-
Notifications
You must be signed in to change notification settings - Fork 23
/
Word Search II.java
executable file
·412 lines (336 loc) · 11.8 KB
/
Word Search II.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
H
1520570560
tags: Backtracking, Trie, DFS
给一串words, 还有一个2D character matrix. 找到所有可以形成的words. 条件: 2D matrix 只可以相邻走位.
#### Trie, DFS
- 相比之前的implementation, 有一些地方可以优化:
- 1. Backtracking时候, 在board[][] 上面mark就可以, 不需要开一个visited[][]
- 2. 不需要implement trie的所有方程, 用不到: 这里只需要insert.
- 普通的trie题目会让你search a word, 但是这里是用一个board, 看board的每一个字母能不能走出个Word.
- 也就是: 这里的search是自己手动写, 不是传统的trie search() funcombination
- 3. TrieNode里面存在 end的时候存string word, 表示到底. 用完了 word = null, 刚好截断重复查找的问题.
##### 关于Trie
- Build Trie with target words: insert, search, startWith. Sometimes, just: `buildTree(words)` and return root.
- 依然要对board matrix做DFS。
- no for loop on words. 直接对board DFS:
- 每一层,都会有个up-to-this-point的string. 在Trie里面check它是不是存在。以此判断。
- 若不存在,就不必继续DFS下去了。
- Trie solution time complexity, much better:
- build Trie: n * wordMaxLength
- search: boardWidth * boardHeight * (4^wordMaxLength + wordMaxLength[Trie Search])
#### Regular DFS
- for loop on words: inside, do board DFS based on each word.
- Time cpmplexity: word[].length * boardWidth * boardHeight * (4^wordMaxLength)
#### Previous Notes
- Big improvement: use boolean visited on TrieNode!
- 不要用rst.contains(...), 因为这个是O(n) 在leetcode还是会timeout(lintcode竟然可以pass)!
- 在Trie search() method 里面,凡是visit过的,mark一下。
```
/*
LeetCode
Given a 2D board and a list of words from the dictionary, find all words in the board.
Each word must be constructed from letters of sequentially adjacent cell,
where "adjacent" cells are those horizontally or vertically neighboring.
The same letter cell may not be used more than once in a word.
For example,
Given words = ["oath","pea","eat","rain"] and board =
[
['o','a','a','n'],
['e','t','a','e'],
['i','h','k','r'],
['i','f','l','v']
]
Return ["eat","oath"].
Note:
You may assume that all inputs are consist of lowercase letters a-z.
Hint:
You would need to optimize your backtracking to pass the larger test. Could you stop backtracking earlier?
If the current candidate does not exist in all words' prefix,
you could stop backtracking immediately. What kind of data structure could answer such query efficiently?
Does a hash table work? Why or why not? How about a Trie? If you would like to learn how to implement a basic trie,
please work on this problem: Implement Trie (Prefix Tree) first.
*/
/*
Thoughts:
Simplify the problem: want to find the words' existance based on the trie structure.
1. Build the trie with the words.
2. DFS and backtracking with the board and see if the combination exist.
Build Trie:
time: O(mn), m = words.length, n = max word.length
Search with dfs
board[k][k] -> k^2
longest word: n
O(k^2 * n)
Overall: O(k^2 * n) + O(mn) = O(mn), k should be small
*/
/*
Thoughts:
Simplify the problem: want to find the words' existance based on the trie structure.
1. Build the trie with the words.
2. DFS and backtracking with the board and see if the combination exist.
*/
class Solution {
class TrieNode {
String word;
TrieNode[] children;
public TrieNode() {
this.word = null;
this.children = new TrieNode[26];
}
}
int[] dx = {0, 0, 1, -1};
int[] dy = {1, -1, 0, 0};
public List<String> findWords(char[][] board, String[] words) {
List<String> result = new ArrayList<>();
if (validateInput(board, words)) return result;
// Build trie
TrieNode root = buildTrie(words);
Set<String> set = new HashSet<>();
// DFS and populate the result
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
dfs(root, board, i, j, set);
}
}
result.addAll(set);
return result;
}
private void dfs(TrieNode node, char[][] board, int x, int y, Set<String> set) {
if (x < 0 || x >= board.length || y < 0 || y >= board[0].length) return;
char c = board[x][y];
if (c == '#' || node.children[c - 'a'] == null) return;
node = node.children[c - 'a'];
// Found the match
if (node.word != null && !set.contains(node.word)) set.add(node.word);
// Moving forward and backtracking
board[x][y] = '#';
for (int i = 0; i < 4; i++) {
dfs(node, board, x + dx[i], y + dy[i], set);
}
board[x][y] = c;
}
private TrieNode buildTrie(String[] dict) {
TrieNode root = new TrieNode();
for (String word : dict) {
TrieNode node = root;
for (char c : word.toCharArray()) {
int index = c - 'a';
if (node.children[index] == null) node.children[index] = new TrieNode();
node = node.children[index];
}
node.word = word;
}
return root;
}
private boolean validateInput(char[][] board, String[] words) {
return board == null || board.length == 0 || board[0] == null || board[0].length == 0
|| words == null || words.length == 0;
}
}
/*
Given a matrix of lower alphabets and a dictionary. Find all words in the dictionary that can be found in the matrix. A word can start from any position in the matrix and go left/right/up/down to the adjacent position.
Example
Given matrix:
doaf
agai
dcan
and dictionary:
{"dog", "dad", "dgdg", "can", "again"}
return {"dog", "dad", "can", "again"}
dog:
doaf
agai
dcan
dad:
doaf
agai
dcan
can:
doaf
agai
dcan
again:
doaf
agai
dcan
Challenge
Using trie to implement your algorithm.
Tags Expand
LintCode Copyright Trie
*/
/*
Attemp2: Trie solution.
http://www.jiuzhang.com/solutions/word-search-ii/
Here is how Tire works, from my understanding: it creates a new data strucutre that maps all words into a trie structure. Then, based on the given 2D matrix of letters, using each individual letter as starting point, and grab all possible combinations, then save the possibilities into final resuts.
The magic 'checking point' is the use of 'isString' of trie.
Note: should also be careful with marking board[x][y] = '#', which helps to prevent re-use used letters.
About TrieTree:
Each string obtains a particular/unique path.
Different strings could share same prefix path, but at certain index when the two strings are differentiating, they will start the following path on different TrieNode, which leads to completely separate subtree path.
At end of the tree, a string will have isString== true and the real string value stored.
That is,
insert: for all letter, make sure they are all created as nodes and linked together by using subtree.
find: for loop to iterate through subtrees of nodes, then return target on last index letter.
In the search:
node.subtree.get(current).isString: this determines if a string exists or not.
*/
/*NOTE: is boolean visited on Trie!!! */
public class Solution {
class TrieNode {
String str;
boolean isEnd;
boolean visited;
HashMap<Character, TrieNode> children;
public TrieNode () {
this.isEnd = false;
this.visited = false;
this.str = "";
children = new HashMap<Character, TrieNode>();
}
}
public TrieNode root;
public List<String> findWords(char[][] board, String[] words) {
List<String> rst = new ArrayList<String>();
if (board == null || board.length == 0 || board[0].length == 0
|| words == null || words.length == 0) {
return rst;
}
//Build Trie with words
root = new TrieNode();
for (int i = 0; i < words.length; i++) {
insert(words[i]);
}
//Validate existance of the words in board
boolean[][] visited = new boolean[board.length][board[0].length];
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
dfs(rst, "", i, j, visited, board);
}
}
return rst;
}
//4 direction DFS search
public void dfs(List<String> rst, String s, int x, int y, boolean[][] visited, char[][] board) {
if (x < 0 || x >= board.length || y < 0 || y >= board[0].length) {
return;
}
if (visited[x][y]) {
return;
}
s += board[x][y];
if (!startWith(s)) {
return;
}
if (search(s)) {
rst.add(s);
}
int[] dx = {0,0,1,-1};
int[] dy = {1,-1,0,0};
visited[x][y] = true;
for (int i = 0; i < 4; i++) {
int nx = x + dx[i];
int ny = y + dy[i];
dfs(rst, s, nx, ny, visited, board);
}
visited[x][y] = false;
}
/**************************Trie section *********************/
public void insert (String s){
char[] arr = s.toCharArray();
TrieNode node = root;
for (int i = 0; i < arr.length; i++) {
char c = arr[i];
if (!node.children.containsKey(c)) {
node.children.put(c, new TrieNode());
}
node = node.children.get(c);
if (i == arr.length - 1) {
node.isEnd = true;
node.str = s;
}
}
}
public boolean search(String s) {
char[] arr = s.toCharArray();
TrieNode node = root;
for (int i = 0; i < arr.length; i++) {
char c = arr[i];
if (!node.children.containsKey(c)) {
return false;
}
node = node.children.get(c);
}
if (node.visited || !node.isEnd) {
return false;
}
node.visited = true;
return true;
}
public boolean startWith(String s) {
char[] arr = s.toCharArray();
TrieNode node = root;
for (int i = 0; i < arr.length; i++) {
char c = arr[i];
if (!node.children.containsKey(c)) {
return false;
}
node = node.children.get(c);
}
return true;
}
}
/*
Attempt1:
Thoughts:
Use word search1, and do for loop on the words... and that works .........Well, that's not the Trie solution
*/
public class Solution {
public ArrayList<String> wordSearchII(char[][] board, ArrayList<String> words) {
ArrayList<String> rst = new ArrayList<String>();
if (board == null || words == null || words.size() == 0) {
return rst;
}
for (String word : words) {
if (exist(board, word)) {
rst.add(word);
}
}
return rst;
}
//The following are from Word Search I
public boolean exist(char[][] board, String word) {
if (word == null || word.length() == 0) {
return true;
}
if (board == null) {
return false;
}
for (int i = 0; i < board.length; i++) {
for (int j = 0; j < board[0].length; j++) {
if (board[i][j] == word.charAt(0)) {
boolean rst = search(board, word, i, j, 0);
if (rst) {
return true;
}
}
}
}
return false;
}
public boolean search(char[][] board, String word, int i, int j, int start) {
if (start == word.length()) {
return true;
}
if (i < 0 || i >= board.length || j < 0 || j >= board[0].length || board[i][j] != word.charAt(start)) {
return false;
}
board[i][j] = '#';
boolean rst = search(board, word, i, j - 1, start + 1)
|| search(board, word, i, j + 1, start + 1)
|| search(board, word, i + 1, j, start + 1)
|| search(board, word, i - 1, j, start + 1);
board[i][j] = word.charAt(start);
return rst;
}
}
```