-
Notifications
You must be signed in to change notification settings - Fork 23
/
Best Time to Buy and Sell Stock IV.java
executable file
·234 lines (199 loc) · 8.18 KB
/
Best Time to Buy and Sell Stock IV.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
H
1523513634
tags: DP, Sequence DP
有int[] price of stock, 最多做 k transactions. 求最大profit.
#### DP
- 根据StockIII, 不难发现StockIV就是把状态划分为2k+1份. 那么同样的代码, 移植.
##### 注意1:
- 如果k很大, k>n/2, 那么长度为n的数组里面, 最多也只能n/2个transaction
- 那么题目简化为stockII, 给n数组, 无限次transaction.
- 注意, status的数量是 2k+1
- Time O(NK), Space O(2k+1) to store the status
##### 注意2:
- 最后状态是'没有stock'的都该考虑, 做一个 for 循环比较max.
- 当然, 来一个profit variable, 不断比较, 也是可以的.
#### 方法2
- (previous notes, 熟练第一种方法的思考就可以)
- 记得要理解:为什么 i-1天的卖了又买,可以和第 i 天的卖合成一次交易?
- 因为每天交易的price是定的。所以卖了又买,等于没卖!这就是可以合并的原因。要对价格敏感啊少年。
- Inspired from here: http://liangjiabin.com/blog/2015/04/leetcode-best-time-to-buy-and-sell-stock.html
##### 局部最优解 vs. 全局最优解:
- local[i][j] = max(global[i – 1][j – 1] + diff, local[i – 1][j] + diff)
- global[i][j] = max(global[i – 1][j], local[i][j])
- local[i][j]: 第i天,当天一定进行第j次交易的profit
- global[i][j]: 第i天,总共进行了j次交易的profit.
- local[i][j]和global[i][j]的区别是:local[i][j]意味着在第i天一定有交易(卖出)发生。
- 当第i天的价格高于第i-1天(即diff > 0)时,那么可以把这次交易(第i-1天买入第i天卖出)跟第i-1天的交易(卖出)合并为一次交易,即local[i][j]=local[i-1][j]+diff;
- 当第i天的价格不高于第i-1天(即diff<=0)时,那么local[i][j]=global[i-1][j-1]+diff,而由于diff<=0,所以可写成local[i][j]=global[i-1][j-1]。
- (Note:在我下面这个solution里面没有省去 +diff)
- global[i][j]就是我们所求的前i天最多进行k次交易的最大收益,可分为两种情况:
- 如果第i天没有交易(卖出),那么global[i][j]=global[i-1][j];
- 如果第i天有交易(卖出),那么global[i][j]=local[i][j]。
```
/*
Say you have an array for which the ith element is the price of a given stock on day i.
Design an algorithm to find the maximum profit. You may complete at most k transactions.
Example
Given prices = [4,4,6,1,1,4,2,5], and k = 2, return 6.
Note
You may not engage in multiple transactions at the same time
(i.e., you must sell the stock before you buy again).
Challenge
O(nk) time.
Tags Expand
Dynamic Programming
*/
/*
Thoughts:
Similar to StockIII, but able to make k transactions.
K transactions divides leads to 2K + 1 different status: always have the two conditions 'before buying' and 'holding', plus the final sold status.
Equation:
on j%2 == 0 days (not having stock):
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + partialProfit);
on j%2 == 1 days (holding stock)
dp[i][j] = Math.max(dp[i - 1][j] + partialProfit, dp[i - 1][j - 1]);
O(n(2*k + 1)) = O(nk)
space O(nk)
time O(nk)
*/
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length == 0 || k <= 0) {
return 0;
}
int profit = 0;
int n = prices.length;
int statusLength = 2 * k + 1;
// A side note: if k > n/2, the problem becomes easy: any n/2 number of transactions
if (k >= n/2) {
for (int i = 1; i < n; i++) {
if (prices[i] > prices[i - 1]) {
profit += prices[i] - prices[i - 1];
}
}
return profit;
}
int[][] dp = new int[n][statusLength];
dp[0][0] = 0; // on day 0, having 0 stock, and with 0 transactions.
for (int i = 1; i < n; i++) {
for (int j = 1; j < statusLength; j++) {
//int partialProfit = prices[i] - prices[i - 1];
if (j % 2 == 0) {
dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - 1] + prices[i] - prices[i - 1]);
// Find best profit when not having stock
profit = Math.max(profit, dp[i][j]);
} else {
dp[i][j] = Math.max(dp[i - 1][j] + prices[i] - prices[i - 1], dp[i - 1][j - 1]);
}
}
}
return profit;
}
}
// Rolling array with %2
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length == 0 || k <= 0) {
return 0;
}
int profit = 0;
int n = prices.length;
int statusLength = 2 * k + 1;
// A side note: if k > n/2, the problem becomes easy: any n/2 number of transactions
if (k >= n/2) {
for (int i = 1; i < n; i++) {
if (prices[i] > prices[i - 1]) {
profit += prices[i] - prices[i - 1];
}
}
return profit;
}
int[][] dp = new int[2][statusLength];
dp[0][0] = 0; // on day 0, having 0 stock, and with 0 transactions.
for (int i = 1; i < n; i++) {
for (int j = 1; j < statusLength; j++) {
//int partialProfit = prices[i] - prices[i - 1];
if (j % 2 == 0) {
dp[i % 2][j] = Math.max(dp[(i - 1) % 2][j], dp[(i - 1) % 2][j - 1] + prices[i] - prices[i - 1]);
// Find best profit when not having stock
profit = Math.max(profit, dp[i % 2][j]);
} else {
dp[i % 2][j] = Math.max(dp[(i - 1) % 2][j] + prices[i] - prices[i - 1], dp[(i - 1) % 2][j - 1]);
}
}
}
return profit;
}
}
// optimization: rolling array
// space: O(k), time: O(nk)
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length == 0 || k <= 0) {
return 0;
}
int profit = 0;
int n = prices.length;
int statusLength = 2 * k + 1;
// A side note: if k > n/2, the problem becomes easy: any n/2 number of transactions
if (k >= n/2) {
for (int i = 1; i < n; i++) {
if (prices[i] > prices[i - 1]) {
profit += prices[i] - prices[i - 1];
}
}
return profit;
}
int[][] dp = new int[2][statusLength];
int prev, curr = 0;
dp[0][0] = 0; // on day 0, having 0 stock, and with 0 transactions.
for (int i = 1; i < n; i++) {
// reverse rolling digit
prev = curr;
curr = 1 - prev;
for (int j = 1; j < statusLength; j++) {
//int partialProfit = prices[i] - prices[i - 1];
if (j % 2 == 0) {
dp[curr][j] = Math.max(dp[prev][j], dp[prev][j - 1] + prices[i] - prices[i - 1]);
// Find best profit when not having stock
profit = Math.max(profit, dp[curr][j]);
} else {
dp[curr][j] = Math.max(dp[prev][j] + prices[i] - prices[i - 1], dp[prev][j - 1]);
}
}
}
return profit;
}
}
/*
Thoughts: http://liangjiabin.com/blog/2015/04/leetcode-best-time-to-buy-and-sell-stock.html
local[i][j] = max(global[i – 1][j – 1] , local[i – 1][j] + diff). WHY????
global[i][j] = max(global[i – 1][j], local[i][j])
*/
class Solution {
public int maxProfit(int k, int[] prices) {
if (prices == null || prices.length < 2 || k <= 0) {
return 0;
}
if (k >= prices.length) {
int profit = 0;
for (int i = 1; i < prices.length; i++) {
if (prices[i] > prices[i - 1]) {
profit += prices[i] - prices[i - 1];
}
}
return profit;
}
int[][] local = new int[prices.length][k + 1];
int[][] global = new int[prices.length][k + 1];
for (int i = 1; i < prices.length; i++) {
int diff = prices[i] - prices[i - 1];
for (int j = 1; j <= k; j++) {
local[i][j] = Math.max(global[i-1][j-1] + diff, local[i - 1][j] + diff);
global[i][j] = Math.max(global[i-1][j], local[i][j]);
}
}
return global[prices.length - 1][k];
}
};
```