-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy path78. Subsets.java
executable file
·177 lines (150 loc) · 5.44 KB
/
78. Subsets.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
M
tags: Array, Backtracking, DFS, BFS, Bit Manipulation
time: O(2^n)
space: O(2^n)
给一串unique integers, 找到所有可能的subset. result里面不能有重复.
#### DFS
- dfs的两种路子: 1. pick&&skip dfs, 2. for loop dfs
- 1. pick&&skip dfs: 取或者不取 + backtracking. 当level/index到底,return 一个list. Bottom-up, reach底部, 才生产第一个solution.
- 2. for loop dfs: for loop + backtracking. 记得:做subset的时候, 每个dfs recursive call是一种独特可能,先加进rst. top-bottom: 有一个solution, 就先加上.
- Time&&space: subset means independent choice of either pick&¬ pick. You pick n times: `O(2^n)`, 3ms
- space: O(2^n) results
#### Bit Manipulation
- n = nums.length, 那么在每一个index, 都是 pick / not pick: 0/1
- 考虑subset index 0/1的bit map: range 的就是 [0000...00 ~ 2^n-1]
- 每一个bitmap就能展现出一个subset的内容: all the 1 represents picked indexes
- 做法:
- 1. 找出Range
- 2. 遍历每一个bitmap candidate
- 3. 对每一个integer 的 bit representation 遍历, 如果是1, add to list
- time: O(2^n * 2^n) = O(4^n), still 3ms, fast.
#### Iterative, BFS
- BFS, 注意考虑如果让one level to generate next level
- 1. maintain a list of Indexe to store candidate indexes.
- 2. 每一次打开一层candiates, add them all to result
- 3. 并且用每一轮的candidates, populate next level, back into queue.
- should be same O(2^n), but actual run time 7ms, slower
- O(n) space
```
/*
Given a set of distinct integers, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
*/
// pick&&skip dfs, backtracking,
// bottom-up: reach leaf to save result
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
if (nums == null || nums.length == 0) return result;
dfs(result, new ArrayList<>(), nums, 0); // dfs with depth = 0
return result;
}
private void dfs(List<List<Integer>> result, List<Integer> list, int[] nums, int depth) {
if (depth >= nums.length) { // closure case
result.add(new ArrayList<>(list));
return;
}
// pick
list.add(nums[depth]);
dfs(result, list, nums, depth + 1);
// backtracking, and move to the not-pick option
list.remove(list.size() - 1);
dfs(result, list, nums, depth + 1);
}
}
// for loop dfs:
// top-down, add each step as solution, as see fit
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
if (nums == null || nums.length == 0) return result; // edge case
List<Integer> list = new ArrayList<>();
result.add(new ArrayList<>(list));
// dfs with depth = 0
dfs(result, list, nums, 0);
return result;
}
private void dfs(List<List<Integer>> result, List<Integer> list, int[] nums, int depth) {
for (int i = depth; i < nums.length; i++) {
list.add(nums[i]);
result.add(new ArrayList<>(list));
dfs(result, list, nums, i + 1);
list.remove(list.size() - 1);
}
}
}
// Bit manipulation
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
// edge case
if (nums == null || nums.length == 0) {
return result;
}
// set bit range
int n = nums.length;
long maxRange = (long) Math.pow(2, n) - 1;
// for loop for all integer representation of the bit map
for (int i = 0; i <= maxRange; i++) {
List<Integer> list = new ArrayList<>();
int index = 0;
int num = i;
// bit & each index to find if that index is picked
while (num != 0) {
if ((num & 1) == 1) {
list.add(nums[index]);
}
num = num >> 1;
index++;
}
result.add(list);
}
return result;
}
}
// BFS, Queue
/*
DFS: pick or no pick. track level. when level == nums.length, output.
*/
class Solution {
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> result = new ArrayList<>();
if (nums == null || nums.length == 0) return result;
Queue<List<Integer>> queue = new LinkedList<>();
queue.offer(new ArrayList<>());
while (!queue.isEmpty()) {
int size = queue.size();
while (size-- > 0) {
List<Integer> indexRow = queue.poll();
result.add(buildResult(indexRow, nums)); // record result
// populate queue with index
int endIndex = indexRow.size() == 0 ? 0 : indexRow.get(indexRow.size() - 1) + 1;
for (int i = endIndex; i < nums.length; i++) {
indexRow.add(i);
queue.offer(new ArrayList<>(indexRow));
indexRow.remove(indexRow.size() - 1); // backtrack
}
}
}
return result;
}
private List<Integer> buildResult(List<Integer> indexRow, int[] nums) {
List<Integer> list = new ArrayList<>();
for (int index : indexRow) list.add(nums[index]);
return list;
}
}
```