-
Notifications
You must be signed in to change notification settings - Fork 23
/
53. Maximum Subarray.java
executable file
·329 lines (283 loc) · 9.87 KB
/
53. Maximum Subarray.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
E
tags: DP, Sequence DP, Array, Divide and Conquer, DFS, PreSum, Subarray
time: O(n)
space: O(n), O(1) rolling array
给一串数组, unsorted, can have negative/positive num. 找数组中间 subarray 数字之和的最大值
#### PreSum
- 想着用一用prefix sum. 把值一个个叠加
- 然后presum[j] - presum[i- 1] 就是 (i,j)之间的和
- O(n^2), not as sufficient
#### Sequence DP
- dp[i]: last element(或包括前i个element), 可能组成的 subarray 的最大sum.
- dp[i] = Math.max(dp[i-1]+lastElement, lastElement(drop dp[i-1]))
- init:
- dp = int[n + 1],
- dp[0]: first 0 items, does not have any sum
- 因为continous sequence, 所以不满足条件的时候, 会断.
- need to take curr num regardless => can drop prev max in dp[i]
- track overall max
- init dp[0] = 0; max = MIN_VALUE 因为有负数
- Time, space O(n)
- Rolling array, space O(1)
#### Divide and Conquer, DFS
- 找一个mid piont, 考虑3种情况: 1) 只要左边, 2) 只要右边, 3) cross-mid
- left/rigth case: 直接 dfs
- corss-mid case: continuous sum max from left + continous sum max from right + mid
- continuous sum max from one direction:
- Worst case O(n^2): visit all nodes O(n); in dfs: calculates continuous sum (including mid), which is also O(n)
/*
// handle cross-mid case
int tempSum = 0, continuousLeftSumMax = 0;
// find continuous max going towards left
for (int i = mid - 1; i >= left; i--) {
// always continous summing up
tempSum += nums[i];
// from one direction, take the best
continuousLeftSumMax = Math.max(continuousLeftSumMax, tempSum);
}
*/
```
/**
LeetCode:
Given an integer array nums, find the contiguous subarray (containing at least one number)
which has the largest sum and return its sum.
Example:
Input: [-2,1,-3,4,-1,2,1,-5,4],
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Follow up:
If you have figured out the O(n) solution,
try coding another solution using the divide and conquer approach,
which is more subtle.
*/
// Despte the detailed dp[] solution, we have the light version:
public class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return Integer.MIN_VALUE;
int preMaxSum = 0, max = Integer.MIN_VALUE;
for (int num : nums) {
preMaxSum = Math.max(num, preMaxSum + num);
max = Math.max(max, preMaxSum);
}
return max;
}
}
/*
Use regular preSum - smallest preSum in earlier spots, which gives largest value.
So maintain a regular preSum, and maintain a minPreSum.
Maintain a max to mark the difference between (preSum - minPreSum)
Also, here, we dont' really care about index.So just skip index.
O(n) here
*/
public class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int preSum = 0, minPreSum = 0;
int max = Integer.MIN_VALUE;
for (int num : nums) {
preSum += num;
max = Math.max(max, preSum - minPreSum);
minPreSum = Math.min(minPreSum, preSum);
}
return max;
}
}
/*
Thoughts:
sequence dp
continous subarray: cannot skip element
dp[i]: for first i items, what's the largest sum that containts nums[i]?
dp[i] = Math.max(dp[i - 1] + nums[i - 1], nums[i - 1])
record max globally
dp[i]: 0 items, max = 0
*/
class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length, max = Integer.MIN_VALUE;
int[] dp = new int[n + 1]; // extra space to store dp[n]
dp[0] = 0;
for (int i = 1; i <= n; i++) {
// continuous so always will use nums[i-1]
dp[i] = Math.max(dp[i - 1] + nums[i - 1], nums[i - 1]);
max = Math.max(max, dp[i]);
}
return max;
}
}
// Rolling array:
class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length;
int[] dp = new int[2];
dp[0] = 0;
int max = Integer.MIN_VALUE;
for (int i = 1; i <= n; i++) {
dp[i % 2] = Math.max(dp[(i - 1) % 2] + nums[i - 1], nums[i - 1]);
max = Math.max(max, dp[i % 2]);
}
return max;
}
}
/**
Slight diff: checking dp[i-1] >= 0.
Same as Math.max(dp[i - 1] + nums[i - 1], nums[i - 1]);
*/
class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
// init dp, global max
int n = nums.length, max = Integer.MIN_VALUE;
int[] dp = new int[n + 1];
dp[0] = 0;
for (int i = 1; i <= n; i++) {
dp[i] = nums[i - 1] + (dp[i - 1] >= 0 ? dp[i - 1] : 0);
max = Math.max(max, dp[i]);
}
return max;
}
}
// Rolling array
class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int n = nums.length, max = Integer.MIN_VALUE;
int[] dp = new int[2];
dp[0] = 0;
for (int i = 1; i <= n; i++) {
dp[i % 2] = nums[i - 1] + (dp[(i - 1) % 2] >= 0 ? dp[(i - 1) % 2] : 0);
max = Math.max(max, dp[i % 2]);
}
return max;
}
}
/*
DFS, divide and conquer,
3 conditions: left of mid, right of mid, or cross-mid
use dfs to calculate left case, right case
carefully handle cross-mid case
*/
class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
return dfs(nums, 0, nums.length - 1, Integer.MIN_VALUE);
}
private int dfs(int[] nums, int left, int right, int sum) {
if (left > right) return Integer.MIN_VALUE;
// dfs on left, right range. Mid point is skipped
int mid = left + (right - left) / 2;
int leftMax = dfs(nums, left, mid - 1, sum);
int rightMax = dfs(nums, mid + 1, right, sum);
int maxSum = Math.max(sum, Math.max(leftMax, rightMax));
// handle cross-mid case
// find continuous max going towards left
int continuousLeftSumMax = findContinuousSum(mid-1, left, right, -1, nums);
// find continuous max going towards right
int continuousRightSumMax = findContinuousSum(mid+1, left, right, 1, nums);
maxSum = Math.max(maxSum, nums[mid] + continuousLeftSumMax + continuousRightSumMax);
return maxSum;
}
// set up left/right bound, and use offset to customize for loop: avoid redundant code
private int findContinuousSum(int start, int left, int right, int offset, int[] nums) {
int continuousSum = 0, max = 0;
for (int i = start; i >= left && i <= right; i+=offset) {
continuousSum += nums[i];
max = Math.max(max, continuousSum);
}
return max;
}
}
/*
LintCode
Maximum Subarray Show Result My Submissions
35% Accepted
Given an array of integers, find a contiguous subarray which has the largest sum.
Note
The subarray should contain at least one number
Example
For example, given the array [−2,2,−3,4,−1,2,1,−5,3], the contiguous subarray [4,−1,2,1] has the largest sum = 6.
Challenge
Can you do it in time complexity O(n)?
Tags Expand
Array SubArray Greedy Enumeration LintCode Copyright
*/
/*
Thoughts:
1. Move end see how far it can go which keeps sum increasing
2. sum[i] = sum[i - 1] + nums[i]. We need to decide if sum[i] will take sum[i-1] depending on if sum[i-1] is positive or negative.
3. maintain a maxSum
*/
class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) {
return 0;
}
final int[] sums = new int[nums.length];
sums[0] = nums[0];
int maxSum = sums[0];
for (int i = 1; i < nums.length; i++) {
if (sums[i - 1] < 0) {// sums[i-1] only reduces maxSum, therefore skip it in sums[i]
sums[i] = nums[i];
} else {
sums[i] = sums[i - 1] + nums[i];
}
maxSum = Math.max(maxSum, sums[i]);
}
return maxSum;
}
}
/*
Same as above, but with list as input
Thinking proces:
Store the sum in a array.
Normally, sum[i] = sum[i - 1] + nums[i].
However, if sum[i - 1] is a nagetive number, that means sum[i - 1] won't do any good for later sum but only decrease the sum.
In this case, when sums[i - 1] < 0, we don't add it.
When sum[i-1], it actaully starts from nums.get(i) again.
*/
public class Solution {
/**
* @param nums: A list of integers
* @return: A integer indicate the sum of max subarray
*/
public int maxSubArray(ArrayList<Integer> nums) {
if (nums == null || nums.size() == 0) {
return 0;
}
int[] sums = new int[nums.size()];
sums[0] = nums.get(0);
int maxSum = sums[0];
for (int i = 1; i < sums.length; i++) {
if (sums[i - 1] < 0) {
sums[i] = nums.get(i);
} else {
sums[i] = sums[i - 1] + nums.get(i);
}
maxSum = Math.max(maxSum, sums[i]);
}
return maxSum;
}
}
/*
To further extend the prefix sum idea, we are really trying:
Use regular preSum - smallest preSum in earlier spots, which gives largest value.
So maintain a regular preSum, and maintain a minPreSum.
Maintain a max to mark the difference between (preSum - minPreSum)
Also, here, we dont' really care about index.So just skip index.
O(n) here
*/
public class Solution {
public int maxSubArray(int[] nums) {
if (nums == null || nums.length == 0) return 0;
int preSum = 0, minPreSum = 0;
int max = Integer.MIN_VALUE;
for (int num : nums) {
preSum += num;
max = Math.max(max, preSum - minPreSum);
minPreSum = Math.min(minPreSum, preSum);
}
return max;
}
}
```