Skip to content

Latest commit

 

History

History
690 lines (491 loc) · 27.7 KB

model_zoo.md

File metadata and controls

690 lines (491 loc) · 27.7 KB

Model Zoo

This page lists model archives that are pre-trained and pre-packaged, ready to be served for inference with MMS. To propose a model for inclusion, please submit a pull request.

Special thanks to the Apache MXNet community whose Model Zoo and Model Examples were used in generating these model archives.

Model File Type Dataset Source Size Download
AlexNet Image Classification ImageNet ONNX 233 MB .mar
ArcFace-ResNet100 Face Recognition Refined MS-Celeb1M ONNX 236.4 MB .mar
Character-level Convolutional Networks for Text Classification Text Classification Amazon Product Data Gluon 40 MB .mar
CaffeNet Image Classification ImageNet MXNet 216 MB .mar
FERPlus Emotion Detection FER2013 ONNX 35MB .mar
Inception v1 Image Classification ImageNet ONNX 27 MB .mar
Inception v3 w/BatchNorm Image Classification ImageNet MXNet 45 MB .mar
LSTM PTB Language Modeling PennTreeBank MXNet 16 MB .mar
MobileNetv2-1.0 Image Classification ImageNet ONNX 13.7 MB .mar
Network in Network (NiN) Image Classification ImageNet MXNet 30 MB .mar
ResNet-152 Image Classification ImageNet MXNet 241 MB .mar
ResNet-18 Image Classification ImageNet MXNet 43 MB .mar
ResNet50-SSD SSD (Single Shot MultiBox Detector) ImageNet MXNet 124 MB .mar
ResNext101-64x4d Image Classification ImageNet MXNet 334 MB .mar
ResNet-18v1 Image Classification ImageNet ONNX 45 MB .mar
ResNet-34v1 Image Classification ImageNet ONNX 83 MB .mar
ResNet-50v1 Image Classification ImageNet ONNX 98 MB .mar
ResNet-101v1 Image Classification ImageNet ONNX 171 MB .mar
ResNet-152v1 Image Classification ImageNet ONNX 231 MB .mar
ResNet-18v2 Image Classification ImageNet ONNX 45 MB .mar
ResNet-34v2 Image Classification ImageNet ONNX 83 MB .mar
ResNet-50v2 Image Classification ImageNet ONNX 98 MB .mar
ResNet-101v2 Image Classification ImageNet ONNX 171 MB .mar
ResNet-152v2 Image Classification ImageNet ONNX 231 MB .mar
Shufflenet Image Classification ImageNet ONNX 8.1 MB .mar
SqueezeNet_v1.1 Image Classification ImageNet ONNX 5 MB .mar
SqueezeNet v1.1 Image Classification ImageNet MXNet 5 MB .mar
VGG16 Image Classification ImageNet MXNet 490 MB .mar
VGG16 Image Classification ImageNet ONNX 527 MB .mar
VGG16_bn Image Classification ImageNet ONNX 527 MB .mar
VGG19 Image Classification ImageNet MXNet 509 MB .mar
VGG19 Image Classification ImageNet ONNX 548 MB .mar
VGG19_bn Image Classification ImageNet ONNX 548 MB .mar

Details on Each Model

Each model below comes with a basic description, and where available, a link to a scholarly article about the model.

Many of these models use a kitten image to test inference. Use the following to get one that will work:

curl -O https://s3.amazonaws.com/model-server/inputs/kitten.jpg

AlexNet

multi-model-server --start --models alexnet=https://s3.amazonaws.com/model-server/model_archive_1.0/alexnet.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/alexnet -T kitten.jpg

ArcFace-ResNet100 (from ONNX model zoo)

pip install opencv-python
pip install scikit-learn
pip install easydict
pip install scikit-image
pip install numpy
  • Start Server:
multi-model-server --start --models arcface=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-arcface-resnet100.mar
  • Get two test images:
curl -O https://s3.amazonaws.com/model-server/inputs/arcface-input1.jpg

curl -O https://s3.amazonaws.com/model-server/inputs/arcface-input2.jpg
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/arcface -F "[email protected]" -F "[email protected]"

CaffeNet

multi-model-server --start --models caffenet=https://s3.amazonaws.com/model-server/model_archive_1.0/caffenet.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/caffenet -T kitten.jpg

Character-level Convolutional Networks for text Classification

multi-model-server --start --models crepe=https://s3.amazonaws.com/model-server/model_archive_1.0/crepe.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/crepe -F "data=[{\"review_title\":\"Inception is the best\",\"review\": \"great direction and story\"}]"

DUC-ResNet101 (from ONNX model zoo)

pip install opencv-python
pip install pillow
  • Start Server:
multi-model-server --models duc=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-duc.mar
  • Get the test image:
curl -O https://s3.amazonaws.com/multi-model-server/onnx-duc/city1.jpg
  • Download inference script:

The script makes an inference call to the server using the test image, displays the colorized segmentation map and prints the confidence score.

curl -O https://s3.amazonaws.com/multi-model-server/onnx-duc/duc-inference.py
  • Run Prediction:
python duc-inference.py city1.jpg

FERPlus

multi-model-server --start --models FERPlus=https://s3.amazonaws.com/model-server/model_archive_1.0/FERPlus.mar
  • Get a test image:
curl -O https://s3.amazonaws.com/model-server/inputs/ferplus-input.jpg
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/FERPlus -T ferplus-input.jpg

Inception v1

multi-model-server --start --models onnx-inception-v1=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-inception_v1.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/onnx-inception-v1 -T kitten.jpg

Inception v3

multi-model-server --start --models inception-bn=https://s3.amazonaws.com/model-server/model_archive_1.0/inception-bn.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/inception-bn -T kitten.jpg

LSTM PTB

Long short-term memory network trained on the PennTreeBank dataset.

multi-model-server --start --models lstm_ptb=https://s3.amazonaws.com/model-server/model_archive_1.0/lstm_ptb.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/lstm_ptb -H "Content-Type: application/json" -d '[{"input_sentence": "on the exchange floor as soon as ual stopped trading we <unk> for a panic said one top floor trader"}]'

MobileNetv2-1.0 (from ONNX model zoo)

multi-model-server --start --models mobilenet=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-mobilenet.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/mobilenet -T kitten.jpg

Network in Network

multi-model-server --start --models nin=https://s3.amazonaws.com/model-server/model_archive_1.0/nin.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/nin -T kitten.jpg

ResNet-152

multi-model-server --start --models resnet-152=https://s3.amazonaws.com/model-server/model_archive_1.0/resnet-152.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet-152 -T kitten.jpg

ResNet-18

multi-model-server --start --models resnet-18=https://s3.amazonaws.com/model-server/model_archive_1.0/resnet-18.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet-18 -T kitten.jpg

ResNet50-SSD

multi-model-server --start --models SSD=https://s3.amazonaws.com/model-server/model_archive_1.0/resnet50_ssd.mar
  • Run Prediction:
curl -O https://www.dphotographer.co.uk/users/21963/thm1024/1337890426_Img_8133.jpg

curl -X POST http://127.0.0.1:8080/predictions/SSD -T 1337890426_Img_8133.jpg

ResNext101-64x4d

multi-model-server --start --models resnext101=https://s3.amazonaws.com/model-server/model_archive_1.0/resnext-101-64x4d.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnext101 -T kitten.jpg

ResNet (from ONNX model zoo)

ResNet18-v1

multi-model-server --start --models resnet18-v1=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet18v1.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet18-v1 -T kitten.jpg

ResNet34-v1

multi-model-server --start --models resnet34-v1=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet34v1.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet34-v1 -T kitten.jpg

ResNet50-v1

multi-model-server --start --models resnet50-v1=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet50v1.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet50-v1 -T kitten.jpg

ResNet101-v1

multi-model-server --start --models resnet101-v1=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet101v1.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet101-v1 -T kitten.jpg

ResNet152-v1

multi-model-server --start --models resnet152-v1=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet152v1.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet152-v1 -T kitten.jpg

ResNet18-v2

multi-model-server --start --models resnet18-v2=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet18v2.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet18-v2 -T kitten.jpg

ResNet34-v2

multi-model-server --start --models resnet34-v2=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet34v2.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet34-v2 -T kitten.jpg

ResNet50-v2

multi-model-server --start --models resnet50-v2=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet50v2.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet50-v2 -T kitten.jpg

ResNet101-v2

multi-model-server --start --models resnet101-v2=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet101v2.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet101-v2 -T kitten.jpg

ResNet152-v2

multi-model-server --start --models resnet152-v2=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-resnet152v2.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/resnet152-v2 -T kitten.jpg

Shufflenet_v2

multi-model-server --start --models shufflenet=https://s3.amazonaws.com/model-server/model_archive_1.0/shufflenet.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/shufflenet -T kitten.jpg

SqueezeNet v1.1

multi-model-server --start --models squeezenet_v1.1=https://s3.amazonaws.com/model-server/model_archive_1.0/squeezenet_v1.1.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/squeezenet_v1.1 -T kitten.jpg

SqueezeNet v1.1 (from ONNX model zoo)

multi-model-server --start --models onnx-squeezenet=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-squeezenet.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/onnx-squeezenet -T kitten.jpg

VGG16

multi-model-server --start --models vgg16=https://s3.amazonaws.com/model-server/model_archive_1.0/vgg16.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/vgg16 -T kitten.jpg

VGG19

multi-model-server --start --models vgg19=https://s3.amazonaws.com/model-server/model_archive_1.0/vgg19.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/vgg19 -T kitten.jpg

VGG (from ONNX model zoo)

VGG16

multi-model-server --start --models onnx-vgg16=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-vgg16.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/onnx-vgg16 -T kitten.jpg

VGG16_bn

  • Type: Image classification trained on ImageNet (imported from ONNX)

  • Reference: Simonyan, et al. (Batch normalization applied after each conv layer of VGG16)

  • Model Service: mxnet_vision_service.py

  • Start Server:

multi-model-server --start --models onnx-vgg16_bn=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-vgg16_bn.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/onnx-vgg16_bn -T kitten.jpg

VGG19

multi-model-server --start --models onnx-vgg19=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-vgg19.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/onnx-vgg19 -T kitten.jpg

VGG19_bn

  • Type: Image classification trained on ImageNet (imported from ONNX)

  • Reference: Simonyan, et al. (Batch normalization applied after each conv layer of VGG19)

  • Model Service: mxnet_vision_service.py

  • Start Server:

multi-model-server --start --models onnx-vgg19_bn=https://s3.amazonaws.com/model-server/model_archive_1.0/onnx-vgg19_bn.mar
  • Run Prediction:
curl -X POST http://127.0.0.1:8080/predictions/onnx-vgg19_bn -T kitten.jpg