-
Notifications
You must be signed in to change notification settings - Fork 23
/
Longest Consecutive Sequence.java
executable file
·254 lines (220 loc) · 7.13 KB
/
Longest Consecutive Sequence.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
H
1527002881
tags: Array, Hash Table, Union Find
给一串数字, unsorted, 找这串数字里面的连续元素序列长度 (consecutive序列, 是数字连续, 并不是说要按照原order)
#### HashSet
- 要想看连续元素, 必须要num++, num--这样搜索
- 1. 需要O(1)找到元素
- 2. 需要简单快速找到 num - 1, num + 1.
- 如果用min,max开array, 耗费空间
- 用HashSet来存, 用set.contains() 来查找 num - 1, num + 1 存在与否
- for loop. O(n)
- 里面的while loop 一般不会有O(n); 一旦O(n), 也意味着set 清零, for loop也不会有更多 inner while 的衍生.
- overall O(n) 时间复杂度
#### Union Find
- 最终是要把相连的元素算一下总长, 其实也就是把元素group起来, 相连的group在一起, 于是想到UnionFind
- 这里用到了一个`int[] size` 来帮助处理 `合并的时候parent是哪个`的问题: 永远往group大的union里去
- main function 里面, 有一个map来track, 每个元素, 只处理1遍.
- union的内容: current number - 1, current number + 1
- https://www.jianshu.com/p/e6b955ca208f
##### 特点
- Union Find 在index上做好像更加容易
- 其他union find function: `boolean connected(a,b){return find(a) == find(b)}`
```
/*
Given an unsorted array of integers, find the length of the longest consecutive elements sequence.
For example,
Given [100, 4, 200, 1, 3, 2],
The longest consecutive elements sequence is [1, 2, 3, 4]. Return its length: 4.
Your algorithm should run in O(n) complexity.
Hide Tags Array
*/
/*
Thoughts:
Find a way to:
1. directly check existance of a number
2. quickly gets to the num-1, num+1, if exist.
One way: find min,max of the number, and set up a long array. That will be waste of space, not applicable.
Instead: use a set and put all numbers in.
Iterate all nums: if one num exist, find all of the num++, num-- and track the length
*/
public class Solution {
/**
* @param num: A list of integers
* @return: An integer
*/
public int longestConsecutive(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
Set<Integer> set = new HashSet<>();
for (int num : nums) {
set.add(num);
}
int longest = 0;
for (int num : nums) {
int start = num;
while (set.contains(start - 1)) {
start--;
set.remove(start);
}
int end = num;
while (set.contains(end + 1)) {
end++;
set.remove(end);
}
longest = Math.max(longest, end - start + 1);
}
return longest;
}
}
// Union Find
class Solution {
public int longestConsecutive(int[] nums) {
// edge case
if (nums == null || nums.length == 0) {
return 0;
}
// init union find and union all numbers
int n = nums.length;
Map<Integer, Integer> visited = new HashMap<Integer, Integer>();
UnionFind uf = new UnionFind(n);
for (int i = 0; i < n; i++) {
if(visited.containsKey(nums[i])) {
continue;
}
visited.put(nums[i], i);
if (visited.containsKey(nums[i] - 1)) {
uf.union(i, visited.get(nums[i] - 1));
}
if (visited.containsKey(nums[i] + 1)) {
uf.union(i, visited.get(nums[i] + 1));
}
}
// use returned uf.map to find # of duplicated parent
return uf.maxUnion();
}
}
class UnionFind {
int[] parent;
int[] size;
// constructor
public UnionFind(int n) {
parent = new int[n];
size = new int[n];
for (int i = 0; i < n; i++) {
parent[i] = i;
size[i] = 1;
}
}
// find parent function
public int find(int x) {
if (parent[x] == x) {
return x;
}
return parent[x] = find(parent[x]);
}
// union function
public void union(int a, int b) {
a = find(a);
b = find(b);
if (size[a] > size[b]) {
parent[b] = a;
size[a] += size[b];
} else {
parent[a] = b;
size[b] += size[a];
}
}
public int maxUnion() {
int max = 1;
for (int i = 0; i < size.length; i++) {
max = Math.max(max, size[i]);
}
return max;
}
}
/**
Previous notes:
Thinking process:
0. This problem can be done using sorting, but time complexity of sorting is O(nlogn). This problem requires O(n).
1. Want to check if a number's left and right is consecutive to itself, but cannot do it due to the given unsorted array: think about a Hashmap.
2. HashMap(Key, Value) = (the number itself, boolean: have been counted or not). If you count a number as a consecutive, you only need to count it once.
3. How HashMap works:
when checking a number's consecutive, look at number--, number++, see if they are in the HashMap. If exist, means consecutive.
If a number exist in the hashmap and its value is 'true', then we need to skip this number beacuse it has been checked.
4. Track the total number consecutives of 1 perticular number, compare it with the maxL. Save the Math.max to maxL.
5. Depending on the problem, we can store a consecutive sequence or simply just its length: maxL. This problem wants the maxL.
*/
public class Solution {
public int longestConsecutive(int[] num) {
if (num == null || num.length == 0) {
return 0;
}
int maxL = 1;
HashMap<Integer, Boolean> history = new HashMap<Integer, Boolean>();
for (int i : num) {
history.put(i, false);
}
for (int i : num) {
if (history.get(i)) {
continue;
}
//check ++ side
int temp = i;
int total = 1;
while (history.containsKey(temp + 1)) {
total++;
temp++;
history.put(temp, true);
}
//check -- side
temp = i;
while (history.containsKey(temp - 1)) {
total++;
temp--;
history.put(temp, true);
}
maxL = Math.max(maxL, total);
}
return maxL;
}
}
/*
10.19.2015
Thougths:
1. sort
2. use a 'count' and 'max' to keep track of consecutive elements
3. one-pass
Note:
Take care of equal numbers: skip/continue those
*/
public class Solution {
/**
* @param nums: A list of integers
* @return an integer
*/
public int longestConsecutive(int[] num) {
if (num == null || num.length == 0) {
return 0;
}
if (num.length == 1) {
return 1;
}
int count = 1;
int max = 1;
Arrays.sort(num);
for (int i = 1; i < num.length; i++) {
if (num[i - 1] == num[i]) {
continue;
} else if (num[i - 1] + 1 == num[i]) {
count++;
max = Math.max(count, max);
} else {
count = 1;
}
}
return max;
}
}
```