forked from ConesaLab/SQANTI3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
sqanti3_rescue.py
executable file
·619 lines (442 loc) · 21.6 KB
/
sqanti3_rescue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
#!/usr/bin/env python3
__author__ = "[email protected]"
__version__ = "5.1"
###################################################
########## SQANTI3 RESCUE WRAPPER ##########
###################################################
#### PREPARATION ####
## Module import
import os, sys, argparse, subprocess
import distutils.spawn
import pandas as pd
## Set general path variables
Rscript_path = distutils.spawn.find_executable('Rscript')
gffread_path = distutils.spawn.find_executable('gffread')
python_path = distutils.spawn.find_executable('python')
utilities_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "utilities")
## Set path variables to call R scripts
automatic_rescue_path = "rescue/automatic_rescue.R"
run_randomforest_path = "rescue/run_randomforest_on_reference.R"
rescue_by_mapping_ML_path = "rescue/rescue_by_mapping_ML.R"
rescue_by_mapping_rules_path = "rescue/rescue_by_mapping_rules.R"
## Set path variables to call SQ3 scripts
filter_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sqanti3_filter.py")
## Check that Rscript is working
if os.system(Rscript_path + " --version") != 0:
print("Rscript executable not found. Abort!", file = sys.stderr)
sys.exit(-1)
## Check that gffread is working
if os.system(gffread_path + " --version") != 0:
print("Cannot find gffread executable. Abort!", file = sys.stderr)
#### DEFINE FUNCTIONS ####
## Run automatic rescue
def run_automatic_rescue(args):
## prepare to run script
# define Rscript command with automatic_rescue.R args
auto_cmd = Rscript_path + " {u}/{s} -c {c} -o {o} -d {d} -u {u} \
-g {g} -e {e}".format(u = utilities_path, s = automatic_rescue_path, \
c = args.sqanti_filter_classif, o = args.output, d = args.dir, \
g = args.refGTF, e = args.rescue_mono_exonic)
# print command
print("\nAutomatic rescue run via the following command:\n")
print(auto_cmd + "\n")
## run automatic rescue script via terminal
if subprocess.check_call(auto_cmd, shell = True) != 0:
print("ERROR running automatic rescue: {0}".format(auto_cmd), file = sys.stderr)
sys.exit()
## load output: transcripts rescued as a result of automatic rescue
# make file name
automatic_rescued_list = args.dir + "/" + args.output + "_automatic_rescued_list.tsv"
# set object containing rescued list from the output file
auto_rescue = set(line.strip() for line in open(automatic_rescued_list))
## return automatic rescue outputs
return(auto_rescue)
## Run rescue steps specific to the ML filter
def run_ML_rescue(args):
## run pre-trained ML classifier on reference transcriptome
print("\nML rescue selected!\n")
print("\nRunning pre-trained random forest on reference transcriptome classification file...\n")
# define Rscript command with run_randomforest_on_reference.R args
refML_cmd = Rscript_path + " {u}/{s} -c {c} -o {o} -d {d} -r {r}".format( \
u = utilities_path, s = run_randomforest_path, \
c = args.refClassif, o = args.output, d = args.dir, \
r = args.randomforest)
# print command
print(refML_cmd + "\n")
# run R script via terminal
if subprocess.check_call(refML_cmd, shell = True) != 0:
print("ERROR running random forest classifier on reference transcriptome: {0}".format(refML_cmd), \
file = sys.stderr)
sys.exit(1)
else:
# make expected output file name
ref_isoform_predict = args.dir + "/" + args.output + "_reference_isoform_predict.tsv"
if os.path.isfile(ref_isoform_predict):
## run rescue-by-mapping
print("\nRunning rescue-by-mapping for ML filter...\n")
# input file name
mapping_hits = args.dir + "/" + args.output + "_rescue_mapping_hits.tsv"
# define Rscsript command with rescue_by_mapping_ML.R args
rescue_cmd = Rscript_path + " {u}/{s} -c {c} -o {o} -d {d} -u {u} -m {m} -r {r} -j {j}".format( \
u = utilities_path, s = rescue_by_mapping_ML_path, \
c = args.sqanti_filter_classif, o = args.output, d = args.dir, m = mapping_hits, \
r = ref_isoform_predict, j = args.threshold)
# expected output name
rescued_file = args.dir + "/" + args.output + "_rescue_inclusion-list.tsv"
# run R script via terminal
if subprocess.check_call(rescue_cmd, shell = True) != 0:
print("ERROR running rescue by mapping: {0}".format(rescue_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(rescued_file):
# load output list of rescued transcripts
rescued_df = pd.read_table(rescued_file, header = None, \
names = ["transcript"])
rescued_list = list(rescued_df["transcript"])
# return rescued transcript list
return(rescued_list)
else:
print("ERROR: rescue inclusion list not created -file not found!", file = sys.stderr)
sys.exit(1)
else:
print("ERROR: reference isoform predictions not found!", file = sys.stderr)
sys.exit(1)
## Run rescue steps specific to rules filter
def run_rules_rescue(args):
## Run rules filter on reference transcriptome
print("\nRules rescue selected!\n")
print("\nApplying provided rules (--json) to reference transcriptome classification file...\n")
# create reference out prefix and dir
ref_out = "reference"
ref_dir = args.dir + "/reference_rules_filter"
# define command
refRules_cmd = python_path + " {f} rules {c} -j {j} \
-o {o} -d {d} --skip_report".format(f = filter_path, c = args.refClassif, \
j = args.json, o = ref_out, d = ref_dir)
# print command
print(refRules_cmd + "\n")
# run on terminal
if subprocess.check_call(refRules_cmd, shell = True) != 0:
print("ERROR running rules filter on reference transcriptome: {0}".format(refRules_cmd), \
file = sys.stderr)
sys.exit(1)
else:
# make file names
ref_rules = args.dir + \
"/reference_rules_filter/reference_RulesFilter_result_classification.txt"
if os.path.isfile(ref_rules):
## run rescue-by-mapping
print("\nRunning rescue-by-mapping for rules filter...\n")
# input file name
mapping_hits = args.dir + "/" + args.output + "_rescue_mapping_hits.tsv"
# define Rscsript command with rescue_by_mapping_ML.R args
rescue_cmd = Rscript_path + " {u}/{s} -c {c} -o {o} -d {d} -u {u} -m {m} -r {r}".format( \
u = utilities_path, s = rescue_by_mapping_rules_path, \
c = args.sqanti_filter_classif, o = args.output, d = args.dir, \
m = mapping_hits, r = ref_rules)
# expected output name
rescued_file = args.dir + "/" + args.output + "_rescue_inclusion-list.tsv"
# run R script via terminal
if subprocess.check_call(rescue_cmd, shell = True) != 0:
print("ERROR running rescue by mapping: {0}".format(rescue-cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(rescued_file):
# load output list of rescued transcripts
rescued_df = pd.read_table(rescued_file, header = None, \
names = ["transcript"])
rescued_list = list(rescued_df["transcript"])
# return rescued transcript list
return(rescued_list)
else:
print("ERROR: rescue inclusion list not created -file not found!", file = sys.stderr)
sys.exit(1)
else:
print("ERROR: reference filter classification not found!", file = sys.stderr)
sys.exit(1)
#### MAIN ####
## Define main()
def main():
## Arguments and help
parser = argparse.ArgumentParser(description = "Rescue artifacts discarded by \
the SQANTI3 filter, i.e. find closest match for the artifacts in the reference \
transcriptome and add them to the transcriptome.")
## Common arguments
common = argparse.ArgumentParser(add_help = False)
common.add_argument("sqanti_filter_classif", \
help = "\t\tSQANTI filter (ML or rules) output classification file.")
common.add_argument("--isoforms", \
help = "\t\tFASTA file output by SQANTI3 QC (*_corrected.fasta), i.e. the full long read transcriptome.")
common.add_argument("--gtf", \
help = "\t\tGTF file output by SQANTI3 filter (*.filtered.gtf).")
common.add_argument("-g", "--refGTF", \
help = "\t\tFull path to reference transcriptome GTF used when running SQANTI3 QC.")
common.add_argument("-f", "--refGenome", \
help = "\t\tFull path to reference genome FASTA used when running SQANTI3 QC.")
common.add_argument("-k", "--refClassif", \
help = "Full path to the classification file obtained when running SQANTI3 QC on the reference transcriptome.")
common.add_argument("-e","--rescue_mono_exonic", \
choices = ['all', 'fsm', 'none'], default = "all", \
help='\t\tWhether or not to include mono-exonic artifacts in the rescue. Options include: none, fsm and all (default).')
common.add_argument("-o","--output", \
help = "\t\tPrefix for output files.", required = False)
common.add_argument("-d","--dir", \
help = "\t\tDirectory for output files. Default: Directory where the script was run.", \
required = False)
common.add_argument("--skip_report", action = "store_true", default = False, \
help = '\t\tSkip creation of a report about the filtering')
common.add_argument("-v", "--version", help="Display program version number.", \
action='version', version='SQANTI3 '+str(__version__))
subparsers = parser.add_subparsers(dest = 'subcommand')
## ML rescue arguments
ml = subparsers.add_parser("ml", parents = [common], \
description = "Rescue for ML-filtered transcriptomes.")
ml.add_argument("-r", "--randomforest", \
help = "Full path to the randomforest.RData object obtained when running the SQANTI3 ML filter.")
ml.add_argument("-j", "--threshold", type = float, default = 0.7, \
help = "Default: 0.7. Machine learning probability threshold to filter elegible rescue targets (mapping hits).")
## Rules rescue arguments
rules = subparsers.add_parser("rules", parents = [common], \
description = "Rescue for rules-filtered transcriptomes.")
rules.add_argument("-j", "--json", \
help = "Full path to the JSON file including the rules used when running the SQANTI3 rules filter.")
# parse arguments
args = parser.parse_args()
## Check that common arguments are valid
args.sqanti_filter_classif = os.path.abspath(args.sqanti_filter_classif)
if not os.path.isfile(args.sqanti_filter_classif):
print("ERROR: {0} doesn't exist. Abort!".format(args.sqanti_filter_classif), file=sys.stderr)
sys.exit(-1)
if not os.path.isfile(args.isoforms):
print("ERROR: {0} doesn't exist. Abort!".format(args.isoforms), file=sys.stderr)
sys.exit(-1)
if not os.path.isfile(args.gtf):
print("ERROR: {0} doesn't exist. Abort!".format(args.gtf), file=sys.stderr)
sys.exit(-1)
if not os.path.isfile(args.refGTF):
print("ERROR: {0} doesn't exist. Abort!".format(args.refGTF), file=sys.stderr)
sys.exit(-1)
if not os.path.isfile(args.refGenome):
print("ERROR: {0} doesn't exist. Abort!".format(args.refGenome), file=sys.stderr)
sys.exit(-1)
if not os.path.isfile(args.refClassif):
print("ERROR: {0} doesn't exist. Abort!".format(args.refClassif), file=sys.stderr)
sys.exit(-1)
## Check that ML-specific args are valid
if args.subcommand == "ml":
if not os.path.isfile(args.randomforest):
print("ERROR: {0} doesn't exist. Abort!".format(args.randomforest), file=sys.stderr)
sys.exit(-1)
if args.threshold < 0 or args.threshold > 1.:
print("ERROR: --threshold must be between 0-1, value of {0} was supplied! Abort!".format(args.threshold), file=sys.stderr)
sys.exit(-1)
## Check that rules-specific args are valid
if args.subcommand == "rules":
if not os.path.isfile(args.json):
print("ERROR: {0} doesn't exist. Abort!".format(args.json), file=sys.stderr)
sys.exit(-1)
#### RUN AUTOMATIC RESCUE ####
# this part is run for both rules and ML and if all arg tests passed
auto_result = run_automatic_rescue(args)
#### PREPARATION OF FILES FOR MINIMAP2 ####
print("\n-------------------------------------------------------\n")
print("\n\tPREPARATION OF FILES FOR ARTIFACT MAPPING:\n")
print("\n-------------------------------------------------------\n")
## Convert reference transcriptome GTF to FASTA
print("\nCreating reference transcriptome FASTA from provided GTF (--refGTF)...\n")
# make FASTA file name
pre, ext = os.path.splitext(os.path.basename(args.refGTF))
refFASTA = args.dir + "/" + pre + ".fasta"
# build gffread command
ref_cmd = "gffread -w {w} -g {g} {a}".format(w = refFASTA, g = args.refGenome, \
a = args.refGTF)
# run gffread
if subprocess.check_call(ref_cmd, shell = True) != 0:
print("ERROR converting reference transcriptome GTF to FASTA: {0}".format(ref_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(refFASTA):
print("\nReference transcriptome FASTA was saved to ", refFASTA, "\n")
print("\n\tgffread command used:\n")
print(ref_cmd, "\n")
else:
print("ERROR: reference transcriptome FASTA was not created -file not found!", \
file = sys.stderr)
sys.exit(1)
## Filter reference transcriptome FASTA to only include target ref transcripts
print("\nFiltering reference transcriptome FASTA to only rescue targets...\n")
# make file names
target_file = args.dir + "/" + args.output + "_rescue_targets.tsv"
ref_target_fasta = args.dir + "/" + args.output + "_rescue_targets.ref.fasta"
# make command
fasta_cmd = "seqtk subseq {i} {t} > {f}".format(i = refFASTA, \
t = target_file, f = ref_target_fasta)
# run
if subprocess.check_call(fasta_cmd, shell = True) != 0:
print("ERROR retrieving target reference transcripts from FASTA: {0}".format(fasta_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(ref_target_fasta):
print("\nTarget reference transcript sequences were saved to ", refFASTA, "\n")
print("\n\tseqtk command used:\n")
print(fasta_cmd, "\n")
else:
print("ERROR: target reference transcript FASTA was not created -file not found!", \
file = sys.stderr)
sys.exit(1)
## Filter SQ3 transcriptome FASTA to only include target LR transcripts
print("\nFiltering supplied long read transcriptome FASTA (--isoforms) to only include rescue targets...\n")
# make file names
LR_target_fasta = args.dir + "/" + args.output + "_rescue_targets.LR.fasta"
# make command
fasta_cmd = "seqtk subseq {i} {t} > {f}".format(i = args.isoforms, \
t = target_file, f = LR_target_fasta)
# run
if subprocess.check_call(fasta_cmd, shell = True) != 0:
print("ERROR retrieving target long-read transcripts from FASTA: {0}".format(fasta_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(LR_target_fasta):
print("\nTarget long read transcript sequences were saved to ", refFASTA, "\n")
print("\n\tseqtk command used:\n")
print(fasta_cmd, "\n")
else:
print("ERROR: target long read transcript FASTA was not created -file not found!", \
file = sys.stderr)
sys.exit(1)
## join both FASTA files
print("\nJoining reference and LR rescue target FASTA files...\n")
target_fasta = args.dir + "/" + args.output + "_rescue_targets.fasta"
cat_cmd = "cat {r} {l} > {f}".format(r = ref_target_fasta, l = LR_target_fasta, \
f = target_fasta)
if subprocess.check_call(cat_cmd, shell = True) != 0:
print("ERROR joining target long-read and reference FASTA files: {}".format(cat_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(target_fasta):
print("\nRescue target FASTA was saved to ", target_fasta, "\n")
print("\nCommand used:")
print(cat_cmd, "\n")
## remove intermediate target FASTA files (LR and ref)
print("\nRemoving intermediate target FASTA files...\n")
rm_cmd = "rm {r} {l}".format(r = ref_target_fasta, l = LR_target_fasta)
subprocess.call(rm_cmd, shell = True)
else:
print("ERROR: target FASTA was not created -file not found!", file = sys.stderr)
sys.exit(1)
## Filter SQ3 FASTA to include rescue candidates
print("\nCreating rescue candidate FASTA from supplied long read transcriptome fasta (--isoforms)...\n ")
# make file names
candidate_file = args.dir + "/" + args.output + "_rescue_candidates.tsv"
candidate_fasta = args.dir + "/" + args.output + "_rescue_candidates.fasta"
# make command
fasta_cmd = "seqtk subseq {i} {t} > {f}".format(i = args.isoforms, \
t = candidate_file, f = candidate_fasta)
# run
if subprocess.check_call(fasta_cmd, shell = True) != 0:
print("ERROR retrieving rescue candidate sequences from FASTA: {0}".format(fasta_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(candidate_fasta):
print("\nRescue candidate FASTA was saved to ", candidate_fasta, "\n")
print("\n\tseqtk command used:\n")
print(fasta_cmd, "\n")
else:
print("ERROR: candidate FASTA was not created -file not found!", file = sys.stderr)
sys.exit(1)
#### MAPPING ARTIFACTS (CANDIDATES) WITH MINIMAP2 ####
print("\n-------------------------------------------------------\n")
print("\n\tARTIFACT MAPPING (CANDIDATES VS TARGETS):\n")
print("\n-------------------------------------------------------\n")
## Mapping
print("\nMapping rescue candidates to rescue targets with minimap2...\n")
# make file names
sam_file = args.dir + "/" + args.output + "_mapped_rescue.sam"
# make command
minimap_cmd = "minimap2 --secondary=yes -ax map-hifi {t} {c} > {s}".format( \
t = target_fasta, c = candidate_fasta, s = sam_file)
# run
if subprocess.check_call(minimap_cmd, shell = True) != 0:
print("ERROR mapping rescue candidates to targets: {0}".format(minimap_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(sam_file):
print("\nMinimap2 results were saved to ", sam_file, "\n")
print("\n\tminimap2 command used:\n")
print(minimap_cmd, "\n")
## Filter mapping results (select SAM columns)
print("\nBuilding candidate-target table of mapping hits...\n")
# remove header from SAM
sam_tmp_file = args.dir + "/" + args.output + "_mapped_rescue_noheader.sam"
sam_cmd = "grep -v '@' {s} > {t}".format(s = sam_file, t = sam_tmp_file)
if subprocess.check_call(sam_cmd, shell = True) != 0:
print("ERROR: could not create mapping hit table from SAM: {0}".format(sam_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(sam_tmp_file):
# get cols with candidate-target pairs + alignment type
hits_file = args.dir + "/" + args.output + "_rescue_mapping_hits.tsv"
hits_cmd = "cut -f1-3 {t} > {h}".format(t = sam_tmp_file, h = hits_file)
if subprocess.check_call(hits_cmd, shell = True) != 0:
print("ERROR: could not create mapping hit table from SAM: {0}".format(hits_cmd), \
file = sys.stderr)
sys.exit(1)
elif os.path.isfile(hits_file):
print("\nMapping hit table was saved to ", hits_file, "\n")
# delete altered SAM file
rm_cmd = "rm {t}".format(t = sam_tmp_file)
subprocess.call(rm_cmd, shell = True)
#### RUN ML FILTER RESCUE ####
# this part combines reference ML filter run with mapping results
# and is therefore run only for ML filter
if args.subcommand == "ml":
print("\n-------------------------------------------------------\n")
print("\n\tRESCUE-BY-MAPPING FOR ML FILTER:\n")
print("\n-------------------------------------------------------\n")
# run ML-specific steps of rescue
rescued = run_ML_rescue(args)
#### RUN RULES FILTER RESCUE ####
# this part runs SQ3 rules filter for the reference transcriptome
# and combines the results with the mapping hits obtained in the previous step
if args.subcommand == "rules":
print("\n-------------------------------------------------------\n")
print("\n\tRESCUE-BY-MAPPING FOR ML FILTER:\n")
print("\n-------------------------------------------------------\n")
# run rules-specific steps of rescue
run_rules_rescue(args)
### Finish print if output exists (same for rules and ML) ####
inclusion_list = args.dir + "/" + args.output + "_rescue_inclusion-list.tsv"
if os.path.isfile(inclusion_list):
print("\nFinal rescued transcript list witten to file: " + inclusion_list + "\n")
#### Create new GTF including rescued transcripts ####
print("\nAdding rescued transcripts to provided SQ3 filtered GTF...\n")
# create file names
tmp_gtf = args.dir + "/rescued_only_tmp.gtf"
output_gtf = args.dir + "/" + args.output + "_rescued.gtf"
rescued_list = args.dir + "/" + args.output + "_rescue_inclusion-list.tsv"
# filter reference GTF to create tmp_gtf
gtf_cmd = "gffread --ids {i} -T -o {o} {g}".format(i = rescued_list, o = tmp_gtf, \
g = args.refGTF)
if subprocess.check_call(gtf_cmd, shell = True) != 0:
print("ERROR creating rescued transcript GTF: {0}".format(gtf_cmd), \
file = sys.stderr)
sys.exit(1)
else:
# concatenate with filtered GTF
cat_cmd = "cat {g} {t} > {o}".format(g = args.gtf, t = tmp_gtf, \
o = output_gtf)
if subprocess.check_call(cat_cmd, shell = True) != 0:
print("ERROR adding rescued transcripts to supplied filtered GTF: {0}".format(cat_cmd), \
file = sys.stderr)
sys.exit(1)
else:
print("\nAdded rescued reference transcripts to provided GTF (" + args.gtf + ")\n")
print("\nFinal output GTF written to file: " + output_gtf + "\n")
# remove tmp_gtf
rm_cmd = "rm " + tmp_gtf
subprocess.call(rm_cmd, shell = True)
## END ##
print("\nRescue finished successfully!\n")
## Run main()
if __name__ == "__main__":
main()