-
Notifications
You must be signed in to change notification settings - Fork 23
/
Binary Tree Level Order Traversal II.java
executable file
·215 lines (189 loc) · 5.83 KB
/
Binary Tree Level Order Traversal II.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
M
1526453488
tags: Tree, BFS
如题, 但是output要倒序.
#### BFS
- 跟Binary Tree Level Order Traversal一样,只不过存result一直存在存在0位.
#### DFS
- 根据level来append每个list
- rst里面add(0,...)每次都add在list开头
```
/*
Given a binary tree, return the bottom-up level order traversal of its nodes' values.
(ie, from left to right, level by level from leaf to root).
Example
Given binary tree {3,9,20,#,#,15,7},
3
/ \
9 20
/ \
15 7
return its bottom-up level order traversal as:
[
[15,7],
[9,20],
[3]
]
Tags Expand
Queue Binary Tree Binary Tree Traversal Breadth First Search
*/
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
ArrayList<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
final ArrayList<Integer> list = new ArrayList<>();
int size = queue.size();
for (int i = 0; i < size; i++) {
final TreeNode node = queue.poll();
list.add(node.val);
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
result.add(0, list);
}// end while
return result;
}
}
/**
* Definition of TreeNode:
* public class TreeNode {
* public int val;
* public TreeNode left, right;
* public TreeNode(int val) {
* this.val = val;
* this.left = this.right = null;
* }
* }
*/
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
ArrayList<List<Integer>> result = new ArrayList<>();
if (root == null) {
return result;
}
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
final ArrayList<Integer> list = new ArrayList<>();
int size = queue.size();
for (int i = 0; i < size; i++) {
final TreeNode node = queue.poll();
list.add(node.val);
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
result.add(0, list);
}// end while
return result;
}
}
/*
Thoughts:
Breadth first traversal. Add to 0 position every time.
BFS uses a queue for level -> traversal completes when the queue is drained.
Use another queue to store next level, and switch with current queue when need to be.
*/
class Solution {
public List<List<Integer>> levelOrderBottom(TreeNode root) {
final List<List<Integer>> result = new ArrayList<List<Integer>>();
if (root == null) {
return result;
}
Queue<TreeNode> queue = new LinkedList<>();
Queue<TreeNode> queueLevel = new LinkedList<>();
List<Integer> level = new ArrayList<>();
queue.add(root);
while(!queue.isEmpty()) {
final TreeNode node = queue.poll();
level.add(node.val);
if (node.left != null) {
queueLevel.add(node.left);
}
if (node.right != null) {
queueLevel.add(node.right);
}
if (queue.isEmpty()) {
queue = queueLevel;
result.add(0, level);
queueLevel = new LinkedList<>();
level = new ArrayList<>();
}
}
return result;
}
}
/*
Thoughts:
1. Non-recursive
similar to Binary Tree Level Order Traversal I, just when adding into the final result,
add to the top all the time. Then the first added will be at the bottom: result.add(0, list)
2. Recursive:
Similar to Level Traversal I, do a dfs. The difference is: everytime, we use ArrayList<ArrayList<>> like a stack by doing add(0, newList);
when populating the levelArrayList, make sure to address the correct corresponding level.
*/
public class Solution {
/**
* @param root: The root of binary tree.
* @return: buttom-up level order a list of lists of integer
*/
public ArrayList<ArrayList<Integer>> levelOrderButtom(TreeNode root) {
ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
if (root == null) {
return result;
}
/*
Queue<TreeNode> queue = new LinkedList<TreeNode>();
queue.offer(root);
while (!queue.isEmpty()) {
ArrayList<Integer> list = new ArrayList<Integer>();
int size = queue.size();
for (int i = 0; i < size; i++) {
TreeNode temp = queue.poll();
list.add(temp.val);
if (temp.left != null) {
queue.offer(temp.left);
}
if (temp.right != null) {
queue.offer(temp.right);
}
}
result.add(0, list);
}*/
dfs(root, 0, result);
return result;
}
public void dfs(TreeNode root, int level, ArrayList<ArrayList<Integer>> rst) {
if (root == null) {
return;
}
if (level >= rst.size()) {
rst.add(0, new ArrayList<Integer>());
}
dfs(root.left, level + 1, rst);
dfs(root.right, level + 1, rst);
rst.get(rst.size() - level - 1).add(root.val);
}
}
```