-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy path373. Find K Pairs with Smallest Sums.java
executable file
·121 lines (99 loc) · 3.74 KB
/
373. Find K Pairs with Smallest Sums.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
M
tags: MinHeap, MaxHeap, Heap
time: O(klogk)
space: O(k)
#### Method1: MinHeap wiht k size
- This approach follows the pattern of finding min pair:
- 1) only need to store k pairs
- 2) always start from min of A list and min of B list
- 3) pre-build k pairs honoring A list, and then pick the min pair, and start swapping with min of list B
- First attemp all first k pairs from nums1[i] against nums2[0] <=k : O(k)
- Use queue to pull min node and save results
- Use the nums1 val from the min node, pair up with nums2[j], add back to queue to sort
- overall runtime: O(klogk)
- space: O(k)
#### Method2: MaxHeap with k size
- Brutle: build all pairs time O(mn), sort with maxHeap pq with k size, and find top k
- overall time: O(mnLogK)
- space: O(k)
```
/*
You are given two integer arrays nums1 and nums2 sorted in ascending order and an integer k.
Define a pair (u,v) which consists of one element from the first array and one element from the second array.
Find the k pairs (u1,v1),(u2,v2) ...(uk,vk) with the smallest sums.
Example 1:
Input: nums1 = [1,7,11], nums2 = [2,4,6], k = 3
Output: [[1,2],[1,4],[1,6]]
Explanation: The first 3 pairs are returned from the sequence:
[1,2],[1,4],[1,6],[7,2],[7,4],[11,2],[7,6],[11,4],[11,6]
Example 2:
Input: nums1 = [1,1,2], nums2 = [1,2,3], k = 2
Output: [1,1],[1,1]
Explanation: The first 2 pairs are returned from the sequence:
[1,1],[1,1],[1,2],[2,1],[1,2],[2,2],[1,3],[1,3],[2,3]
Example 3:
Input: nums1 = [1,2], nums2 = [3], k = 3
Output: [1,3],[2,3]
Explanation: All possible pairs are returned from the sequence: [1,3],[2,3]
*/
/*
Method1: MinHeap
*/
class Solution {
public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
List<List<Integer>> rst = new ArrayList<>();
if (k <= 0 || nums1.length == 0 || nums2.length == 0) return rst;
Queue<List<Integer>> queue = initQueue(k);
int m = nums1.length, n = nums2.length;
for (int i = 0; i < m && i <= k; i++) {
queue.offer(Arrays.asList(nums1[i], nums2[0], 0));
}
while(!queue.isEmpty() && k-- != 0) {
List<Integer> node = queue.poll();
rst.add(Arrays.asList(node.get(0), node.get(1)));
int tailIndex = node.get(2) + 1;
if (tailIndex >= n) continue;
queue.offer(Arrays.asList(node.get(0), nums2[tailIndex], tailIndex));
}
return rst;
}
private PriorityQueue<List<Integer>> initQueue(int k) {
return new PriorityQueue<>(k, new Comparator<List<Integer>>() {
public int compare(List<Integer> a, List<Integer> b) {
return a.get(0) + a.get(1) - b.get(0) - b.get(1);
}
});
}
}
/*
Method2:
Brutle: build all pairs time O(mn), sort with maxHeap pq with k size, and find top k
overall time: O(mnLogK)
space: O(k)
*/
class Solution {
public List<List<Integer>> kSmallestPairs(int[] nums1, int[] nums2, int k) {
List<List<Integer>> rst = new ArrayList<>();
if (k <= 0) return rst;
Queue<List<Integer>> queue = initQueue(k);
int m = nums1.length, n = nums2.length;
for (int a : nums1) {
for (int b : nums2) {
queue.offer(Arrays.asList(a, b));
if (queue.size() > k) queue.poll();
}
}
while(!queue.isEmpty()) {
rst.add(0, queue.poll());
}
return rst;
}
private PriorityQueue<List<Integer>> initQueue(int k) {
return new PriorityQueue<>(k, new Comparator<List<Integer>>() {
public int compare(List<Integer> a, List<Integer> b) {
return b.get(0) + b.get(1) - a.get(0) - a.get(1);
}
});
}
}
```