-
Notifications
You must be signed in to change notification settings - Fork 23
/
Strobogrammatic Number II.java
executable file
·155 lines (139 loc) · 4.79 KB
/
Strobogrammatic Number II.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
M
1528732676
tags: Math, DFS, Sequence DFS, Enumeration
TODO:
1. use list, iterative? keep candidates and populating
2. clean up the dfs code, a bit messy
3. edge case of "0001000" is invalid, right?
#### DFS
- A bit like BFS solution: find inner list, and then combine with outter left/right sides.
- find all solutions, DFS will be easier to write than iterative/BFS
- when n = 1, there can be list of candidates at bottom of the tree, so bottom->up is better
- bottom->up, dfs till leaf level, and return candidates.
- each level, pair with all the candidates
- 其实就是剥皮,一层一层,是一个central-depth-first的,钻到底时候,return n=1,或者n=2的case,然后开始backtracking。
- 难的case先不handle.到底之后来一次overall scan.
- every level have 5 choices of digital pairs to add on sides. Need to do for n-2 times.
- Time complexity: O(5^n)
```
/*
A strobogrammatic number is a number that looks the same when rotated 180 degrees (looked at upside down).
Find all strobogrammatic numbers that are of length = n.
For example,
Given n = 2, return ["11","69","88","96"].
Hint:
Try to use recursion and notice that it should recurse with n - 2 instead of n - 1.
Tags: Math Recursion
Similar Problems: (E) Strobogrammatic Number, (H) Strobogrammatic Number III
*/
class Solution {
List<String> singleDigitList = new ArrayList<>(Arrays.asList("0", "1", "8"));
char[][] digitPair = {{'0', '0'}, {'1', '1'}, {'8', '8'}, {'6', '9'}, {'9', '6'}};
public List<String> findStrobogrammatic(int n) {
return dfs(n, n);
}
public List<String> dfs(int n, int max) {
if (n <= 0) return new ArrayList<String>(Arrays.asList(""));
if (n == 1) return singleDigitList;
List<String> subList = dfs(n - 2, max);
List<String> list = new ArrayList<>();
for (String str : subList) {
if (n != max) list.add("0" + str + "0");
for (int i = 1; i < digitPair.length; i++) {
list.add(digitPair[i][0] + str + digitPair[i][1]);
}
}
return list;
}
}
/*
Thoughts:
The items will be in three pattern:
1. Single digits: 0, 1, 8
2. Double digits: 00, 11, 88, 69, 96
3. More digits: adding digit-pair on front/tail sides on given digit
Note: validate that '0' appears on front/tail won't be counted.
Recursion untill n reaches 1
*/
class Solution {
List<String> singleDigitList = new ArrayList<>(Arrays.asList("0", "1", "8"));
List<String> doubleDigitList = new ArrayList<>(Arrays.asList("00", "11", "88", "69", "96"));
char[][] digitPair = {{'0', '0'}, {'1', '1'}, {'8', '8'}, {'6', '9'}, {'9', '6'}};
public List<String> findStrobogrammatic(int n) {
List<String> result = dfs(n);
for (int i = 0; i < result.size(); i++) {
String num = result.get(i);
if ((Long.parseLong(num) + "").length() != n) {
result.remove(i);
i--;
}
}
return result;
}
public List<String> dfs(int n) {
List<String> list = new ArrayList<>();
if (n <= 0) return list;
if (n == 1) return singleDigitList;
if (n == 2) return doubleDigitList;
List<String> subList = dfs(n - 2);
for (String str : subList) {
for (int i = 0; i < digitPair.length; i++) {
list.add(digitPair[i][0] + str + digitPair[i][1]);
}
}
return list;
}
}
/*
Thoughts:
For n, there can be k kinds of combination. Save it to map(n,k-list)
For n+2, there can be x + k-kinds-of-inner-number + y;
Treat n=0,1,2 differently. Then recurse on rest, layer by layer
At end end, do a O(n) scan to remove non-wanted items.
*/
public class Solution {
private HashMap<String, String> candidate = new HashMap<String, String>();
public List<String> findStrobogrammatic(int n) {
List<String> rst = new ArrayList<String>();
candidate.put("0", "0");
candidate.put("1", "1");
candidate.put("8", "8");
candidate.put("6", "9");
candidate.put("9", "6");
rst = searchAndCombine(n);
for (int i = 0; i < rst.size(); i++) {
if ((Long.parseLong(rst.get(i))+"").length() != n) {
rst.remove(i);
i--;
}
}
return rst;
}
public List<String> searchAndCombine(int n) {
List<String> list = new ArrayList<String>();
if (n <= 0) {
return list;
} else if (n == 1) {
list.add("0");
list.add("1");
list.add("8");
return list;
} else if (n == 2){
list.add("69");
list.add("11");
list.add("88");
list.add("96");
list.add("00");
return list;
}else {//n >= 2
List<String> temp = searchAndCombine(n - 2);
for (String str : temp) {
for (Map.Entry<String, String> entry : candidate.entrySet()) {
list.add(entry.getKey() + str + entry.getValue());
}
}
}
return list;
}
}
```