-
Notifications
You must be signed in to change notification settings - Fork 0
/
Model.h
107 lines (79 loc) · 3.09 KB
/
Model.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
/*
* Recursive Neural Networks: neural networks for data structures
*
* Copyright (C) 2018 Alessandro Vullo
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef _MODEL_H_
#define _MODEL_H_
#include "Instance.h"
#include "DataSet.h"
#include <string>
#include <stdexcept>
/*
* Represent a RNN model using an abstract interface
* to leave the client code unaware of of the various
* template options
*
* A way to combine static/dynamic polymorphism, see:
* https://stackoverflow.com/questions/1213366/can-template-polymorphism-be-used-in-place-of-oo-polymorphism
*/
class Model {
public:
virtual void propagateStructuredInput(Instance*) = 0;
virtual void backPropagateError(Instance*) = 0;
virtual void adjustWeights(float = .0, float = .0, float = .0) = 0;
virtual void restorePrevWeights() = 0;
virtual void saveParameters(const char*) = 0;
virtual void predict(Instance*) = 0;
virtual void predict(DataSet*) = 0;
virtual double computeError(Instance*) = 0;
virtual double computeError(DataSet*) = 0;
virtual ~Model() {}
class BadModelCreation: public std::logic_error {
public:
BadModelCreation(std::string message): logic_error("Cannot create model: " + message) {}
};
static Model* factory(const std::string& = "")
throw(BadModelCreation);
};
/* class BinaryClassModel: public Model { */
/* RecursiveNN<TanH, Sigmoid, MGradientDescent>* _rnn; */
/* public: */
/* ~BinaryClassModel(); */
/* void read(const char*); */
/* void write(const char*); */
/* void predict(Instance*, std::ostream& = cout); */
/* }; */
/* class MultiClassModel: public Model { */
/* RecursiveNN<TanH, Linear, MGradientDescent>* _rnn; */
/* public: */
/* ~MultiClassModel(); */
/* void read(const char*); */
/* void write(const char*); */
/* void predict(Instance*, std::ostream& = cout); */
/* }; */
/* class RegressionModel: public Model { */
/* RecursiveNN<TanH, Sigmoid, MGradientDescent>* _rnn; */
/* void read(const char*); */
/* void write(const char*); */
/* void predict(Instance*, std::ostream& = cout); */
/* }; */
#endif // _MODEL_H_