-
Notifications
You must be signed in to change notification settings - Fork 406
/
Copy pathlogger.py
478 lines (388 loc) · 17.2 KB
/
logger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import functools
import inspect
import logging
import os
import random
import sys
from typing import IO, Any, Callable, Dict, Iterable, Optional, TypeVar, Union
import jmespath
from ..shared import constants
from ..shared.functions import resolve_env_var_choice, resolve_truthy_env_var_choice
from .exceptions import InvalidLoggerSamplingRateError
from .filters import SuppressFilter
from .formatter import BasePowertoolsFormatter, LambdaPowertoolsFormatter
from .lambda_context import build_lambda_context_model
logger = logging.getLogger(__name__)
is_cold_start = True
PowertoolsFormatter = TypeVar("PowertoolsFormatter", bound=BasePowertoolsFormatter)
def _is_cold_start() -> bool:
"""Verifies whether is cold start
Returns
-------
bool
cold start bool value
"""
cold_start = False
global is_cold_start
if is_cold_start:
cold_start = is_cold_start
is_cold_start = False
return cold_start
# PyCharm does not support autocomplete via getattr
# so we need to return to subclassing removed in #97
# All methods/properties continue to be proxied to inner logger
# https://github.com/awslabs/aws-lambda-powertools-python/issues/107
# noinspection PyRedeclaration
class Logger(logging.Logger): # lgtm [py/missing-call-to-init]
"""Creates and setups a logger to format statements in JSON.
Includes service name and any additional key=value into logs
It also accepts both service name or level explicitly via env vars
Environment variables
---------------------
POWERTOOLS_SERVICE_NAME : str
service name
LOG_LEVEL: str
logging level (e.g. INFO, DEBUG)
POWERTOOLS_LOGGER_SAMPLE_RATE: float
sampling rate ranging from 0 to 1, 1 being 100% sampling
Parameters
----------
service : str, optional
service name to be appended in logs, by default "service_undefined"
level : str, int optional
logging.level, by default "INFO"
child: bool, optional
create a child Logger named <service>.<caller_file_name>, False by default
sample_rate: float, optional
sample rate for debug calls within execution context defaults to 0.0
stream: sys.stdout, optional
valid output for a logging stream, by default sys.stdout
logger_formatter: PowertoolsFormatter, optional
custom logging formatter that implements PowertoolsFormatter
logger_handler: logging.Handler, optional
custom logging handler e.g. logging.FileHandler("file.log")
Parameters propagated to LambdaPowertoolsFormatter
--------------------------------------------------
datefmt: str, optional
String directives (strftime) to format log timestamp using `time`, by default it uses RFC
3339.
use_datetime_directive: str, optional
Interpret `datefmt` as a format string for `datetime.datetime.strftime`, rather than
`time.strftime`.
See https://docs.python.org/3/library/datetime.html#strftime-strptime-behavior . This
also supports a custom %F directive for milliseconds.
json_serializer : Callable, optional
function to serialize `obj` to a JSON formatted `str`, by default json.dumps
json_deserializer : Callable, optional
function to deserialize `str`, `bytes`, bytearray` containing a JSON document to a Python `obj`,
by default json.loads
json_default : Callable, optional
function to coerce unserializable values, by default `str()`
Only used when no custom formatter is set
utc : bool, optional
set logging timestamp to UTC, by default False to continue to use local time as per stdlib
log_record_order : list, optional
set order of log keys when logging, by default ["level", "location", "message", "timestamp"]
Example
-------
**Setups structured logging in JSON for Lambda functions with explicit service name**
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> def handler(event, context):
logger.info("Hello")
**Setups structured logging in JSON for Lambda functions using env vars**
$ export POWERTOOLS_SERVICE_NAME="payment"
$ export POWERTOOLS_LOGGER_SAMPLE_RATE=0.01 # 1% debug sampling
>>> from aws_lambda_powertools import Logger
>>> logger = Logger()
>>>
>>> def handler(event, context):
logger.info("Hello")
**Append payment_id to previously setup logger**
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> def handler(event, context):
logger.append_keys(payment_id=event["payment_id"])
logger.info("Hello")
**Create child Logger using logging inheritance via child param**
>>> # app.py
>>> import another_file
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment")
>>>
>>> # another_file.py
>>> from aws_lambda_powertools import Logger
>>> logger = Logger(service="payment", child=True)
**Logging in UTC timezone**
>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", utc=True)
**Brings message as the first key in log statements**
>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", log_record_order=["message"])
**Logging to a file instead of standard output for testing**
>>> # app.py
>>> import logging
>>> from aws_lambda_powertools import Logger
>>>
>>> logger = Logger(service="payment", logger_handler=logging.FileHandler("log.json"))
Raises
------
InvalidLoggerSamplingRateError
When sampling rate provided is not a float
"""
def __init__(
self,
service: Optional[str] = None,
level: Union[str, int, None] = None,
child: bool = False,
sampling_rate: Optional[float] = None,
stream: Optional[IO[str]] = None,
logger_formatter: Optional[PowertoolsFormatter] = None,
logger_handler: Optional[logging.Handler] = None,
**kwargs,
):
self.service = resolve_env_var_choice(
choice=service, env=os.getenv(constants.SERVICE_NAME_ENV, "service_undefined")
)
self.sampling_rate = resolve_env_var_choice(
choice=sampling_rate, env=os.getenv(constants.LOGGER_LOG_SAMPLING_RATE)
)
self.child = child
self.logger_formatter = logger_formatter
self.logger_handler = logger_handler or logging.StreamHandler(stream)
self.log_level = self._get_log_level(level)
self._is_deduplication_disabled = resolve_truthy_env_var_choice(
env=os.getenv(constants.LOGGER_LOG_DEDUPLICATION_ENV, "false")
)
self._default_log_keys = {"service": self.service, "sampling_rate": self.sampling_rate}
self._logger = self._get_logger()
self._init_logger(**kwargs)
def __getattr__(self, name):
# Proxy attributes not found to actual logger to support backward compatibility
# https://github.com/awslabs/aws-lambda-powertools-python/issues/97
return getattr(self._logger, name)
def _get_logger(self):
"""Returns a Logger named {self.service}, or {self.service.filename} for child loggers"""
logger_name = self.service
if self.child:
logger_name = f"{self.service}.{self._get_caller_filename()}"
return logging.getLogger(logger_name)
def _init_logger(self, **kwargs):
"""Configures new logger"""
# Skip configuration if it's a child logger or a pre-configured logger
# to prevent the following:
# a) multiple handlers being attached
# b) different sampling mechanisms
# c) multiple messages from being logged as handlers can be duplicated
is_logger_preconfigured = getattr(self._logger, "init", False)
if self.child or is_logger_preconfigured:
return
self._configure_sampling()
self._logger.setLevel(self.log_level)
self._logger.addHandler(self.logger_handler)
self.structure_logs(**kwargs)
# Pytest Live Log feature duplicates log records for colored output
# but we explicitly add a filter for log deduplication.
# This flag disables this protection when you explicit want logs to be duplicated (#262)
if not self._is_deduplication_disabled:
logger.debug("Adding filter in root logger to suppress child logger records to bubble up")
for handler in logging.root.handlers:
# It'll add a filter to suppress any child logger from self.service
# Example: `Logger(service="order")`, where service is Order
# It'll reject all loggers starting with `order` e.g. order.checkout, order.shared
handler.addFilter(SuppressFilter(self.service))
# as per bug in #249, we should not be pre-configuring an existing logger
# therefore we set a custom attribute in the Logger that will be returned
# std logging will return the same Logger with our attribute if name is reused
logger.debug(f"Marking logger {self.service} as preconfigured")
self._logger.init = True
def _configure_sampling(self):
"""Dynamically set log level based on sampling rate
Raises
------
InvalidLoggerSamplingRateError
When sampling rate provided is not a float
"""
try:
if self.sampling_rate and random.random() <= float(self.sampling_rate):
logger.debug("Setting log level to Debug due to sampling rate")
self.log_level = logging.DEBUG
except ValueError:
raise InvalidLoggerSamplingRateError(
f"Expected a float value ranging 0 to 1, but received {self.sampling_rate} instead."
f"Please review POWERTOOLS_LOGGER_SAMPLE_RATE environment variable."
)
def inject_lambda_context(
self,
lambda_handler: Optional[Callable[[Dict, Any], Any]] = None,
log_event: Optional[bool] = None,
correlation_id_path: Optional[str] = None,
clear_state: Optional[bool] = False,
):
"""Decorator to capture Lambda contextual info and inject into logger
Parameters
----------
clear_state : bool, optional
Instructs logger to remove any custom keys previously added
lambda_handler : Callable
Method to inject the lambda context
log_event : bool, optional
Instructs logger to log Lambda Event, by default False
correlation_id_path: str, optional
Optional JMESPath for the correlation_id
Environment variables
---------------------
POWERTOOLS_LOGGER_LOG_EVENT : str
instruct logger to log Lambda Event (e.g. `"true", "True", "TRUE"`)
Example
-------
**Captures Lambda contextual runtime info (e.g memory, arn, req_id)**
from aws_lambda_powertools import Logger
logger = Logger(service="payment")
@logger.inject_lambda_context
def handler(event, context):
logger.info("Hello")
**Captures Lambda contextual runtime info and logs incoming request**
from aws_lambda_powertools import Logger
logger = Logger(service="payment")
@logger.inject_lambda_context(log_event=True)
def handler(event, context):
logger.info("Hello")
Returns
-------
decorate : Callable
Decorated lambda handler
"""
# If handler is None we've been called with parameters
# Return a partial function with args filled
if lambda_handler is None:
logger.debug("Decorator called with parameters")
return functools.partial(
self.inject_lambda_context,
log_event=log_event,
correlation_id_path=correlation_id_path,
clear_state=clear_state,
)
log_event = resolve_truthy_env_var_choice(
env=os.getenv(constants.LOGGER_LOG_EVENT_ENV, "false"), choice=log_event
)
@functools.wraps(lambda_handler)
def decorate(event, context, **kwargs):
lambda_context = build_lambda_context_model(context)
cold_start = _is_cold_start()
if clear_state:
self.structure_logs(cold_start=cold_start, **lambda_context.__dict__)
else:
self.append_keys(cold_start=cold_start, **lambda_context.__dict__)
if correlation_id_path:
self.set_correlation_id(jmespath.search(correlation_id_path, event))
if log_event:
logger.debug("Event received")
self.info(event)
return lambda_handler(event, context)
return decorate
def append_keys(self, **additional_keys):
self.registered_formatter.append_keys(**additional_keys)
def remove_keys(self, keys: Iterable[str]):
self.registered_formatter.remove_keys(keys)
@property
def registered_handler(self) -> logging.Handler:
"""Convenience property to access logger handler"""
handlers = self._logger.parent.handlers if self.child else self._logger.handlers
return handlers[0]
@property
def registered_formatter(self) -> PowertoolsFormatter:
"""Convenience property to access logger formatter"""
return self.registered_handler.formatter # type: ignore
def structure_logs(self, append: bool = False, **keys):
"""Sets logging formatting to JSON.
Optionally, it can append keyword arguments
to an existing logger so it is available across future log statements.
Last keyword argument and value wins if duplicated.
Parameters
----------
append : bool, optional
append keys provided to logger formatter, by default False
"""
if append:
# Maintenance: Add deprecation warning for major version. Refer to append_keys() when docs are updated
self.append_keys(**keys)
else:
log_keys = {**self._default_log_keys, **keys}
formatter = self.logger_formatter or LambdaPowertoolsFormatter(**log_keys) # type: ignore
self.registered_handler.setFormatter(formatter)
def set_correlation_id(self, value: Optional[str]):
"""Sets the correlation_id in the logging json
Parameters
----------
value : str, optional
Value for the correlation id. None will remove the correlation_id
"""
self.append_keys(correlation_id=value)
def get_correlation_id(self) -> Optional[str]:
"""Gets the correlation_id in the logging json
Returns
-------
str, optional
Value for the correlation id
"""
if isinstance(self.registered_formatter, LambdaPowertoolsFormatter):
return self.registered_formatter.log_format.get("correlation_id")
return None
@staticmethod
def _get_log_level(level: Union[str, int, None]) -> Union[str, int]:
"""Returns preferred log level set by the customer in upper case"""
if isinstance(level, int):
return level
log_level: Optional[str] = level or os.getenv("LOG_LEVEL")
if log_level is None:
return logging.INFO
return log_level.upper()
@staticmethod
def _get_caller_filename():
"""Return caller filename by finding the caller frame"""
# Current frame => _get_logger()
# Previous frame => logger.py
# Before previous frame => Caller
frame = inspect.currentframe()
caller_frame = frame.f_back.f_back.f_back
return caller_frame.f_globals["__name__"]
def set_package_logger(
level: Union[str, int] = logging.DEBUG,
stream: Optional[IO[str]] = None,
formatter: Optional[logging.Formatter] = None,
):
"""Set an additional stream handler, formatter, and log level for aws_lambda_powertools package logger.
**Package log by default is suppressed (NullHandler), this should only used for debugging.
This is separate from application Logger class utility**
Example
-------
**Enables debug logging for AWS Lambda Powertools package**
>>> aws_lambda_powertools.logging.logger import set_package_logger
>>> set_package_logger()
Parameters
----------
level: str, int
log level, DEBUG by default
stream: sys.stdout
log stream, stdout by default
formatter: logging.Formatter
log formatter, "%(asctime)s %(name)s [%(levelname)s] %(message)s" by default
"""
if formatter is None:
formatter = logging.Formatter("%(asctime)s %(name)s [%(levelname)s] %(message)s")
if stream is None:
stream = sys.stdout
logger = logging.getLogger("aws_lambda_powertools")
logger.setLevel(level)
handler = logging.StreamHandler(stream)
handler.setFormatter(formatter)
logger.addHandler(handler)