-
Notifications
You must be signed in to change notification settings - Fork 23
/
692. Top K Frequent Words.java
executable file
·206 lines (177 loc) · 6.17 KB
/
692. Top K Frequent Words.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
M
tags: Hash Table, Heap, Trie, PriorityQueue, MaxHeap, MinHeap
time: O(n)
space: O(n)
给一串String. 找到top k frequent words.
#### Method1: Bucket Sort
- 1) Build frequency map, 2) use frequency map to build freq bucket
- Loop from largest bucket freq -> 0, and output.
- Time: Solid O(n)
- Space: O(n)
#### Method2: PriorityQueue - Min Heap
- O(n) space of map, O(nlogk) to build queue.
- limit minHeap queue size to k: add to queue if found suitable item; always reduce queue if size > k
#### Method3: PriorityQueue - Max Heap
- 用HashMap存frequency, 用ArrayList存lists of words
- create一个Node class, 然后用PriorityQueue.
- PriorityQueue里面用到了 String.compareTo(another String).巧妙。
- time: PQ uses O(nlogn), overall O(nlogn)
- slower, because the maxHeap needs to add all candidates
#### Trie && MinHeap屌炸天
- 可以做一下
- http://www.geeksforgeeks.org/find-the-k-most-frequent-words-from-a-file/
#### Deleted Attempt: HashMap + collections.sort()
- 用HashMap存frequency, 用ArrayList存lists of words。最后返回从尾部向前数的k个。
- 注意排序时Collection.sort()的cost是O(nLogk)
- not efficient
```
/*
Given a list of words and an integer k, return the top k frequent words in the list.
Example
Given
[
"yes", "lint", "code",
"yes", "code", "baby",
"you", "baby", "chrome",
"safari", "lint", "code",
"body", "lint", "code"
]
for k = 3, return ["code", "lint", "baby"].
for k = 4, return ["code", "lint", "baby", "yes"],
Note
You should order the words by the frequency of them in the return list,
the most frequent one comes first. If two words has the same frequency,
the one with lower alphabetical order come first.
Challenge
Do it in O(nlogk) time and O(n) extra space.
Extra points if you can do it in O(n) time with O(k) extra space.
Tags Expand
Hash Table Heap Priority Queue
*/
// Method1: Bucket Sort
class Solution {
class Node {
int freq = 0;
String str;
public Node(String str){
this.str = str;
}
}
public List<String> topKFrequent(String[] words, int k) {
List<String> rst = new ArrayList<>();
if (words == null) return rst;
List<String>[] bucket = buildBucket(words);
for (int i = bucket.length -1; i > 0 && k > 0; i--) {
if (bucket[i] != null) {
Collections.sort(bucket[i]);
for (int j = 0; j < bucket[i].size() && k > 0; j++, k--) {
rst.add(bucket[i].get(j));
}
}
}
return rst;
}
private List<String>[] buildBucket(String[] words) {
HashMap<String, Node> map = buildFreqMap(words);
List<String>[] bucket = new List[map.size() + 1];
for (Node node: map.values()) {
if(bucket[node.freq] == null) bucket[node.freq] = new ArrayList<>();
bucket[node.freq].add(node.str);
}
return bucket;
}
private HashMap<String, Node> buildFreqMap(String[] words) {
HashMap<String, Node> map = new HashMap<>();
for (String word: words) {
map.putIfAbsent(word, new Node(word));
map.get(word).freq += 1;
}
return map;
}
}
// Method2: MinHeap: sort by ascending frequency; by reverse alphabetical order
class Solution {
class Node {
int freq = 0;
String str;
public Node(String str){
this.str = str;
}
}
public List<String> topKFrequent(String[] words, int k) {
List<String> rst = new ArrayList<>();
if (words == null) return rst;
PriorityQueue<Node> queue = configQueue(k); // minHeap
HashMap<String, Node> map = buildFreqMap(words);
for (Map.Entry<String, Node> entry : map.entrySet()) {
Node node = entry.getValue();
if (queue.size() < k || node.freq >= queue.peek().freq) queue.offer(node);
if (queue.size() > k) queue.poll();
}
while (!queue.isEmpty()) rst.add(0, queue.poll().str);// output
return rst;
}
private PriorityQueue<Node> configQueue(int k) {
return new PriorityQueue<>(k, new Comparator<Node>(){
public int compare(Node a, Node b) {
if (a.freq == b.freq) {
return b.str.compareTo(a.str);
} else {
return a.freq - b.freq;
}
}
});
}
private HashMap<String, Node> buildFreqMap(String[] words) {
HashMap<String, Node> map = new HashMap<>();
for (String word: words) {
map.putIfAbsent(word, new Node(word));
map.get(word).freq += 1;
}
return map;
}
}
// Method3: MaxHeap
class Solution {
class Node {
int freq;
String str;
public Node(String str, int freq){
this.str = str;
this.freq = freq;
}
}
public List<String> topKFrequent(String[] words, int k) {
List<String> rst = new ArrayList<>();
if (words == null || words.length == 0 || k <= 0) {
return rst;
}
//queue
PriorityQueue<Node> queue = new PriorityQueue<>(k, new Comparator<Node>(){
public int compare(Node a, Node b) {
if (a.freq == b.freq) {
return a.str.compareTo(b.str);
} else {
return b.freq - a.freq;
}
}
});
//map
HashMap<String, Node> map = new HashMap<>();
for (String word: words) {
if (!map.containsKey(word)) {
map.put(word, new Node(word, 0));
}
map.get(word).freq = map.get(word).freq + 1;
}
for (Map.Entry<String, Node> entry : map.entrySet()) {
queue.offer(entry.getValue());
}
//output
for (int i = 0; i < k; i++) {
rst.add(queue.poll().str);
}
return rst;
}
}
```