkage estimators for effect sizes
#' in GLM models, using approximation of the posterior for individual coefficients.
#'
#' \code{prior.control} is a list of parameters that will be passed to determine
#' the prior distribution. Users are allowed to have a Normal prior on the
#' intercept, and a t prior on the non-intercept coefficients (similar
#' to \code{bayesglm} in the \code{arm} package. The following are defaults:
#'
#' \itemize{
#' \item \code{no.shrink = 1}: index of the coefficient(s) not to shrink
#' \item \code{prior.mean = 0}: mean of t prior
#' \item \code{prior.scale = 1}: scale of t prior
#' \item \code{prior.df = 1}: df of t prior
#' \item \code{prior.no.shrink.mean = 0}: mean of Normal
#' \item \code{prior.no.shrink.scale = 15}: scale of Normal
#' }
#'
#' So without specifying \code{prior.control}, the following is set inside \code{apeglm}:
#'
#' \code{prior.control <- list(no.shrink=1,prior.mean=0,prior.scale=1,
#' prior.df=1,prior.no.shrink.mean=0,prior.no.shrink.scale=15)}
#'
#' Note that the prior should be defined on the natural log scale for a log link GLM.
#'
#' @param Y the observations, which can be a matrix or SummarizedExperiment,
#' with columns for samples and rows for "features" (e.g. genes in a genomic context).
#' If Y is a SummarizedExperiment, \code{apeglm} will return, in addition
#' to other list items, a GRanges or GRangesList \code{ranges} with the
#' estimated coefficients as metadata columns.
#' @param x design matrix, with intercept in the first column.
#' Continuous-valued columns should be centered and scaled to unit variance,
#' or at least set so that the scale (in SD) is not very large or very small
#' @param log.lik the log of likelihood function, specified by the user.
#' For Negative Binomial distribution, user can use \code{logLikNB} provided within the package.
#' @param param the other parameter(s) to be used in the likelihood function,
#' e.g. the dispersion parameter for a negative binomial distribution.
#' this can be a vector or a matrix (with columns as parameters)
#' @param coef (optional) the index of the coefficient for which
#' to generate posterior estimates (FSR, svalue, and intervals)
#' @param mle (optional) a 2 column matrix giving the MLE and its standard error
#' of \code{coef}. this will be used to adapt the scale of the prior (empirical Bayes).
#' This overrides the \code{prior.scale} specified by \code{prior.control}
#' and sets \code{no.shrink} to all coefficients other than \code{coef}.
#' Note that these MLE's and SE's should be on the natural log scale for a log link GLM.
#' @param no.shrink logical, if TRUE, apeglm won't perform shrinkage (default is FALSE)
#' @param interval.type (optional) can be "laplace", "HPD", or "credible", which specifies
#' the type of Bayesian interval that the user wants to output; "laplace" represents the
#' Laplace approximation of the posterior mode
#' @param interval.level (optional) default is 0.95
#' @param threshold (optional) a threshold for integrating posterior probabilities,
#' see details under 'Value'.
#' Note that this should be on the natural log scale for a log link GLM.
#' @param contrasts (optional) contrast matrix, same number of rows as \code{x}
#' @param weights (optional) weights matrix, same shape as \code{Y}
#' @param offset (optional) offsets matrix, same shape as \code{Y}.
#' Note that this should be on the natural log scale for a log link GLM.
#' @param flip.sign whether to flip the sign of threshold value
#' when MAP is negative, default is TRUE (threshold must then be positive)
#' @param prior.control see Details
#' @param multiplier a positive number, when the prior is adapted to the \code{mle}
#' matrix provided, this parameter connects the scale of the estimated distribution
#' of betas to the scale of the prior. the default value was chosen based on
#' FSR and error analysis of simulated data
#' @param ngrid the number of grid points for grid integration of intervals
#' @param nsd the number of SDs of the Laplace posterior approximation to set the
#' left and right edges of the grid around the MAP
#' @param ngrid.nuis the number of grid points for nuisance parameters
#' @param nsd.nuis the number of Laplace standard errors to set the
#' left and right edges of the grid around the MAP of the nuisance parameters
#' @param log.link whether the GLM has a log link (default = TRUE)
#' @param param.sd (optional) potential uncertainty measure on the parameter \code{param}.
#' this should only be a vector, used when \code{param} specifies a single parameter
#' @param method options for how apeglm will find the posterior mode and SD.
#' The default is "general" which allows the user to specify a likelihood
#' in a general way. Alternatives for faster performance with the Negative Binomial
#' likelihood are:
#' "nbinomR", "nbinomCR", and "nbinomC" / "nbinomC*"
#' These alternative methods should provide increasing speeds,
#' respectively.
#' (Also for beta binomial, substitute "betabin" for "nbinom" in the
#' above.)
#' From testing on RNA-seq data, the nbinom methods are roughly 5x, 10x and 50x faster than "general".
#' Note that "nbinomC" uses C++ to find the MAP for the coefficients,
#' but does not calculate or return the posterior SD or other quantities.
#' "nbinomC*" is the same as "nbinomC", but includes a random start for finding the MAP.
#' "nbinomCR" uses C++ to calculate the MAP and then estimates
#' the posterior SD in R, with the exception that if the MAP from C++
#' did not converge or gives negative estimates of posterior variance,
#' then this row is refit using optimization in R.
#' These alternatives require the degrees of freedom for the prior distribution to be 1,
#' and will ignore any function provided to the \code{log.lik} argument.
#' \code{param} should specify the dispersion parameter of a Negative Binomial
#' (such that Var = mu + param mu^2).
#' @param optim.method the method passed to \code{optim}
#' @param bounds the bounds for the numeric optimization
#'
#' @return a list of matrices containing the following components:
#' \itemize{
#' \item \code{map}: matrix of MAP estimates, columns for coefficients and rows for features
#' \item \code{sd}: matrix of posterior SD, same shape as \code{map}
#' \item \code{prior.control}: list with details on the prior
#' \item \code{fsr}: vector of the false sign rate for \code{coef}
#' \item \code{svalue}: vector of the s-values for \code{coef}
#' \item \code{interval}: matrix of either HPD or credible interval for \code{coef}
#' \item \code{thresh}: vector of the posterior probability that the estimated parameter
#' is smaller than the threshold value specified in \code{threshold}
#' when MAP is positive (or greater than
#' -1 * threshold value when MAP is negative and flip.sign is TRUE)
#' \item \code{diag}: matrix of diagnostics
#' \item \code{contrast.map}: vector of MAP estimates corresponding to the \code{contrast}
#' when \code{contrast} is given
#' \item \code{contrast.sd}: vector of posterior SD corresponding to the \code{contrast}
#' when \code{contrast} is given
#' \item \code{ranges}: GRanges or GRangesList with the estimated coefficients,
#' if \code{Y} was a SummarizedExperiment.
#' }
#'
#' Note that all parameters associated with coefficients,
#' e.g. \code{map}, \code{sd}, etc., are returned on the natural log scale for a log link GLM.
#'
#' @references
#'
#' Adaptive Cauchy prior:
#'
#' Zhu, A. (2018) Heavy-tailed prior distributions for sequence count data:
#' removing the noise and preserving large differences. Bioinformatics. doi: 10.1093/bioinformatics/bty895
#'
#' False sign rate and s-value:
#'
#' Stephens, M. (2016) False discovery rates: a new deal. Biostatistics, 18:2. doi: 10.1093/biostatistics/kxw041
#'
#' @importFrom Rcpp sourceCpp
#' @importFrom SummarizedExperiment assay rowRanges
#' @importFrom GenomicRanges mcols<-
#' @importFrom stats dnorm pnorm qnorm rnorm sd dt optim optimHess uniroot
#' @importFrom utils head tail
#' @importFrom methods is
#'
#' @useDynLib apeglm
#'
#' @export
#'
#' @examples
#'
#' # Simulate RNA-Seq read counts data
#'
#' # 5 samples for each of the two groups
#' # a total of 100 genes
#' n.per.group <- 5
#' n <- n.per.group * 2
#' m <- 100
#'
#' # The design matrix includes one column of intercept
#' # and one column indicating samples that belong to the second group
#' condition <- factor(rep(letters[1:2], each = n.per.group))
#' x <- model.matrix(~condition)
#'
#' # Specify the standard deviation of beta (LFC between groups)
#' beta.sd <- 2
#' beta.cond <- rnorm(m, 0, beta.sd)
#' beta.intercept <- runif(m, 2, 6)
#' beta.mat <- cbind(beta.intercept, beta.cond)
#'
#' # Generate the read counts
#' mu <- exp(t(x %*% t(beta.mat)))
#' Y <- matrix(rnbinom(m*n, mu=mu, size=1/.1), ncol = n)
#'
#' # Here we will use the negative binomial log likelihood
#' # which is an exported function. See 'logLikNB' for details.
#' # For the NB:
#' # 'param' is the dispersion estimate (1/size)
#' # 'offset' can be used to adjust for size factors (log of size factors)
#' param <- matrix(0.1, nrow = m, ncol = 1)
#' offset <- matrix(0, nrow = m, ncol = n)
#'
#' # Shrinkage estimator of betas:
#' # (for adaptive shrinkage, 'apeglm' requires 'mle' coefficients
#' # estimated with another software, or by first running 'apeglm'
#' # setting 'no.shrink=TRUE'.)
#' res <- apeglm(Y = Y, x = x,
#' log.lik = logLikNB,
#' param = param,
#' offset = offset,
#' coef = 2)
#'
#' head(res$map)
#' plot(beta.mat[,2], res$map[,2])
#' abline(0,1)
#'
apeglm <- function(Y, x, log.lik,
param=NULL,
coef=NULL,
mle=NULL,
no.shrink=FALSE,
interval.type=c("laplace", "HPD", "credible"),
interval.level=0.95,
threshold=NULL, contrasts,
weights=NULL, offset=NULL,
flip.sign=TRUE,
prior.control,
multiplier=1,
ngrid=50, nsd=5,
ngrid.nuis=5, nsd.nuis=2,
log.link=TRUE,
param.sd=NULL,
method=c("general",
"nbinomR","nbinomCR","nbinomC","nbinomC*",
"betabinR", "betabinCR", "betabinC", "betabinC*"),
optim.method="BFGS",
bounds=c(-Inf,Inf)) {
if (missing(prior.control)) {
prior.control <- list(
no.shrink = 1,
prior.mean = 0,
prior.scale = 1,
prior.df = 1,
prior.no.shrink.mean = 0,
prior.no.shrink.scale = 15
)
}
interval.type <- match.arg(interval.type)
method <- match.arg(method)
# with beta-binomial distribution, we may want to shrink the intercept
# (this is not the case for negative binomial)
# this flag allows for shrinkage of intercept
if (method %in% c("general", "betabinR", "betabinCR", "betabinC", "betabinC*")) {
allow.shrink.intercept <- TRUE
log.link <- FALSE
} else {
allow.shrink.intercept <- FALSE
}
stopifnot(ncol(Y) == nrow(x))
stopifnot(multiplier > 0)
if (no.shrink) {
prior.control$no.shrink <- seq_len(ncol(x))
}
if (!is.null(mle)) {
stopifnot(!is.null(coef))
prior.control$no.shrink <- setdiff(seq_len(ncol(x)), coef)
prior.control$prior.var <- priorVar(mle)
prior.scale <- multiplier * sqrt(prior.control$prior.var)
prior.scale <- min(prior.scale, 1)
prior.control$prior.scale <- prior.scale
}
if (method != "general") {
stopifnot(prior.control$prior.df == 1)
stopifnot(prior.control$prior.mean == 0)
stopifnot(prior.control$prior.no.shrink.mean == 0)
}
if (!is.matrix(param)) param <- as.matrix(param, ncol=1)
# don't have code yet for use of threshold with param.sd
stopifnot(is.null(param.sd) | is.null(threshold))
if (flip.sign==TRUE & !is.null(threshold)) stopifnot(threshold > 0)
x <- as.matrix(x)
xnames <- dimnames(x)[[2]]
nvars <- ncol(x)
hasRanges <- FALSE
if (is(Y, "SummarizedExperiment")) {
if (is(Y, "RangedSummarizedExperiment")) {
ranges <- rowRanges(Y)
hasRanges <- TRUE
}
Y <- assay(Y)
}
Y <- as.matrix(Y)
rownames <- dimnames(Y)[[1]]
nrows <- nrow(Y)
if (!is.null(weights)) {
stopifnot(ncol(weights)==ncol(Y))
stopifnot(nrow(weights)==nrow(Y))
}
if (!is.null(offset)) {
stopifnot(ncol(offset)==ncol(Y))
stopifnot(nrow(offset)==nrow(Y))
}
if (method == "general") {
offset.in.log.lik <- any(grepl("offset",as.character(body(log.lik))))
if (offset.in.log.lik) {
if (is.null(offset)) {
stop("log.lik uses 'offset', so 'offset' should be non-NULL")
}
}
}
intercept.idx <- rowSums(x == 0) == nvars - 1
if (sum(intercept.idx) > 0) {
basemean <- rowMeans(Y[,intercept.idx,drop=FALSE])
} else {
basemean <- rowMeans(Y)
}
result <- list()
result$map <- matrix(nrow=nrows, ncol=nvars,
dimnames=list(rownames, xnames))
result$sd <- matrix(nrow=nrows, ncol=nvars,
dimnames=list(rownames, xnames))
result$prior.control <- prior.control
if (!is.null(coef)) {
if (!(is.numeric(coef) & coef==round(coef) & length(coef) == 1)){
stop("coef must be numeric vector of length 1, and an integer")
}
if (!allow.shrink.intercept & coef < 2) {
stop("'coef' must be greater than 2")
}
if (coef > ncol(x)) {
stop("'coef' must be less than or equal to the number of columns of 'x'")
}
result$fsr <- matrix(nrow=nrows, ncol=1,
dimnames=list(rownames, xnames[coef]))
result$svalue <- matrix(nrow=nrows, ncol=1,
dimnames=list(rownames, xnames[coef]))
interval.nms <- list(rownames, c(paste0((1-interval.level)/2*100,"%"),
paste0((1-(1-interval.level)/2)*100,"%")))
result$interval <- matrix(nrow=nrows, ncol=2, dimnames=interval.nms)
if (!is.null(threshold)) {
result$thresh <- matrix(nrow=nrows, ncol=1,
dimnames=list(rownames, xnames[coef]))
}
}
# diagnostic columns differ if we use laplace or not for posterior estimation
if (interval.type != "laplace") {
diag.cols <- c("conv","count","value","out.left","out.right")
} else {
diag.cols <- c("conv","count","value")
}
result$diag <- matrix(NA, nrow=nrows, ncol=length(diag.cols),
dimnames=list(rownames, diag.cols))
if (!missing(contrasts)) {
ncontr <- ncol(contrasts)
contrast.nms <- list(rownames, colnames(contrasts))
result$contrast.map <- matrix(nrow=nrows, ncol=ncontr,
dimnames=contrast.nms)
result$contrast.sd <- matrix(nrow=nrows, ncol=ncontr,
dimnames=contrast.nms)
}
# fast routines for negative binomial in C++
if (method %in% c("nbinomCR","nbinomC","nbinomC*")) {
result <- nbinomCppRoutine(Y, x, weights, offset, param,
prior.control, method, result)
}
# ...likewise for beta binomial in C++
if (method %in% c("betabinC", "betabinCR", "betabinC*")) {
result <- betabinCppRoutine(Y, x, weights, offset, param,
prior.control, method, result,
bounds, optim.method)
}
# nbinomC, nbinomC*, betabinC, or betabinC* just return the result
if (method %in% c("nbinomC","nbinomC*","betabinC","betabinC*")) {
if (hasRanges) {
mcols(ranges) <- result$map
result$ranges <- ranges
}
return(result)
}
for (i in seq_len(nrows)) {
weights.row <- if (is.null(weights)) NULL else weights[i,]
offset.row <- if (is.null(offset)) NULL else offset[i,]
param.i <- if (is.null(param)) NULL else param[i,,drop=TRUE] # drop the dimension
param.sd.i <- if (is.null(param.sd)) NULL else param.sd[i]
prefit.beta <- if (method %in% c("nbinomCR","betabinCR")) result$map[i,] else NULL
if (any(is.nan(prefit.beta))) {
prefit.beta <- NULL # occasionally the pre-fitting gives NaN (noticed in Bioc 3.17...)
}
prefit.conv <- if (method %in% c("nbinomCR","betabinCR")) result$diag[i,"conv"] else NULL
row.result <- apeglm.single(y = Y[i,], x=x, log.lik=log.lik,
param=param.i, coef=coef, interval.type=interval.type, interval.level=interval.level,
threshold=threshold, contrasts=contrasts, weights=weights.row, offset=offset.row,
flip.sign=flip.sign, prior.control=prior.control,
ngrid=ngrid, nsd=nsd, ngrid.nuis=ngrid.nuis, nsd.nuis=nsd.nuis,
log.link=log.link, param.sd=param.sd.i, basemean=basemean[i],
prefit.beta=prefit.beta, prefit.conv=prefit.conv,
method=method, optim.method=optim.method, bounds=bounds)
result$map[i,] <- row.result$map
result$sd[i,] <- row.result$sd
if (!is.null(coef)) {
result$fsr[i,] <- row.result$fsr
result$interval[i,] <- row.result$ci
if (!is.null(threshold) & !is.na(row.result$map[coef])) {
if (flip.sign == TRUE & row.result$map[coef] < 0){
result$thresh[i,] <- 1 - row.result$threshold
} else {
result$thresh[i,] <- row.result$threshold
}
}
}
result$diag[i,] <- row.result$diag
if (!missing(contrasts)) {
result$contrast.map[i,] <- row.result$contrast.map
result$contrast.sd[i,] <- row.result$contrast.sd
}
}
if (!is.null(coef)) {
result$svalue[,1] <- svalue(result$fsr)
}
if (hasRanges) {
mcols(ranges) <- result$map
result$ranges <- ranges
}
return(result)
}
# Log of prior density
# Allow for t or normal prior for intercept, and t for coefficients
# work on scale later
log.prior <- function(beta, prior.control) {
p <- prior.control
log.prior.no.shrink <- sum(dnorm(beta[p$no.shrink], mean = p$prior.no.shrink.mean,
sd = p$prior.no.shrink.scale, log=TRUE))
# the scaling of the t density can be left out after taking the log
log.prior.shrink <- sum(dt(beta[-p$no.shrink]/p$prior.scale,
df = p$prior.df, ncp = p$prior.mean, log=TRUE))
log.prior.no.shrink + log.prior.shrink
}
log.post <- function(beta, log.lik, log.prior, y, x, param, weights,
offset, prior.control) {
if (is.null(weights)) {
out <- sum(log.lik(y, x, beta, param, offset)) + log.prior(beta, prior.control)
} else {
out <- t(weights) %*% log.lik(y, x, beta, param, offset) + log.prior(beta, prior.control)
}
if (!is.finite(out)) return(-1e100)
out
}
# For each row, we use this apeglm.single
# (unexported)
apeglm.single <- function(y, x, log.lik, param, coef, interval.type, interval.level,
threshold, contrasts, weights, offset, flip.sign, prior.control,
ngrid, nsd, ngrid.nuis, nsd.nuis, log.link=TRUE, param.sd,
basemean, prefit.beta, prefit.conv, method, optim.method, bounds) {
if (log.link & all(y == 0)) {
out <- buildNAOut(coef, interval.type, threshold, contrasts)
return(out)
}
zero.start <- method %in% c("betabinR","betabinCR")
if (is.null(prefit.beta)) {
if (zero.start) {
init <- rep(0,length.out=ncol(x))
} else {
init <- rep(c(1,-1),length.out=ncol(x))
}
if (log.link) {
if (basemean == 0) {
init[1] <- 0
} else {
init[1] <- log(basemean)
}
}
} else {
init <- prefit.beta
}
# numerical optimization to find the MAP and posterior SD
if (optim.method != "L-BFGS-B") {
bounds <- c(-Inf, Inf)
}
if (method == "general") {
o <- optim(par = init, fn = log.post,
log.lik = log.lik, log.prior = log.prior,
y = y, x = x, param = param,
weights = weights, offset = offset,
prior.control = prior.control,
control=list(fnscale=-1),
lower=bounds[1], upper=bounds[2],
hessian=TRUE, method=optim.method)
} else if (method == "nbinomR") {
# this optimizes all rows in R, with function and gradient
# written specifically for negative binomial likelihood
o <- optimNbinom(init=init, y=y, x=x, param=param,
weights=weights, offset=offset,
prior.control=prior.control,
bounds=bounds,
optim.method=optim.method)
} else if (method == "nbinomCR") {
# this uses previously estimated C++ MAP for negative binomial likelihood
# and calculates the Hessian uses optimHess().
# if the Hessian gives negative variance estimates for a row, it will
# re-optimize the negative log posterior using method="nbinomR" for that row
o <- optimNbinomHess(init=init, y=y, x=x, param=param,
weights=weights, offset=offset,
prior.control=prior.control,
bounds=bounds,
optim.method=optim.method,
prefit.conv=prefit.conv)
} else if (method == "betabinR") {
theta <- param[1]
size <- param[-1]
o <- optimBetabin(init=init, y=y, x=x, size=size,
theta=theta, weights=weights,
prior.control=prior.control,
bounds=bounds,
optim.method=optim.method)
} else if (method == "betabinCR") {
o <- optimBetabinHess(init=init, y=y, x=x, param=param,
weights=weights,
prior.control=prior.control,
bounds=bounds,
optim.method=optim.method,
prefit.conv=prefit.conv)
}
map <- o$par
cov.mat <- -solve(o$hessian)
if (any(diag(cov.mat) <= 0)) {
out <- buildNAOut(coef, interval.type, threshold, contrasts)
out$map <- map
return(out)
}
sd <- sqrt(diag(cov.mat))
out <- list(map=map, sd=sd)
# calculate statistics for a particular coefficient
if (!is.null(coef)) {
# this is the default interval type - Laplace approximation of posterior
if (interval.type == "laplace") {
stopifnot(is.null(param.sd)) # not implemented
qn <- qnorm((1 - interval.level)/2,lower.tail=FALSE)
out$ci <- c(map[coef] - qn * sd[coef], map[coef] + qn * sd[coef])
out$diag <- c(o$convergence, o$counts[1], o$value)
out$fsr <- pnorm(-abs(map[coef]),0,sd[coef])
if (!is.null(threshold)) {
if (flip.sign) {
out$threshold <- pnorm(sign(map[coef])*threshold, map[coef], sd[coef])
} else {
out$threshold <- pnorm(threshold, map[coef], sd[coef])
}
}
} else {
# use a grid to evaluate posterior
out <- gridResults(y=y, x=x, log.lik=log.lik,
param=param,
coef=coef,
interval.type=interval.type,
interval.level=interval.level,
threshold=threshold, contrasts=contrasts,
weights=weights, offset=offset,
flip.sign=flip.sign,
prior.control=prior.control,
ngrid=ngrid, nsd=nsd,
ngrid.nuis=ngrid.nuis, nsd.nuis=nsd.nuis,
log.link=log.link,
param.sd=param.sd,
o=o, map=map, cov.mat=cov.mat, sd=sd, out=out)
}
} else {
# just diagnostic values (if coef not specified)
out$diag <- c(o$convergence, o$counts[1], o$value)
}
# calculate contrasts
if (!missing(contrasts)) {
contrasts <- data.matrix(contrasts)
stopifnot(nrow(contrasts) == ncol(x))
stopifnot(ncol(contrasts) >= 1)
out$contrast.map <- map %*% contrasts
out$contrast.sd <- t(sqrt(diag(t(contrasts) %*% cov.mat %*% contrasts)))
}
out
}
buildNAOut <- function(coef, interval.type, threshold, contrasts) {
out <- list(map=NA, sd=NA)
if (!is.null(coef)) {
out$fsr <- NA
out$ci <- c(NA, NA)
if (!is.null(threshold)) {
out$threshold <- NA
}
}
if (interval.type != "laplace") {
out$diag <- c(NA, NA, NA, NA, NA)
} else {
out$diag <- c(NA, NA, NA)
}
if (!missing(contrasts)) {
out$contrast.map <- NA
out$contrast.sd <- NA
}
out
}
nbinomCppRoutine <- function(Y, x, weights, offset, param,
prior.control, method, result) {
nonzero <- rowSums(Y) > 0
# the C++ code uses transposed data (samples x genes)
YNZ <- t(Y[nonzero,,drop=FALSE])
if (is.null(weights)) {
weights <- matrix(1, nrow=nrow(Y), ncol=ncol(Y))
}
if (is.null(offset)) {
offset <- matrix(0, nrow=nrow(Y), ncol=ncol(Y))
}
weightsNZ <- t(weights[nonzero,,drop=FALSE])
offsetNZ <- t(offset[nonzero,,drop=FALSE])
size <- 1/param[nonzero]
sigma <- prior.control$prior.no.shrink.scale
S <- prior.control$prior.scale
no.shrink <- prior.control$no.shrink
shrink <- setdiff(seq_len(ncol(x)), no.shrink)
# now, estimate the scale of the function
init <- rep(0, ncol(x))
cnst <- sapply(seq_len(sum(nonzero)), function(i) {
nbinomFn(init, x=x, y=YNZ[,i], size=size[i], weights=weightsNZ[,i],
offset=offsetNZ[,i], sigma=sigma, S=S, no.shrink=no.shrink,
shrink=shrink, cnst=0)
})
cnst <- ifelse(cnst > 1, cnst, 1)
# now optimize over all rows using L-BFGS run in C++
# on a scaled version of the negative posterior.
# we run it twice to check for stability and issues w/ local maxima
if (method == "nbinomC*") {
init <- rnorm(ncol(x),0,.5)
} else {
init <- rep(c(.1,-.1),length.out=ncol(x))
}
out <- nbinomGLM(x=x, Y=YNZ, size=size, weights=weightsNZ,
offset=offsetNZ, sigma2=sigma^2, S2=S^2,
no_shrink=no.shrink, shrink=shrink,
init=init, cnst=cnst)
if (method == "nbinomCR") {
init2 <- rep(c(-.1,.1),length.out=ncol(x))
out2 <- nbinomGLM(x=x, Y=YNZ, size=size, weights=weightsNZ,
offset=offsetNZ, sigma2=sigma^2, S2=S^2,
no_shrink=no.shrink, shrink=shrink,
init=init2, cnst=cnst)
}
## valueR <- sapply(seq_len(sum(nonzero)), function(i) {
## nbinomFn(out$beta[,i], x=x, y=YNZ[,i], size=size[i], weights=weightsNZ[,i],
## offset=offsetNZ[,i], sigma=sigma, S=S, no.shrink=no.shrink,
## shrink=shrink, cnst=0)/cnst[i] + 10
## })
## nas <- rep(NA, nrow(result$diag)); result$diag <- cbind(result$diag, valueR=nas)
## result$diag[nonzero,"valueR"] <- valueR
result$map[nonzero,] <- t(out$betas)
result$diag[nonzero,"conv"] <- out$convergence
result$diag[nonzero,"value"] <- out$value
if (method == "nbinomCR") {
# if the two fits above disagree by .01, say it did not converge
delta <- apply(abs(out$betas - out2$betas), 2, max)
result$diag[nonzero,"conv"][delta > .01] <- -1
}
result
}
# beta-binomial fitting routine, written by Josh Zitovsky, Spring semester 2019
betabinCppRoutine <- function(Y, x, weights, offset, param,
prior.control, method, result,
bounds, optim.method) {
# parameter for beta binomial
cap <- 0.001
nonzero <- rowSums(Y) >= 0
YNZ <- t(Y[nonzero, , drop = FALSE])
if (is.null(weights)) {
weights <- matrix(1, nrow = nrow(Y), ncol = ncol(Y))
}
weightsNZ <- t(weights[nonzero, , drop = FALSE])
theta <- param[, 1]
size <- param[, -1, drop = FALSE]
sizeNZ <- t(size[nonzero, , drop = FALSE])
sigma <- prior.control$prior.no.shrink.scale
S <- prior.control$prior.scale
no.shrink <- prior.control$no.shrink
shrink <- setdiff(seq_len(ncol(x)), no.shrink)
if (method == "betabinC*") {
init <- rnorm(ncol(x),0,.5)
} else {
init <- rep(c(.1,-.1),length.out=ncol(x))
}
# creating vector 'cnst' to scale likelihood and gradient
# and prevent very large/small values
initC <- c(3, rep(0, ncol(x)-1))
cnst <- sapply(seq_len(sum(nonzero)), function(i) {
betabinFn(initC, x=x, y=YNZ[,i], size=sizeNZ[,i], theta=theta[i], weights=weightsNZ[,i],
sigma=sigma, S=S, no.shrink=no.shrink,
shrink=shrink, cnst=0)
})
cnst <- abs(cnst)
cnst <- ifelse(cnst > 100, cnst, 100)
lbd <- cap
ubd <- 1/cap - 1
tol <- 1e-12
out <- betabinGLM(x = x, Y = YNZ, sizes = sizeNZ,
thetas = theta, weights = weightsNZ, sigma2 = sigma^2,
S2 = S^2, no_shrink = no.shrink, shrink = shrink,
init = init, cnst=cnst, tol=tol, lbd=lbd, ubd=ubd)
## if (method == "betabinCR") {
## init2 <- rep(c(-.1,.1),length.out=ncol(x))
## out2 <- betabinGLM(x = x, Y = YNZ, sizes = sizeNZ,
## thetas = theta, weights = weightsNZ, sigma2 = sigma^2,
## S2 = S^2, no_shrink = no.shrink, shrink = shrink,
## init = init2, cnst=cnst, tol=tol, lbd=lbd, ubd=ubd)
## }
result$map[nonzero,] <- t(out$betas)
result$diag[nonzero,"conv"] <- out$convergence
result$diag[nonzero,"value"] <- out$value
# in the case that the C++ code got a lgamma(0) or
# something during optimization, re-run in R
no.number <- is.na(out$value)
need.change <- (1:nrow(result$map))[no.number]
for (i in need.change) {
o <- optimBetabin(init, Y[i,], x, size[i,], theta[i],
weights[i,], prior.control,
bounds, optim.method)
result$diag[i,"conv"] <- o$convergence
result$diag[i,"value"] <- o$value
result$map[i,] <- o$par
}
## if (method == "betabinCR") {
## # if the two fits above disagree by .01, say it did not converge
## delta <- apply(abs(out$betas - out2$betas), 2, max)
## result$diag[nonzero,"conv"][delta > .01] <- -1
## }
result
}