-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathSubsets II.java
executable file
·341 lines (287 loc) · 10.3 KB
/
Subsets II.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
M
1531544611
tags: Array, Backtracking, DFS, BFS
time: O(2^n)
sapce: O(2^n)
给一串integers(may have duplicates), 找到所有可能的subset. result里面不能有重复.
#### DFS
- DFS, 找准需要pass along的几个数据结构. 先`sort input`, 然后DFS
- Using for loop approach: 每个dfs call是一种可能性,直接add into result.
- 为了除去duplicated result, skip used item at current level: `if (i > depth && nums[i] == nums[i - 1]) continue;`
- sort O(nlogn), subset: O(2^n)
- space O(2^n), save results
#### BFS
- Regular BFS, 注意考虑如果让one level to generate next level
- skip duplicate: `if (i > endIndex && nums[i] == nums[i - 1]) continue;`
- 1. 用queue来存每一次的candidate indexes
- 2. 每一次打开一层candiates, add them all to result
- 3. 并且用每一轮的candidates, populate next level, back into queue.
- srot O(nlogn), subset: O(2^n)
- should be same O(2^n). slower than dfs
#### Previous notes:
- 在DFS种skip duplicate candidates, 基于sorted array的技巧:
- 一旦for loop里面的i!=index,并且nums[i] == nums[i-1],
- 说明x=nums[i-1]已经在curr level 用过,不需要再用一次: [a,x1,x2],x1==x2
- i == index -> [a,x1]
- i == index + 1 -> [a,x2]. 我们要skip这一种
- 如果需要[a,x1,x2]怎么办? 其实这一种在index变化时,会在不同的两个dfs call 里面涉及到。
#### 注意
- 不能去用result.contains(), 这本身非常costly O(nlogn)
- 几遍是用 list.toString() 其实也是O(n) iteration, 其实也是增加了check的时间, 不建议
```
/*
Given a collection of integers that might contain duplicates, nums,
return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: [1,2,2]
Output:
[
[2],
[1],
[1,2,2],
[2,2],
[1,2],
[]
]
*/
/*
Thoughts:
- have to sort the list, in order to skip items
- using the for loop approach: pick ONE item from the list at a time, with index i, then dfs with i + 1
- skip case: if we've picked an item for once at (i - 1), then in this particular for loop, we should not pick the same item
- thought, important: it can be picked in the next level of dfs
- subset, either take or not take : 2^n space, 2^n time
*/
class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
if (nums == null || nums.length == 0) return result; // edge case
Arrays.sort(nums);
List<Integer> list = new ArrayList<>();
// dfs with depth = 0
result.add(new ArrayList<>(list));
dfs(result, list, nums, 0);
return result;
}
private void dfs(List<List<Integer>> result, List<Integer> list, int[] nums, int depth) {
for (int i = depth; i < nums.length; i++) {
if (i > depth && nums[i] == nums[i - 1]) continue; // IMPORTANT, skip duplicate: i > depth && nums[i] == nums[i - 1]
list.add(nums[i]);
result.add(new ArrayList<>(list));
dfs(result, list, nums, i + 1);
list.remove(list.size() - 1);
}
}
}
// BFS, Queue
class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
// edge, init result
if (nums == null || nums.length == 0) {
return result;
}
Arrays.sort(nums);
// init queue
Queue<List<Integer>> queue = new LinkedList<>();
List<Integer> initialList = new ArrayList<>();
queue.offer(initialList);
// while queue not empty
while (!queue.isEmpty()) {
int size = queue.size();
while (size > 0) {
List<Integer> indexRow = queue.poll();
// add result
List<Integer> list = new ArrayList<>();
for (int index : indexRow) {
list.add(nums[index]);
}
result.add(list);
// populate queue with index
int endIndex = indexRow.size() == 0 ?
0 : indexRow.get(indexRow.size() - 1) + 1;
for (int i = endIndex; i < nums.length; i++) {
if (i > endIndex && nums[i] == nums[i - 1]) { // skip duplicated records
continue;
}
indexRow.add(i);
queue.offer(new ArrayList<>(indexRow));
indexRow.remove(indexRow.size() - 1);
}
size--;
}
}
return result;
}
}
/*
Thoughts:
- Convert list to key, and validate before adding into the result
- to remove duplicates, make sure nums is sorted at beginning.
- Sort: O(nlogn), 2^n possible subsets => overall time, O(2^n)
- using extra space O(2^n)
*/
class Solution {
Set<String> set = new HashSet<>();
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
// edge case, init result
if (nums == null || nums.length == 0) {
return result;
}
Arrays.sort(nums);
List<Integer> list = new ArrayList<>();
// dfs with depth = 0
dfs(result, list, nums, 0);
return result;
}
private void dfs(List<List<Integer>> result, List<Integer> list, int[] nums, int depth) {
// check closure case
if (depth >= nums.length) {
String key = list.toString(); // O(n), not optimal
if (!set.contains(key)) {
result.add(new ArrayList<>(list));
set.add(key);
}
return;
}
// pick
list.add(nums[depth]);
dfs(result, list, nums, depth + 1);
// backtracking, and move to the not-pick option
list.remove(list.size() - 1);
dfs(result, list, nums, depth + 1);
}
}
/*
03.10.2016
Once sorted at beginning, same num are ajacent.
With for loop solution, we are jumping to next position in one dfs call, so this could happen:
skip current and take next. if current == next, that generates duplicates.
Image we've moved one step forward already, so we are not on given index, also current == prev:
that means previous position nums[i-1] must have been used. so we skip the current.
if (i != index && nums[i] == nums[i - 1]) {
continue;
}
*/
public class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> rst = new ArrayList<List<Integer>>();
if (nums == null || nums.length == 0) {
return rst;
}
Arrays.sort(nums);
dfs(rst, new ArrayList<Integer>(), 0, nums);
return rst;
}
public void dfs(List<List<Integer>> rst, ArrayList<Integer> list, int index, int[] nums) {
rst.add(new ArrayList<Integer>(list));
for (int i = index; i < nums.length; i++) {
if (i != index && nums[i] == nums[i - 1]) {
continue;
}
list.add(nums[i]);
dfs(rst, list, i + 1, nums);
list.remove(list.size() - 1);
}
}
}
/*
Not recommended, Again, rst.contains() cost too much.
Thoughts: 12.07.2015
try to do non-recursive - iterative
create a queue, initi with []. put [] into rst as well.
Each time pick/not pick curr element: 2 branch: add back into queue, and try to add to rst(if non-exist)
For loop through all elements in S
Use Queue
*/
class Solution {
public ArrayList<ArrayList<Integer>> subsetsWithDup(ArrayList<Integer> S) {
ArrayList<ArrayList<Integer>> rst = new ArrayList<ArrayList<Integer>>();
if (S == null || S.size() == 0) {
return rst;
}
Collections.sort(S);
Queue<ArrayList<Integer>> queue = new LinkedList<ArrayList<Integer>>();
ArrayList<Integer> list = new ArrayList<Integer>();
queue.offer(new ArrayList<Integer>(list));
rst.add(new ArrayList<Integer>(list));
for (int i = 0; i < S.size(); i++) {
int num = S.get(i);
int size = queue.size();
while(size > 0) {
list = queue.poll();
//Pick
list.add(num);
if (!rst.contains(list)) {//O(n)
rst.add(new ArrayList<Integer>(list));
}
queue.offer(new ArrayList<Integer>(list));
list.remove(list.size() - 1);
//Not pick
queue.offer(new ArrayList<Integer>(list));
size--;
}
}
return rst;
}
}
/*
Not recommended, Again, rst.contains() cost too much.
Thoughts: 12.07.2015.
Do regular subset recursion: pick curr or not pick curr, (rst, list, level, S)
Use a HashMap to mark if the cmobination exists already
Recursive.
*/
class Solution {
public ArrayList<ArrayList<Integer>> subsetsWithDup(ArrayList<Integer> S) {
ArrayList<ArrayList<Integer>> rst = new ArrayList<ArrayList<Integer>>();
if (S == null || S.size() == 0) {
return rst;
}
Collections.sort(S);
ArrayList<Integer> list = new ArrayList<Integer>();
helper(rst, list, S, 0);
return rst;
}
public void helper(ArrayList<ArrayList<Integer>> rst, ArrayList<Integer> list,
ArrayList<Integer> S, int level) {
if (!rst.contains(list)) {//Costly, O(n) each time
rst.add(new ArrayList<Integer>(list));
}
if (level == S.size()) {
return;
}
//pick curr
list.add(S.get(level));
helper(rst, list, S, level + 1);
list.remove(list.size() - 1);
//no pick curr
helper(rst, list, S, level + 1);
}
}
//Older version, with for loop, use rst.contains()... which is very costly, O(n) each time
// Not recommended, Again, rst.contains() cost too much.
public class Solution {
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> rst = new ArrayList<List<Integer>>();
if (nums == null || nums.length == 0) {
return rst;
}
Arrays.sort(nums);
dfs(rst, new ArrayList<Integer>(), 0, nums);
return rst;
}
public void dfs(List<List<Integer>> rst, ArrayList<Integer> list, int index, int[] nums) {
if (!rst.contains(list)) {//Costly, O(n)
rst.add(new ArrayList<Integer>(list));
}
for (int i = index; i < nums.length; i++) {
list.add(nums[i]);
dfs(rst, list, i + 1, nums);
list.remove(list.size() - 1);
}
}
}
```