-
Notifications
You must be signed in to change notification settings - Fork 23
/
Binary Tree Maximum Path Sum II.java
executable file
·86 lines (73 loc) · 2.18 KB
/
Binary Tree Maximum Path Sum II.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
M
1526771382
tags: Tree, DFS
找到从max path sum from root. 条件: 至少有一个node.
#### DFS
- 比Binary Tree Maximum Path Sum I 简单许多. 因为条件给的更多:at least 1 node + have to start from root
- root一定用到
- 3种情况: curr node, curr+left, curr+right
- 因为一定包括root, 说以从 `dfs(root, sum=0)` 开始, 每个level先加root, sum += root.val
```
/*
Binary Tree Maximum Path Sum II
Given a binary tree, find the maximum path sum from root.
The path may end at any node in the tree and contain at least one node in it.
Example
Given the below binary tree:
1
/ \
2 3
return 4. (1->3)
Tags Expand
Binary Tree
*/
/*
02.20.2016 recap
just return integer sum, so just traversal the entier binary tree via dfs
dfs: node, sum, return sum
*/
public class Solution {
public int maxPathSum2(TreeNode root) {
if (root == null) {
return 0;
}
return dfs(root, 0);
}
public int dfs (TreeNode node, int sum) {
if (node == null) {
return sum;
}
sum += node.val;
return Math.max(sum, Math.max(dfs(node.left, sum),
dfs(node.right, sum)));
}
}
/*
Thoughts: maximum path sum from root, so it must include root, and it will be a single path
from root to some point in the tree.
(seems easier than Binary Tree Maximum path Sum I)
'contains at least 1 node' -> at least have root.
However, depending on child is positive or negative, we choose add or no add child
*/
public class Solution {
/**
* @param root the root of binary tree.
* @return an integer
*/
public int maxPathSum2(TreeNode root) {
if (root == null) {
return 0;
}
return Math.max(helper(root.left),helper(root.right)) + root.val;
}
public int helper(TreeNode node) {
if (node == null) {
return 0;
} else if (node.left == null && node.right == null) {
return node.val > 0 ? node.val : 0;
}
int sum = Math.max(helper(node.left), helper(node.right)) + node.val;
return sum > 0 ? sum : 0;
}
}
```