-
Notifications
You must be signed in to change notification settings - Fork 402
/
Copy pathlogger.py
860 lines (719 loc) · 31.5 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
from __future__ import annotations
import functools
import inspect
import logging
import os
import random
import sys
import warnings
from typing import (
IO,
TYPE_CHECKING,
Any,
Callable,
Iterable,
Mapping,
TypeVar,
overload,
)
from aws_lambda_powertools.logging.constants import (
LOGGER_ATTRIBUTE_PRECONFIGURED,
)
from aws_lambda_powertools.logging.exceptions import InvalidLoggerSamplingRateError
from aws_lambda_powertools.logging.filters import SuppressFilter
from aws_lambda_powertools.logging.formatter import (
RESERVED_FORMATTER_CUSTOM_KEYS,
BasePowertoolsFormatter,
LambdaPowertoolsFormatter,
)
from aws_lambda_powertools.logging.lambda_context import build_lambda_context_model
from aws_lambda_powertools.shared import constants
from aws_lambda_powertools.shared.functions import (
extract_event_from_common_models,
resolve_env_var_choice,
resolve_truthy_env_var_choice,
)
from aws_lambda_powertools.utilities import jmespath_utils
if TYPE_CHECKING:
from aws_lambda_powertools.shared.types import AnyCallableT
logger = logging.getLogger(__name__)
is_cold_start = True
PowertoolsFormatter = TypeVar("PowertoolsFormatter", bound=BasePowertoolsFormatter)
def _is_cold_start() -> bool:
"""Verifies whether is cold start
Returns
-------
bool
cold start bool value
"""
cold_start = False
global is_cold_start
if is_cold_start:
cold_start = is_cold_start
is_cold_start = False
return cold_start
class Logger:
"""Creates and setups a logger to format statements in JSON.
Includes service name and any additional key=value into logs
It also accepts both service name or level explicitly via env vars
Environment variables
---------------------
POWERTOOLS_SERVICE_NAME : str
service name
POWERTOOLS_LOG_LEVEL: str
logging level (e.g. INFO, DEBUG)
POWERTOOLS_LOGGER_SAMPLE_RATE: float
sampling rate ranging from 0 to 1, 1 being 100% sampling
Parameters
----------
service : str, optional
service name to be appended in logs, by default "service_undefined"
level : str, int optional
The level to set. Can be a string representing the level name: 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'
or an integer representing the level value: 10 for 'DEBUG', 20 for 'INFO', 30 for 'WARNING', 40 for 'ERROR', 50 for 'CRITICAL'.
by default "INFO"
child: bool, optional
create a child Logger named <service>.<caller_file_name>, False by default
sample_rate: float, optional
sample rate for debug calls within execution context defaults to 0.0
stream: sys.stdout, optional
valid output for a logging stream, by default sys.stdout
logger_formatter: PowertoolsFormatter, optional
custom logging formatter that implements PowertoolsFormatter
logger_handler: logging.Handler, optional
custom logging handler e.g. logging.FileHandler("file.log")
log_uncaught_exceptions: bool, by default False
logs uncaught exception using sys.excepthook
See: https://docs.python.org/3/library/sys.html#sys.excepthook
Parameters propagated to LambdaPowertoolsFormatter
--------------------------------------------------
datefmt: str, optional
String directives (strftime) to format log timestamp using `time`, by default it uses 2021-05-03 11:47:12,494+0200.
use_datetime_directive: bool, optional
Interpret `datefmt` as a format string for `datetime.datetime.strftime`, rather than
`time.strftime`.
See https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior . This
also supports a custom %F directive for milliseconds.
use_rfc3339: bool, optional
Whether to use a popular date format that complies with both RFC3339 and ISO8601.
e.g., 2022-10-27T16:27:43.738+02:00.
json_serializer : Callable, optional
function to serialize `obj` to a JSON formatted `str`, by default json.dumps
json_deserializer : Callable, optional
function to deserialize `str`, `bytes`, bytearray` containing a JSON document to a Python `obj`,
by default json.loads
json_default : Callable, optional
function to coerce unserializable values, by default `str()`
Only used when no custom formatter is set
utc : bool, optional
set logging timestamp to UTC, by default False to continue to use local time as per stdlib
log_record_order : list, optional
set order of log keys when logging, by default ["level", "location", "message", "timestamp"]
Example
-------
**Setups structured logging in JSON for Lambda functions with explicit service name**
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> def handler(event, context):
logger.info("Hello")
**Setups structured logging in JSON for Lambda functions using env vars**
$ export POWERTOOLS_SERVICE_NAME="payment"
$ export POWERTOOLS_LOGGER_SAMPLE_RATE=0.01 # 1% debug sampling
>>> from aws_lambda_powertools import Logger
>>> logger = Logger()
>>>
>>> def handler(event, context):
logger.info("Hello")
**Append payment_id to previously setup logger**
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> def handler(event, context):
logger.append_keys(payment_id=event["payment_id"])
logger.info("Hello")
**Create child Logger using logging inheritance via child param**
>>> # app.py
>>> import another_file
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> # another_file.py
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment", child=True)
**Logging in UTC timezone**
>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", utc=True)
**Brings message as the first key in log statements**
>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", log_record_order=["message"])
**Logging to a file instead of standard output for testing**
>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", logger_handler=logging.FileHandler("log.json"))
Raises
------
InvalidLoggerSamplingRateError
When sampling rate provided is not a float
""" # noqa: E501
def __init__(
self,
service: str | None = None,
level: str | int | None = None,
child: bool = False,
sampling_rate: float | None = None,
stream: IO[str] | None = None,
logger_formatter: PowertoolsFormatter | None = None,
logger_handler: logging.Handler | None = None,
log_uncaught_exceptions: bool = False,
json_serializer: Callable[[dict], str] | None = None,
json_deserializer: Callable[[dict | str | bool | int | float], str] | None = None,
json_default: Callable[[Any], Any] | None = None,
datefmt: str | None = None,
use_datetime_directive: bool = False,
log_record_order: list[str] | None = None,
utc: bool = False,
use_rfc3339: bool = False,
serialize_stacktrace: bool = True,
**kwargs,
) -> None:
self.service = resolve_env_var_choice(
choice=service,
env=os.getenv(constants.SERVICE_NAME_ENV, "service_undefined"),
)
self.sampling_rate = resolve_env_var_choice(
choice=sampling_rate,
env=os.getenv(constants.LOGGER_LOG_SAMPLING_RATE),
)
self.child = child
self.logger_formatter = logger_formatter
self._stream = stream or sys.stdout
self.logger_handler = logger_handler or logging.StreamHandler(self._stream)
self.log_uncaught_exceptions = log_uncaught_exceptions
self._is_deduplication_disabled = resolve_truthy_env_var_choice(
env=os.getenv(constants.LOGGER_LOG_DEDUPLICATION_ENV, "false"),
)
self._default_log_keys = {"service": self.service, "sampling_rate": self.sampling_rate}
self._logger = self._get_logger()
# NOTE: This is primarily to improve UX, so IDEs can autocomplete LambdaPowertoolsFormatter options
# previously, we masked all of them as kwargs thus limiting feature discovery
formatter_options = {
"json_serializer": json_serializer,
"json_deserializer": json_deserializer,
"json_default": json_default,
"datefmt": datefmt,
"use_datetime_directive": use_datetime_directive,
"log_record_order": log_record_order,
"utc": utc,
"use_rfc3339": use_rfc3339,
"serialize_stacktrace": serialize_stacktrace,
}
self._init_logger(formatter_options=formatter_options, log_level=level, **kwargs)
if self.log_uncaught_exceptions:
logger.debug("Replacing exception hook")
sys.excepthook = functools.partial(log_uncaught_exception_hook, logger=self)
# Prevent __getattr__ from shielding unknown attribute errors in type checkers
# https://github.com/aws-powertools/powertools-lambda-python/issues/1660
if not TYPE_CHECKING: # pragma: no cover
def __getattr__(self, name):
# Proxy attributes not found to actual logger to support backward compatibility
# https://github.com/aws-powertools/powertools-lambda-python/issues/97
return getattr(self._logger, name)
def _get_logger(self) -> logging.Logger:
"""Returns a Logger named {self.service}, or {self.service.filename} for child loggers"""
logger_name = self.service
if self.child:
logger_name = f"{self.service}.{_get_caller_filename()}"
return logging.getLogger(logger_name)
def _init_logger(
self,
formatter_options: dict | None = None,
log_level: str | int | None = None,
**kwargs,
) -> None:
"""Configures new logger"""
# Skip configuration if it's a child logger or a pre-configured logger
# to prevent the following:
# a) multiple handlers being attached
# b) different sampling mechanisms
# c) multiple messages from being logged as handlers can be duplicated
is_logger_preconfigured = getattr(self._logger, LOGGER_ATTRIBUTE_PRECONFIGURED, False)
if self.child or is_logger_preconfigured:
return
self.setLevel(log_level)
self._configure_sampling()
self.addHandler(self.logger_handler)
self.structure_logs(formatter_options=formatter_options, **kwargs)
# Pytest Live Log feature duplicates log records for colored output
# but we explicitly add a filter for log deduplication.
# This flag disables this protection when you explicit want logs to be duplicated (#262)
if not self._is_deduplication_disabled:
logger.debug("Adding filter in root logger to suppress child logger records to bubble up")
for handler in logging.root.handlers:
# It'll add a filter to suppress any child logger from self.service
# Example: `Logger(service="order")`, where service is Order
# It'll reject all loggers starting with `order` e.g. order.checkout, order.shared
handler.addFilter(SuppressFilter(self.service))
# as per bug in #249, we should not be pre-configuring an existing logger
# therefore we set a custom attribute in the Logger that will be returned
# std logging will return the same Logger with our attribute if name is reused
logger.debug(f"Marking logger {self.service} as preconfigured")
self._logger.init = True # type: ignore[attr-defined]
def _configure_sampling(self) -> None:
"""Dynamically set log level based on sampling rate
Raises
------
InvalidLoggerSamplingRateError
When sampling rate provided is not a float
"""
try:
if self.sampling_rate and random.random() <= float(self.sampling_rate):
logger.debug("Setting log level to Debug due to sampling rate")
self._logger.setLevel(logging.DEBUG)
except ValueError:
raise InvalidLoggerSamplingRateError(
(
f"Expected a float value ranging 0 to 1, but received {self.sampling_rate} instead."
"Please review POWERTOOLS_LOGGER_SAMPLE_RATE environment variable."
),
)
@overload
def inject_lambda_context(
self,
lambda_handler: AnyCallableT,
log_event: bool | None = None,
correlation_id_path: str | None = None,
clear_state: bool | None = False,
) -> AnyCallableT: ...
@overload
def inject_lambda_context(
self,
lambda_handler: None = None,
log_event: bool | None = None,
correlation_id_path: str | None = None,
clear_state: bool | None = False,
) -> Callable[[AnyCallableT], AnyCallableT]: ...
def inject_lambda_context(
self,
lambda_handler: AnyCallableT | None = None,
log_event: bool | None = None,
correlation_id_path: str | None = None,
clear_state: bool | None = False,
) -> Any:
"""Decorator to capture Lambda contextual info and inject into logger
Parameters
----------
clear_state : bool, optional
Instructs logger to remove any custom keys previously added
lambda_handler : Callable
Method to inject the lambda context
log_event : bool, optional
Instructs logger to log Lambda Event, by default False
correlation_id_path: str, optional
Optional JMESPath for the correlation_id
Environment variables
---------------------
POWERTOOLS_LOGGER_LOG_EVENT : str
instruct logger to log Lambda Event (e.g. `"true", "True", "TRUE"`)
Example
-------
**Captures Lambda contextual runtime info (e.g memory, arn, req_id)**
from aws_lambda_powertools import Logger
logger = Logger(service="payment")
@logger.inject_lambda_context
def handler(event, context):
logger.info("Hello")
**Captures Lambda contextual runtime info and logs incoming request**
from aws_lambda_powertools import Logger
logger = Logger(service="payment")
@logger.inject_lambda_context(log_event=True)
def handler(event, context):
logger.info("Hello")
Returns
-------
decorate : Callable
Decorated lambda handler
"""
# If handler is None we've been called with parameters
# Return a partial function with args filled
if lambda_handler is None:
logger.debug("Decorator called with parameters")
return functools.partial(
self.inject_lambda_context,
log_event=log_event,
correlation_id_path=correlation_id_path,
clear_state=clear_state,
)
log_event = resolve_truthy_env_var_choice(
env=os.getenv(constants.LOGGER_LOG_EVENT_ENV, "false"),
choice=log_event,
)
@functools.wraps(lambda_handler)
def decorate(event, context, *args, **kwargs):
lambda_context = build_lambda_context_model(context)
cold_start = _is_cold_start()
if clear_state:
self.structure_logs(cold_start=cold_start, **lambda_context.__dict__)
else:
self.append_keys(cold_start=cold_start, **lambda_context.__dict__)
if correlation_id_path:
self.set_correlation_id(
jmespath_utils.query(envelope=correlation_id_path, data=event),
)
if log_event:
logger.debug("Event received")
self.info(extract_event_from_common_models(event))
return lambda_handler(event, context, *args, **kwargs)
return decorate
def info(
self,
msg: object,
*args: object,
exc_info: logging._ExcInfoType = None,
stack_info: bool = False,
stacklevel: int = 2,
extra: Mapping[str, object] | None = None,
**kwargs: object,
) -> None:
extra = extra or {}
extra = {**extra, **kwargs}
return self._logger.info(
msg,
*args,
exc_info=exc_info,
stack_info=stack_info,
stacklevel=stacklevel,
extra=extra,
)
def error(
self,
msg: object,
*args: object,
exc_info: logging._ExcInfoType = None,
stack_info: bool = False,
stacklevel: int = 2,
extra: Mapping[str, object] | None = None,
**kwargs: object,
) -> None:
extra = extra or {}
extra = {**extra, **kwargs}
return self._logger.error(
msg,
*args,
exc_info=exc_info,
stack_info=stack_info,
stacklevel=stacklevel,
extra=extra,
)
def exception(
self,
msg: object,
*args: object,
exc_info: logging._ExcInfoType = True,
stack_info: bool = False,
stacklevel: int = 2,
extra: Mapping[str, object] | None = None,
**kwargs: object,
) -> None:
extra = extra or {}
extra = {**extra, **kwargs}
return self._logger.exception(
msg,
*args,
exc_info=exc_info,
stack_info=stack_info,
stacklevel=stacklevel,
extra=extra,
)
def critical(
self,
msg: object,
*args: object,
exc_info: logging._ExcInfoType = None,
stack_info: bool = False,
stacklevel: int = 2,
extra: Mapping[str, object] | None = None,
**kwargs: object,
) -> None:
extra = extra or {}
extra = {**extra, **kwargs}
return self._logger.critical(
msg,
*args,
exc_info=exc_info,
stack_info=stack_info,
stacklevel=stacklevel,
extra=extra,
)
def warning(
self,
msg: object,
*args: object,
exc_info: logging._ExcInfoType = None,
stack_info: bool = False,
stacklevel: int = 2,
extra: Mapping[str, object] | None = None,
**kwargs: object,
) -> None:
extra = extra or {}
extra = {**extra, **kwargs}
return self._logger.warning(
msg,
*args,
exc_info=exc_info,
stack_info=stack_info,
stacklevel=stacklevel,
extra=extra,
)
def debug(
self,
msg: object,
*args: object,
exc_info: logging._ExcInfoType = None,
stack_info: bool = False,
stacklevel: int = 2,
extra: Mapping[str, object] | None = None,
**kwargs: object,
) -> None:
extra = extra or {}
extra = {**extra, **kwargs}
return self._logger.debug(
msg,
*args,
exc_info=exc_info,
stack_info=stack_info,
stacklevel=stacklevel,
extra=extra,
)
def append_keys(self, **additional_keys: object) -> None:
self.registered_formatter.append_keys(**additional_keys)
def get_current_keys(self) -> dict[str, Any]:
return self.registered_formatter.get_current_keys()
def remove_keys(self, keys: Iterable[str]) -> None:
self.registered_formatter.remove_keys(keys)
# These specific thread-safe methods are necessary to manage shared context in concurrent environments.
# They prevent race conditions and ensure data consistency across multiple threads.
def thread_safe_append_keys(self, **additional_keys: object) -> None:
# Append additional key-value pairs to the context safely in a thread-safe manner.
self.registered_formatter.thread_safe_append_keys(**additional_keys)
def thread_safe_get_current_keys(self) -> dict[str, Any]:
# Retrieve the current context keys safely in a thread-safe manner.
return self.registered_formatter.thread_safe_get_current_keys()
def thread_safe_remove_keys(self, keys: Iterable[str]) -> None:
# Remove specified keys from the context safely in a thread-safe manner.
self.registered_formatter.thread_safe_remove_keys(keys)
def thread_safe_clear_keys(self) -> None:
# Clear all keys from the context safely in a thread-safe manner.
self.registered_formatter.thread_safe_clear_keys()
def structure_logs(self, append: bool = False, formatter_options: dict | None = None, **keys) -> None:
"""Sets logging formatting to JSON.
Optionally, it can append keyword arguments
to an existing logger, so it is available across future log statements.
Last keyword argument and value wins if duplicated.
Parameters
----------
append : bool, optional
append keys provided to logger formatter, by default False
formatter_options : dict, optional
LambdaPowertoolsFormatter options to be propagated, by default {}
"""
formatter_options = formatter_options or {}
# There are 3 operational modes for this method
## 1. Register a Powertools for AWS Lambda (Python) Formatter for the first time
## 2. Append new keys to the current logger formatter; deprecated in favour of append_keys
## 3. Add new keys and discard existing to the registered formatter
# Mode 1
log_keys = {**self._default_log_keys, **keys}
is_logger_preconfigured = getattr(self._logger, LOGGER_ATTRIBUTE_PRECONFIGURED, False)
if not is_logger_preconfigured:
formatter = self.logger_formatter or LambdaPowertoolsFormatter(**formatter_options, **log_keys)
self.registered_handler.setFormatter(formatter)
# when using a custom Powertools for AWS Lambda (Python) Formatter
# standard and custom keys that are not Powertools for AWS Lambda (Python) Formatter parameters
# should be appended and custom keys that might happen to be Powertools for AWS Lambda (Python)
# Formatter parameters should be discarded this prevents adding them as custom keys, for example,
# `json_default=<callable>` see https://github.com/aws-powertools/powertools-lambda-python/issues/1263
custom_keys = {k: v for k, v in log_keys.items() if k not in RESERVED_FORMATTER_CUSTOM_KEYS}
return self.registered_formatter.append_keys(**custom_keys)
# Mode 2 (legacy)
if append:
# Maintenance: Add deprecation warning for major version
return self.append_keys(**keys)
# Mode 3
self.registered_formatter.clear_state()
self.registered_formatter.thread_safe_clear_keys()
self.registered_formatter.append_keys(**log_keys)
def set_correlation_id(self, value: str | None) -> None:
"""Sets the correlation_id in the logging json
Parameters
----------
value : str, optional
Value for the correlation id. None will remove the correlation_id
"""
self.append_keys(correlation_id=value)
def get_correlation_id(self) -> str | None:
"""Gets the correlation_id in the logging json
Returns
-------
str, optional
Value for the correlation id
"""
if isinstance(self.registered_formatter, LambdaPowertoolsFormatter):
return self.registered_formatter.log_format.get("correlation_id")
return None
def setLevel(self, level: str | int | None) -> None:
return self._logger.setLevel(self._determine_log_level(level))
def addHandler(self, handler: logging.Handler) -> None:
return self._logger.addHandler(handler)
def addFilter(self, filter: logging._FilterType) -> None: # noqa: A002 # filter built-in usage
return self._logger.addFilter(filter)
def removeFilter(self, filter: logging._FilterType) -> None: # noqa: A002 # filter built-in usage
return self._logger.removeFilter(filter)
@property
def registered_handler(self) -> logging.Handler:
"""Convenience property to access the first logger handler"""
# We ignore mypy here because self.child encodes whether or not self._logger.parent is
# None, mypy can't see this from context but we can
handlers = self._logger.parent.handlers if self.child else self._logger.handlers # type: ignore[union-attr]
return handlers[0]
@property
def registered_formatter(self) -> BasePowertoolsFormatter:
"""Convenience property to access the first logger formatter"""
return self.registered_handler.formatter # type: ignore[return-value]
@property
def log_level(self) -> int:
return self._logger.level
@property
def name(self) -> str:
return self._logger.name
@property
def handlers(self) -> list[logging.Handler]:
"""List of registered logging handlers
Notes
-----
Looking for the first configured handler? Use registered_handler property instead.
"""
return self._logger.handlers
def _get_aws_lambda_log_level(self) -> str | None:
"""
Retrieve the log level for AWS Lambda from the Advanced Logging Controls feature.
Returns:
str | None: The corresponding logging level.
"""
return constants.LAMBDA_ADVANCED_LOGGING_LEVELS.get(os.getenv(constants.LAMBDA_LOG_LEVEL_ENV))
def _get_powertools_log_level(self, level: str | int | None) -> str | None:
"""Retrieve the log level for Powertools from the environment variable or level parameter.
If log level is an integer, we convert to its respective string level `logging.getLevelName()`.
If no log level is provided, we check env vars for the log level: POWERTOOLS_LOG_LEVEL_ENV and POWERTOOLS_LOG_LEVEL_LEGACY_ENV.
Parameters:
-----------
level : str | int | None
The specified log level as a string, integer, or None.
Environment variables
---------------------
POWERTOOLS_LOG_LEVEL : str
log level (e.g: INFO, DEBUG, WARNING, ERROR, CRITICAL)
LOG_LEVEL (Legacy) : str
log level (e.g: INFO, DEBUG, WARNING, ERROR, CRITICAL)
Returns:
--------
str | None:
The corresponding logging level. Returns None if the log level is not explicitly specified.
""" # noqa E501
# Extract log level from Powertools Logger env vars
log_level_env = os.getenv(constants.POWERTOOLS_LOG_LEVEL_ENV) or os.getenv(
constants.POWERTOOLS_LOG_LEVEL_LEGACY_ENV,
)
# If level is an int (logging.INFO), return its respective string ("INFO")
if isinstance(level, int):
return logging.getLevelName(level)
return level or log_level_env
def _determine_log_level(self, level: str | int | None) -> str | int:
"""Determine the effective log level considering Lambda and Powertools preferences.
It emits an UserWarning if Lambda ALC log level is lower than Logger log level.
Parameters:
-----------
level: str | int | None
The specified log level as a string, integer, or None.
Returns:
----------
str | int: The effective logging level.
"""
# This function consider the following order of precedence:
# 1 - If a log level is set using AWS Lambda Advanced Logging Controls, it sets it.
# 2 - If a log level is passed to the constructor, it sets it
# 3 - If a log level is set via setLevel, it sets it.
# 4 - If a log level is set via Powertools env variables, it sets it.
# 5 - If none of the above is true, the default log level applies INFO.
lambda_log_level = self._get_aws_lambda_log_level()
powertools_log_level = self._get_powertools_log_level(level)
if powertools_log_level and lambda_log_level:
# If Powertools log level is set and higher than AWS Lambda Advanced Logging Controls, emit a warning
if logging.getLevelName(lambda_log_level) > logging.getLevelName(powertools_log_level):
warnings.warn(
f"Current log level ({powertools_log_level}) does not match AWS Lambda Advanced Logging Controls "
f"minimum log level ({lambda_log_level}). This can lead to data loss, consider adjusting them.",
UserWarning,
stacklevel=2,
)
# AWS Lambda Advanced Logging Controls takes precedence over Powertools log level and we use this
if lambda_log_level:
return lambda_log_level
# Check if Powertools log level is None, which means it's not set
# We assume INFO as the default log level
if powertools_log_level is None:
return logging.INFO
# Powertools log level is set, we use this
return powertools_log_level.upper()
def set_package_logger(
level: str | int = logging.DEBUG,
stream: IO[str] | None = None,
formatter: logging.Formatter | None = None,
) -> None:
"""Set an additional stream handler, formatter, and log level for aws_lambda_powertools package logger.
**Package log by default is suppressed (NullHandler), this should only used for debugging.
This is separate from application Logger class utility**
Example
-------
**Enables debug logging for Powertools for AWS Lambda (Python) package**
>>> aws_lambda_powertools.logging.logger import set_package_logger
>>> set_package_logger()
Parameters
----------
level: str, int
log level, DEBUG by default
stream: sys.stdout
log stream, stdout by default
formatter: logging.Formatter
log formatter, "%(asctime)s %(name)s [%(levelname)s] %(message)s" by default
"""
if formatter is None:
formatter = logging.Formatter("%(asctime)s %(name)s [%(levelname)s] %(message)s")
if stream is None:
stream = sys.stdout
logger = logging.getLogger("aws_lambda_powertools")
logger.setLevel(level)
handler = logging.StreamHandler(stream)
handler.setFormatter(formatter)
logger.addHandler(handler)
def log_uncaught_exception_hook(exc_type, exc_value, exc_traceback, logger: Logger) -> None:
"""Callback function for sys.excepthook to use Logger to log uncaught exceptions"""
logger.exception(exc_value, exc_info=(exc_type, exc_value, exc_traceback)) # pragma: no cover
def _get_caller_filename() -> str:
"""Return caller filename by finding the caller frame"""
# Current frame => _get_logger()
# Previous frame => logger.py
# Before previous frame => Caller
# We ignore mypy here because *we* know that there will always be at least
# 3 frames (above) so repeatedly calling f_back is safe here
frame = inspect.currentframe()
caller_frame = frame.f_back.f_back.f_back # type: ignore[union-attr]
return caller_frame.f_globals["__name__"] # type: ignore[union-attr]