-
Notifications
You must be signed in to change notification settings - Fork 159
/
Copy pathmemtrace.c
552 lines (485 loc) · 22.3 KB
/
memtrace.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/atomics.h>
#include <aws/common/byte_buf.h>
#include <aws/common/clock.h>
#include <aws/common/hash_table.h>
#include <aws/common/logging.h>
#include <aws/common/mutex.h>
#include <aws/common/priority_queue.h>
#include <aws/common/string.h>
#include <aws/common/system_info.h>
/* describes a single live allocation.
* allocated by aws_default_allocator() */
struct alloc_info {
size_t size;
uint64_t time;
uint64_t stack; /* hash of stack frame pointers */
};
/* Using a flexible array member is the C99 compliant way to have the frames immediately follow the header.
*
* MSVC doesn't know this for some reason so we need to use a pragma to make
* it happy.
*/
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable : 4200) /* nonstandard extension used: zero-sized array in struct/union */
#endif
/* one of these is stored per unique stack
* allocated by aws_default_allocator() */
struct stack_trace {
size_t depth; /* length of frames[] */
void *const frames[]; /* rest of frames are allocated after */
};
#ifdef _MSC_VER
# pragma warning(pop)
#endif
/* Tracking structure, used as the allocator impl.
* This structure, and all its bookkeeping data structures, are created with the aws_default_allocator().
* This is not customizable because it's too expensive for every little allocation to store
* a pointer back to its original allocator. */
struct alloc_tracer {
struct aws_allocator *traced_allocator; /* underlying allocator */
enum aws_mem_trace_level level; /* level to trace at */
size_t frames_per_stack; /* how many frames to keep per stack */
struct aws_atomic_var allocated; /* bytes currently allocated */
struct aws_mutex mutex; /* protects everything below */
struct aws_hash_table allocs; /* live allocations, maps address -> alloc_info */
struct aws_hash_table stacks; /* unique stack traces, maps hash -> stack_trace */
};
/* number of frames to skip in call stacks (s_alloc_tracer_track, and the vtable function) */
enum { FRAMES_TO_SKIP = 2 };
static void *s_trace_mem_acquire(struct aws_allocator *allocator, size_t size);
static void s_trace_mem_release(struct aws_allocator *allocator, void *ptr);
static void *s_trace_mem_realloc(struct aws_allocator *allocator, void *old_ptr, size_t old_size, size_t new_size);
static void *s_trace_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size);
static struct aws_allocator s_trace_allocator = {
.mem_acquire = s_trace_mem_acquire,
.mem_release = s_trace_mem_release,
.mem_realloc = s_trace_mem_realloc,
.mem_calloc = s_trace_mem_calloc,
};
/* for the hash table, to destroy elements */
static void s_destroy_alloc(void *data) {
struct alloc_info *alloc = data;
aws_mem_release(aws_default_allocator(), alloc);
}
static void s_destroy_stacktrace(void *data) {
struct stack_trace *stack = data;
aws_mem_release(aws_default_allocator(), stack);
}
static void s_alloc_tracer_init(
struct alloc_tracer *tracer,
struct aws_allocator *traced_allocator,
enum aws_mem_trace_level level,
size_t frames_per_stack) {
void *stack[1];
if (!aws_backtrace(stack, 1)) {
/* clamp level if tracing isn't available */
level = level > AWS_MEMTRACE_BYTES ? AWS_MEMTRACE_BYTES : level;
}
tracer->traced_allocator = traced_allocator;
tracer->level = level;
if (tracer->level >= AWS_MEMTRACE_BYTES) {
aws_atomic_init_int(&tracer->allocated, 0);
AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_mutex_init(&tracer->mutex));
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS ==
aws_hash_table_init(
&tracer->allocs, aws_default_allocator(), 1024, aws_hash_ptr, aws_ptr_eq, NULL, s_destroy_alloc));
}
if (tracer->level == AWS_MEMTRACE_STACKS) {
if (frames_per_stack > 128) {
frames_per_stack = 128;
}
tracer->frames_per_stack = frames_per_stack ? frames_per_stack : 8;
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS ==
aws_hash_table_init(
&tracer->stacks, aws_default_allocator(), 1024, aws_hash_ptr, aws_ptr_eq, NULL, s_destroy_stacktrace));
}
}
static void s_alloc_tracer_track(struct alloc_tracer *tracer, void *ptr, size_t size) {
if (tracer->level == AWS_MEMTRACE_NONE) {
return;
}
aws_atomic_fetch_add(&tracer->allocated, size);
struct alloc_info *alloc = aws_mem_calloc(aws_default_allocator(), 1, sizeof(struct alloc_info));
AWS_FATAL_ASSERT(alloc);
alloc->size = size;
aws_high_res_clock_get_ticks(&alloc->time);
if (tracer->level == AWS_MEMTRACE_STACKS) {
/* capture stack frames,
* skip 2 for this function and the allocation vtable function if we have a full stack trace
* and otherwise just capture what ever stack trace we got
*/
AWS_VARIABLE_LENGTH_ARRAY(void *, stack_frames, (FRAMES_TO_SKIP + tracer->frames_per_stack));
size_t stack_depth = aws_backtrace(stack_frames, FRAMES_TO_SKIP + tracer->frames_per_stack);
AWS_FATAL_ASSERT(stack_depth > 0);
/* hash the stack pointers */
struct aws_byte_cursor stack_cursor = aws_byte_cursor_from_array(stack_frames, stack_depth * sizeof(void *));
uint64_t stack_id = aws_hash_byte_cursor_ptr(&stack_cursor);
alloc->stack = stack_id; /* associate the stack with the alloc */
aws_mutex_lock(&tracer->mutex);
struct aws_hash_element *item = NULL;
int was_created = 0;
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS == aws_hash_table_create(&tracer->stacks, (void *)(uintptr_t)stack_id, &item, &was_created));
/* If this is a new stack, save it to the hash */
if (was_created) {
struct stack_trace *stack = aws_mem_calloc(
aws_default_allocator(), 1, sizeof(struct stack_trace) + (sizeof(void *) * tracer->frames_per_stack));
AWS_FATAL_ASSERT(stack);
/**
* Optimizations can affect the number of frames we get and in pathological cases we can
* get fewer than FRAMES_TO_SKIP frames, but always at least 1 because code has to start somewhere.
* (looking at you gcc with -O3 on aarch64)
* With optimizations on we cannot trust the stack trace too much.
* Memtracer makes an assumption that stack trace will be available in all cases if stack trace api
* works. So in the pathological case of stack_depth <= FRAMES_TO_SKIP lets record all the frames we
* have, to at least have an anchor for where allocation is comming from, however inaccurate it is.
*/
if (stack_depth <= FRAMES_TO_SKIP) {
memcpy((void **)&stack->frames[0], &stack_frames[0], (stack_depth) * sizeof(void *));
stack->depth = stack_depth;
item->value = stack;
} else {
memcpy(
(void **)&stack->frames[0],
&stack_frames[FRAMES_TO_SKIP],
(stack_depth - FRAMES_TO_SKIP) * sizeof(void *));
stack->depth = stack_depth - FRAMES_TO_SKIP;
item->value = stack;
}
}
aws_mutex_unlock(&tracer->mutex);
}
aws_mutex_lock(&tracer->mutex);
AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_hash_table_put(&tracer->allocs, ptr, alloc, NULL));
aws_mutex_unlock(&tracer->mutex);
}
static void s_alloc_tracer_untrack(struct alloc_tracer *tracer, void *ptr) {
if (tracer->level == AWS_MEMTRACE_NONE) {
return;
}
aws_mutex_lock(&tracer->mutex);
struct aws_hash_element *item;
AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_hash_table_find(&tracer->allocs, ptr, &item));
/* because the tracer can be installed at any time, it is possible for an allocation to not
* be tracked. Therefore, we make sure the find succeeds, but then check the returned
* value */
if (item) {
AWS_FATAL_ASSERT(item->key == ptr && item->value);
struct alloc_info *alloc = item->value;
aws_atomic_fetch_sub(&tracer->allocated, alloc->size);
s_destroy_alloc(item->value);
AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_hash_table_remove_element(&tracer->allocs, item));
}
aws_mutex_unlock(&tracer->mutex);
}
/* used only to resolve stacks -> trace, count, size at dump time */
struct stack_metadata {
struct aws_string *trace;
size_t count;
size_t size;
};
static int s_collect_stack_trace(void *context, struct aws_hash_element *item) {
struct alloc_tracer *tracer = context;
struct aws_hash_table *all_stacks = &tracer->stacks;
struct stack_metadata *stack_info = item->value;
struct aws_hash_element *stack_item = NULL;
AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_hash_table_find(all_stacks, item->key, &stack_item));
AWS_FATAL_ASSERT(stack_item);
struct stack_trace *stack = stack_item->value;
void *const *stack_frames = &stack->frames[0];
/* convert the frame pointers to symbols, and concat into a buffer */
char buf[4096] = {0};
struct aws_byte_buf stacktrace = aws_byte_buf_from_empty_array(buf, AWS_ARRAY_SIZE(buf));
struct aws_byte_cursor newline = aws_byte_cursor_from_c_str("\n");
char **symbols = aws_backtrace_symbols(stack_frames, stack->depth);
for (size_t idx = 0; idx < stack->depth; ++idx) {
if (idx > 0) {
aws_byte_buf_append(&stacktrace, &newline);
}
const char *caller = symbols[idx];
if (!caller || !caller[0]) {
break;
}
struct aws_byte_cursor cursor = aws_byte_cursor_from_c_str(caller);
aws_byte_buf_append(&stacktrace, &cursor);
}
aws_mem_release(aws_default_allocator(), symbols);
/* record the resultant buffer as a string */
stack_info->trace = aws_string_new_from_array(aws_default_allocator(), stacktrace.buffer, stacktrace.len);
AWS_FATAL_ASSERT(stack_info->trace);
aws_byte_buf_clean_up(&stacktrace);
return AWS_COMMON_HASH_TABLE_ITER_CONTINUE;
}
static int s_stack_info_compare_size(const void *a, const void *b) {
const struct stack_metadata *stack_a = *(const struct stack_metadata **)a;
const struct stack_metadata *stack_b = *(const struct stack_metadata **)b;
return stack_b->size > stack_a->size;
}
static int s_stack_info_compare_count(const void *a, const void *b) {
const struct stack_metadata *stack_a = *(const struct stack_metadata **)a;
const struct stack_metadata *stack_b = *(const struct stack_metadata **)b;
return stack_b->count > stack_a->count;
}
static void s_stack_info_destroy(void *data) {
struct stack_metadata *stack = data;
struct aws_allocator *allocator = stack->trace->allocator;
aws_string_destroy(stack->trace);
aws_mem_release(allocator, stack);
}
/* tally up count/size per stack from all allocs */
static int s_collect_stack_stats(void *context, struct aws_hash_element *item) {
struct aws_hash_table *stack_info = context;
struct alloc_info *alloc = item->value;
struct aws_hash_element *stack_item = NULL;
int was_created = 0;
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS ==
aws_hash_table_create(stack_info, (void *)(uintptr_t)alloc->stack, &stack_item, &was_created));
if (was_created) {
stack_item->value = aws_mem_calloc(aws_default_allocator(), 1, sizeof(struct stack_metadata));
AWS_FATAL_ASSERT(stack_item->value);
}
struct stack_metadata *stack = stack_item->value;
stack->count++;
stack->size += alloc->size;
return AWS_COMMON_HASH_TABLE_ITER_CONTINUE;
}
static int s_insert_stacks(void *context, struct aws_hash_element *item) {
struct aws_priority_queue *pq = context;
struct stack_metadata *stack = item->value;
AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_priority_queue_push(pq, &stack));
return AWS_COMMON_HASH_TABLE_ITER_CONTINUE;
}
static int s_insert_allocs(void *context, struct aws_hash_element *item) {
struct aws_priority_queue *allocs = context;
struct alloc_info *alloc = item->value;
AWS_FATAL_ASSERT(AWS_OP_SUCCESS == aws_priority_queue_push(allocs, &alloc));
return AWS_COMMON_HASH_TABLE_ITER_CONTINUE;
}
static int s_alloc_compare(const void *a, const void *b) {
const struct alloc_info *alloc_a = *(const struct alloc_info **)a;
const struct alloc_info *alloc_b = *(const struct alloc_info **)b;
return alloc_a->time > alloc_b->time;
}
void aws_mem_tracer_dump(struct aws_allocator *trace_allocator) {
struct alloc_tracer *tracer = trace_allocator->impl;
if (tracer->level == AWS_MEMTRACE_NONE || aws_atomic_load_int(&tracer->allocated) == 0) {
return;
}
aws_mutex_lock(&tracer->mutex);
size_t num_allocs = aws_hash_table_get_entry_count(&tracer->allocs);
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE, "################################################################################");
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE, "# BEGIN MEMTRACE DUMP #");
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE, "################################################################################");
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE,
"tracer: %zu bytes still allocated in %zu allocations",
aws_atomic_load_int(&tracer->allocated),
num_allocs);
/* convert stacks from pointers -> symbols */
struct aws_hash_table stack_info;
AWS_ZERO_STRUCT(stack_info);
if (tracer->level == AWS_MEMTRACE_STACKS) {
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS ==
aws_hash_table_init(
&stack_info, aws_default_allocator(), 64, aws_hash_ptr, aws_ptr_eq, NULL, s_stack_info_destroy));
/* collect active stacks, tally up sizes and counts */
aws_hash_table_foreach(&tracer->allocs, s_collect_stack_stats, &stack_info);
/* collect stack traces for active stacks */
aws_hash_table_foreach(&stack_info, s_collect_stack_trace, tracer);
}
/* sort allocs by time */
struct aws_priority_queue allocs;
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS ==
aws_priority_queue_init_dynamic(
&allocs, aws_default_allocator(), num_allocs, sizeof(struct alloc_info *), s_alloc_compare));
aws_hash_table_foreach(&tracer->allocs, s_insert_allocs, &allocs);
/* dump allocs by time */
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "Leaks in order of allocation:");
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
while (aws_priority_queue_size(&allocs)) {
struct alloc_info *alloc = NULL;
aws_priority_queue_pop(&allocs, &alloc);
if (alloc->stack) {
struct aws_hash_element *item = NULL;
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS == aws_hash_table_find(&stack_info, (void *)(uintptr_t)alloc->stack, &item));
struct stack_metadata *stack = item->value;
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE,
"ALLOC %zu bytes, stacktrace:\n%s\n",
alloc->size,
aws_string_c_str(stack->trace));
} else {
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "ALLOC %zu bytes", alloc->size);
}
}
aws_priority_queue_clean_up(&allocs);
if (tracer->level == AWS_MEMTRACE_STACKS) {
size_t num_stacks = aws_hash_table_get_entry_count(&stack_info);
/* sort stacks by total size leaked */
struct aws_priority_queue stacks_by_size;
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS == aws_priority_queue_init_dynamic(
&stacks_by_size,
aws_default_allocator(),
num_stacks,
sizeof(struct stack_metadata *),
s_stack_info_compare_size));
aws_hash_table_foreach(&stack_info, s_insert_stacks, &stacks_by_size);
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "Stacks by bytes leaked:");
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
while (aws_priority_queue_size(&stacks_by_size) > 0) {
struct stack_metadata *stack = NULL;
aws_priority_queue_pop(&stacks_by_size, &stack);
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE,
"%zu bytes in %zu allocations:\n%s\n",
stack->size,
stack->count,
aws_string_c_str(stack->trace));
}
aws_priority_queue_clean_up(&stacks_by_size);
/* sort stacks by number of leaks */
struct aws_priority_queue stacks_by_count;
AWS_FATAL_ASSERT(
AWS_OP_SUCCESS == aws_priority_queue_init_dynamic(
&stacks_by_count,
aws_default_allocator(),
num_stacks,
sizeof(struct stack_metadata *),
s_stack_info_compare_count));
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "Stacks by number of leaks:");
AWS_LOGF_TRACE(AWS_LS_COMMON_MEMTRACE, "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~");
aws_hash_table_foreach(&stack_info, s_insert_stacks, &stacks_by_count);
while (aws_priority_queue_size(&stacks_by_count) > 0) {
struct stack_metadata *stack = NULL;
aws_priority_queue_pop(&stacks_by_count, &stack);
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE,
"%zu allocations leaking %zu bytes:\n%s\n",
stack->count,
stack->size,
aws_string_c_str(stack->trace));
}
aws_priority_queue_clean_up(&stacks_by_count);
aws_hash_table_clean_up(&stack_info);
}
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE, "################################################################################");
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE, "# END MEMTRACE DUMP #");
AWS_LOGF_TRACE(
AWS_LS_COMMON_MEMTRACE, "################################################################################");
aws_mutex_unlock(&tracer->mutex);
}
static void *s_trace_mem_acquire(struct aws_allocator *allocator, size_t size) {
struct alloc_tracer *tracer = allocator->impl;
void *ptr = aws_mem_acquire(tracer->traced_allocator, size);
if (ptr) {
s_alloc_tracer_track(tracer, ptr, size);
}
return ptr;
}
static void s_trace_mem_release(struct aws_allocator *allocator, void *ptr) {
struct alloc_tracer *tracer = allocator->impl;
s_alloc_tracer_untrack(tracer, ptr);
aws_mem_release(tracer->traced_allocator, ptr);
}
static void *s_trace_mem_realloc(struct aws_allocator *allocator, void *old_ptr, size_t old_size, size_t new_size) {
struct alloc_tracer *tracer = allocator->impl;
void *new_ptr = old_ptr;
/*
* Careful with the ordering of state clean up here.
* Tracer keeps a hash table (alloc ptr as key) of meta info about each allocation.
* To avoid race conditions during realloc state update needs to be done in
* following order to avoid race conditions:
* - remove meta info (other threads cant reuse that key, cause ptr is still valid )
* - realloc (cant fail, ptr might remain the same)
* - add meta info for reallocated mem
*/
s_alloc_tracer_untrack(tracer, old_ptr);
aws_mem_realloc(tracer->traced_allocator, &new_ptr, old_size, new_size);
s_alloc_tracer_track(tracer, new_ptr, new_size);
return new_ptr;
}
static void *s_trace_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size) {
struct alloc_tracer *tracer = allocator->impl;
void *ptr = aws_mem_calloc(tracer->traced_allocator, num, size);
if (ptr) {
s_alloc_tracer_track(tracer, ptr, num * size);
}
return ptr;
}
struct aws_allocator *aws_mem_tracer_new(
struct aws_allocator *allocator,
struct aws_allocator *deprecated,
enum aws_mem_trace_level level,
size_t frames_per_stack) {
/* deprecated customizable bookkeeping allocator */
(void)deprecated;
struct alloc_tracer *tracer = NULL;
struct aws_allocator *trace_allocator = NULL;
aws_mem_acquire_many(
aws_default_allocator(),
2,
&tracer,
sizeof(struct alloc_tracer),
&trace_allocator,
sizeof(struct aws_allocator));
AWS_FATAL_ASSERT(trace_allocator);
AWS_FATAL_ASSERT(tracer);
AWS_ZERO_STRUCT(*trace_allocator);
AWS_ZERO_STRUCT(*tracer);
/* copy the template vtable s*/
*trace_allocator = s_trace_allocator;
trace_allocator->impl = tracer;
s_alloc_tracer_init(tracer, allocator, level, frames_per_stack);
return trace_allocator;
}
struct aws_allocator *aws_mem_tracer_destroy(struct aws_allocator *trace_allocator) {
struct alloc_tracer *tracer = trace_allocator->impl;
struct aws_allocator *allocator = tracer->traced_allocator;
if (tracer->level != AWS_MEMTRACE_NONE) {
aws_mutex_lock(&tracer->mutex);
aws_hash_table_clean_up(&tracer->allocs);
aws_hash_table_clean_up(&tracer->stacks);
aws_mutex_unlock(&tracer->mutex);
aws_mutex_clean_up(&tracer->mutex);
}
aws_mem_release(aws_default_allocator(), tracer);
/* trace_allocator is freed as part of the block tracer was allocated in */
return allocator;
}
size_t aws_mem_tracer_bytes(struct aws_allocator *trace_allocator) {
struct alloc_tracer *tracer = trace_allocator->impl;
if (tracer->level == AWS_MEMTRACE_NONE) {
return 0;
}
return aws_atomic_load_int(&tracer->allocated);
}
size_t aws_mem_tracer_count(struct aws_allocator *trace_allocator) {
struct alloc_tracer *tracer = trace_allocator->impl;
if (tracer->level == AWS_MEMTRACE_NONE) {
return 0;
}
aws_mutex_lock(&tracer->mutex);
size_t count = aws_hash_table_get_entry_count(&tracer->allocs);
aws_mutex_unlock(&tracer->mutex);
return count;
}