This repository has been archived by the owner on Feb 24, 2022. It is now read-only.
forked from tradytics/surpriver
-
Notifications
You must be signed in to change notification settings - Fork 0
/
feature_generator.py
109 lines (94 loc) · 4.73 KB
/
feature_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Basic libraries
import os
import ta
import sys
import json
import math
import pickle
import random
import requests
import matplotlib
import collections
import numpy as np
from os import walk
import pandas as pd
import yfinance as yf
import datetime as dt
from scipy.stats import linregress
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings("ignore")
class TAEngine:
def __init__(self, history_to_use):
print("Technical Indicator Engine has been initialized")
self.HISTORY_TO_USE = history_to_use
def calculate_slope(self, data):
"""
Calculate slope, p value, and r^2 value given some data
"""
x_axis = np.arange(len(data))
regression_model = linregress(x_axis, data)
slope, r_value, p_value = round(regression_model.slope, 3), round(abs(regression_model.rvalue), 3), round(regression_model.pvalue, 4)
return slope, r_value, p_value
def get_technical_indicators(self, price_data):
"""
Given a pandas data frame with columns -> 'Open', 'High', 'Low', 'Close', 'Volume', extract different technical indicators and returns
"""
technical_indicators_dictionary = {}
# RSI
rsi_history = [5, 10, 15]
for history in rsi_history:
rsi = ta.momentum.RSIIndicator(price_data['Close'], n = history, fillna = True).rsi().values.tolist()
slope_rsi, r_value_rsi, p_value_rsi = self.calculate_slope(rsi[-self.HISTORY_TO_USE:])
technical_indicators_dictionary["rsi-" + str(history)] = rsi[-self.HISTORY_TO_USE:] + [slope_rsi, r_value_rsi, p_value_rsi]
# Stochastics
stochastic_history = [5, 10, 15]
for history in stochastic_history:
stochs = ta.momentum.StochasticOscillator(price_data['High'], price_data['Low'], price_data['Close'], n = history, d_n = int(history/3), fillna = True).stoch().values.tolist()
slope_stoch, r_value_stoch, p_value_stoch = self.calculate_slope(stochs[-self.HISTORY_TO_USE:])
technical_indicators_dictionary["stochs-" + str(history)] = stochs[-self.HISTORY_TO_USE:] + [slope_stoch, r_value_stoch, p_value_stoch]
# Accumulation Distribution
acc_dist = ta.volume.acc_dist_index(price_data['High'], price_data['Low'], price_data['Close'], price_data['Volume'], fillna=True).values.tolist()
acc_dist = acc_dist[-self.HISTORY_TO_USE:]
slope_acc_dist, r_value_acc_dist, p_value_acc_dist = self.calculate_slope(acc_dist)
technical_indicators_dictionary["acc_dist"] = [slope_acc_dist, r_value_acc_dist, p_value_acc_dist]
# Ease of movement
eom_history = [5, 10, 20]
for history in eom_history:
eom = ta.volume.ease_of_movement(price_data['High'], price_data['Low'], price_data['Volume'], n=history, fillna=True).values.tolist()
slope_eom, r_value_eom, p_value_eom = self.calculate_slope(eom[-self.HISTORY_TO_USE:])
technical_indicators_dictionary["eom-" + str(history)] = [slope_eom, r_value_eom, p_value_eom]
# CCI
cci_history = [5, 10, 20]
for history in cci_history:
cci = ta.trend.cci(price_data['High'], price_data['Low'], price_data['Close'], n=history, c=0.015, fillna=True).values.tolist()
slope_cci, r_value_cci, p_value_cci = self.calculate_slope(cci[-self.HISTORY_TO_USE:])
technical_indicators_dictionary["cci-" + str(history)] = cci[-self.HISTORY_TO_USE:] + [slope_cci, r_value_cci, p_value_cci]
# Daily log return
daily_return = ta.others.daily_return(price_data['Close'], fillna=True).values.tolist()
daily_log_return = ta.others.daily_log_return(price_data['Close'], fillna=True).values.tolist()
technical_indicators_dictionary["daily_log_return"] = daily_log_return[-self.HISTORY_TO_USE:]
# Volume difference
volume_list = price_data['Volume'].values.tolist()
volume_list = [vol for vol in volume_list if vol != 0]
volume_returns = [volume_list[x] / volume_list[x - 1] for x in range(1, len(volume_list))]
slope_vol, r_value_vol, p_value_vol = self.calculate_slope(volume_returns[-self.HISTORY_TO_USE:])
technical_indicators_dictionary["volume_returns"] = volume_returns[-self.HISTORY_TO_USE:] + [slope_vol, r_value_vol, p_value_vol]
return technical_indicators_dictionary
def get_features(self, features_dictionary):
"""
Extract features from the data dictionary. The data dictionary contains values for multiple TAs such as cci, rsi, stocks etc. But here, we will only use the price returns, volume returns, and eom values.
"""
keys_to_use = ["volume_returns", "daily_log_return", "eom"]
all_keys = list(sorted(features_dictionary.keys()))
feature_list = []
for key in all_keys:
# Check if key is present
key_in_keys_to_use = [k in key for k in keys_to_use]
if key_in_keys_to_use.count(True) > 0:
# Add values for the key
feature_list.extend(features_dictionary[key])
else:
# TAs such as CCI, RSI, STOCHS are being ignored. You can add another condition above to use them
_ = None
return feature_list