diff --git a/README.md b/README.md index 59ee09d..5f159aa 100644 --- a/README.md +++ b/README.md @@ -2,7 +2,7 @@ The OversightML Imagery Toolkit is a Python package that contains image processing and photogrammetry routines commonly used during the analysis of imagery collected by satellites and unmanned aerial vehicles (UAVs). It builds upon GDAL -by providing additional support for images compliant with the National Imagery Transmission Format (NITF) and Sensor +by providing additional support for images compliant with the National Imagery Transmission Format (NITF) and Sensor Independent Complex Data (SICD) standards. ## Installation @@ -70,14 +70,14 @@ nitf_encoded_tile_bytes = tile_factory.create_encoded_tile([0, 0, 1024, 1024]) ### Tiling for Display -Some images, for example 11-bit panchromatic images or SAR imagery with floating point complex data, can not be +Some images, for example 11-bit panchromatic images or SAR imagery with floating point complex data, can not be displayed directly without remapping the pixels into an 8-bit per pixel grayscale or RGB color model. The TileFactory supports creation of tiles suitable for human review by setting both the output_type and range_adjustment options. ```python -viz_tile_factory = GDALTileFactory(ds, - sensor_model, - GDALImageFormats.PNG, +viz_tile_factory = GDALTileFactory(ds, + sensor_model, + GDALImageFormats.PNG, GDALCompressionOptions.NONE, output_type=gdalconst.GDT_Byte, range_adjustment=RangeAdjustmentType.DRA) @@ -87,10 +87,10 @@ viz_tile = viz_tile_factory.create_encoded_tile([0, 0, 1024, 1024]) ### More Precise Sensor Models -OversightML provides implementations of the Replacement Sensor Model (RSM), Rational Polynomial +OversightML provides implementations of the Replacement Sensor Model (RSM), Rational Polynomial Camera (RPC), and Sensor Independent Complex Data (SICD) sensor models to assist in geo positioning. When loading a dataset, the toolkit will construct the most accurate sensor model -from the available image metadata. That sensor model can be used in conjunction with an optional +from the available image metadata. That sensor model can be used in conjunction with an optional elevation model to convert between image and geodetic coordinates. ```python @@ -101,7 +101,7 @@ elevation_model = DigitalElevationModel( # Note the order of ImageCoordinate is (x, y) geodetic_location_of_ul_corner = sensor_model.image_to_world( - ImageCoordinate([0, 0]), + ImageCoordinate([0, 0]), elevation_model=elevation_model) lon_degrees = -77.404453 diff --git a/setup.cfg b/setup.cfg index cb2cca5..5a6b63a 100644 --- a/setup.cfg +++ b/setup.cfg @@ -1,11 +1,11 @@ [metadata] name = osml-imagery-toolkit -version = 1.0.0 +version = 1.1.0 description = Toolkit to work with imagery collected by satellites and UAVs long_description = file: README.md long_description_content_type = text/markdown author = Amazon Web Services -author_email = todo-public-library-poc@amazon.com +author_email = aws-osml-admin@amazon.com license = MIT No Attribution