From c081b21b1fe4fbad845088c4144da0bd2a8d89dc Mon Sep 17 00:00:00 2001 From: Alexander Ulanov Date: Mon, 2 Feb 2015 12:13:05 -0800 Subject: [PATCH 01/52] [MLLIB] SPARK-5491 (ex SPARK-1473): Chi-square feature selection The following is implemented: 1) generic traits for feature selection and filtering 2) trait for feature selection of LabeledPoint with discrete data 3) traits for calculation of contingency table and chi squared 4) class for chi-squared feature selection 5) tests for the above Needs some optimization in matrix operations. This request is a try to implement feature selection for MLLIB, the previous work by the issue author izendejas was not finished (https://issues.apache.org/jira/browse/SPARK-1473). This request is also related to data discretization issues: https://issues.apache.org/jira/browse/SPARK-1303 and https://issues.apache.org/jira/browse/SPARK-1216 that weren't merged. Author: Alexander Ulanov Closes #1484 from avulanov/featureselection and squashes the following commits: 755d358 [Alexander Ulanov] Addressing reviewers comments @mengxr a6ad82a [Alexander Ulanov] Addressing reviewers comments @mengxr 714b878 [Alexander Ulanov] Addressing reviewers comments @mengxr 010acff [Alexander Ulanov] Rebase 427ca4e [Alexander Ulanov] Addressing reviewers comments: implement VectorTransformer interface, use Statistics.chiSqTest f9b070a [Alexander Ulanov] Adding Apache header in tests... 80363ca [Alexander Ulanov] Tests, comments, apache headers and scala style 150a3e0 [Alexander Ulanov] Scala style fix f356365 [Alexander Ulanov] Chi Squared by contingency table. Refactoring 2bacdc7 [Alexander Ulanov] Combinations and chi-squared values test 66e0333 [Alexander Ulanov] Feature selector, fix of lazyness aab9b73 [Alexander Ulanov] Feature selection redesign with vigdorchik e24eee4 [Alexander Ulanov] Traits for FeatureSelection, CombinationsCalculator and FeatureFilter ca49e80 [Alexander Ulanov] Feature selection filter 2ade254 [Alexander Ulanov] Code style 0bd8434 [Alexander Ulanov] Chi Squared feature selection: initial version --- .../spark/mllib/feature/ChiSqSelector.scala | 127 ++++++++++++++++++ .../mllib/feature/ChiSqSelectorSuite.scala | 67 +++++++++ 2 files changed, 194 insertions(+) create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/feature/ChiSqSelector.scala create mode 100644 mllib/src/test/scala/org/apache/spark/mllib/feature/ChiSqSelectorSuite.scala diff --git a/mllib/src/main/scala/org/apache/spark/mllib/feature/ChiSqSelector.scala b/mllib/src/main/scala/org/apache/spark/mllib/feature/ChiSqSelector.scala new file mode 100644 index 0000000000000..c6057c7f837b1 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/feature/ChiSqSelector.scala @@ -0,0 +1,127 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.feature + +import scala.collection.mutable.ArrayBuilder + +import org.apache.spark.annotation.Experimental +import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, Vectors} +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.mllib.stat.Statistics +import org.apache.spark.rdd.RDD + +/** + * :: Experimental :: + * Chi Squared selector model. + * + * @param selectedFeatures list of indices to select (filter). Must be ordered asc + */ +@Experimental +class ChiSqSelectorModel (val selectedFeatures: Array[Int]) extends VectorTransformer { + + require(isSorted(selectedFeatures), "Array has to be sorted asc") + + protected def isSorted(array: Array[Int]): Boolean = { + var i = 1 + while (i < array.length) { + if (array(i) < array(i-1)) return false + i += 1 + } + true + } + + /** + * Applies transformation on a vector. + * + * @param vector vector to be transformed. + * @return transformed vector. + */ + override def transform(vector: Vector): Vector = { + compress(vector, selectedFeatures) + } + + /** + * Returns a vector with features filtered. + * Preserves the order of filtered features the same as their indices are stored. + * Might be moved to Vector as .slice + * @param features vector + * @param filterIndices indices of features to filter, must be ordered asc + */ + private def compress(features: Vector, filterIndices: Array[Int]): Vector = { + features match { + case SparseVector(size, indices, values) => + val newSize = filterIndices.length + val newValues = new ArrayBuilder.ofDouble + val newIndices = new ArrayBuilder.ofInt + var i = 0 + var j = 0 + var indicesIdx = 0 + var filterIndicesIdx = 0 + while (i < indices.length && j < filterIndices.length) { + indicesIdx = indices(i) + filterIndicesIdx = filterIndices(j) + if (indicesIdx == filterIndicesIdx) { + newIndices += j + newValues += values(i) + j += 1 + i += 1 + } else { + if (indicesIdx > filterIndicesIdx) { + j += 1 + } else { + i += 1 + } + } + } + // TODO: Sparse representation might be ineffective if (newSize ~= newValues.size) + Vectors.sparse(newSize, newIndices.result(), newValues.result()) + case DenseVector(values) => + val values = features.toArray + Vectors.dense(filterIndices.map(i => values(i))) + case other => + throw new UnsupportedOperationException( + s"Only sparse and dense vectors are supported but got ${other.getClass}.") + } + } +} + +/** + * :: Experimental :: + * Creates a ChiSquared feature selector. + * @param numTopFeatures number of features that selector will select + * (ordered by statistic value descending) + */ +@Experimental +class ChiSqSelector (val numTopFeatures: Int) { + + /** + * Returns a ChiSquared feature selector. + * + * @param data an `RDD[LabeledPoint]` containing the labeled dataset with categorical features. + * Real-valued features will be treated as categorical for each distinct value. + * Apply feature discretizer before using this function. + */ + def fit(data: RDD[LabeledPoint]): ChiSqSelectorModel = { + val indices = Statistics.chiSqTest(data) + .zipWithIndex.sortBy { case (res, _) => -res.statistic } + .take(numTopFeatures) + .map { case (_, indices) => indices } + .sorted + new ChiSqSelectorModel(indices) + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/feature/ChiSqSelectorSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/feature/ChiSqSelectorSuite.scala new file mode 100644 index 0000000000000..747f5914598ec --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/feature/ChiSqSelectorSuite.scala @@ -0,0 +1,67 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.feature + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.mllib.util.MLlibTestSparkContext + +class ChiSqSelectorSuite extends FunSuite with MLlibTestSparkContext { + + /* + * Contingency tables + * feature0 = {8.0, 0.0} + * class 0 1 2 + * 8.0||1|0|1| + * 0.0||0|2|0| + * + * feature1 = {7.0, 9.0} + * class 0 1 2 + * 7.0||1|0|0| + * 9.0||0|2|1| + * + * feature2 = {0.0, 6.0, 8.0, 5.0} + * class 0 1 2 + * 0.0||1|0|0| + * 6.0||0|1|0| + * 8.0||0|1|0| + * 5.0||0|0|1| + * + * Use chi-squared calculator from Internet + */ + + test("ChiSqSelector transform test (sparse & dense vector)") { + val labeledDiscreteData = sc.parallelize( + Seq(LabeledPoint(0.0, Vectors.sparse(3, Array((0, 8.0), (1, 7.0)))), + LabeledPoint(1.0, Vectors.sparse(3, Array((1, 9.0), (2, 6.0)))), + LabeledPoint(1.0, Vectors.dense(Array(0.0, 9.0, 8.0))), + LabeledPoint(2.0, Vectors.dense(Array(8.0, 9.0, 5.0)))), 2) + val preFilteredData = + Set(LabeledPoint(0.0, Vectors.dense(Array(0.0))), + LabeledPoint(1.0, Vectors.dense(Array(6.0))), + LabeledPoint(1.0, Vectors.dense(Array(8.0))), + LabeledPoint(2.0, Vectors.dense(Array(5.0)))) + val model = new ChiSqSelector(1).fit(labeledDiscreteData) + val filteredData = labeledDiscreteData.map { lp => + LabeledPoint(lp.label, model.transform(lp.features)) + }.collect().toSet + assert(filteredData == preFilteredData) + } +} From b2047b55c5fc85de6b63276d8ab9610d2496e08b Mon Sep 17 00:00:00 2001 From: Sandy Ryza Date: Mon, 2 Feb 2015 12:27:08 -0800 Subject: [PATCH 02/52] SPARK-4585. Spark dynamic executor allocation should use minExecutors as... ... initial number Author: Sandy Ryza Closes #4051 from sryza/sandy-spark-4585 and squashes the following commits: d1dd039 [Sandy Ryza] Add spark.dynamicAllocation.initialNumExecutors and make min and max not required b7c59dc [Sandy Ryza] SPARK-4585. Spark dynamic executor allocation should use minExecutors as initial number --- .../spark/ExecutorAllocationManager.scala | 14 +++++++------ .../ExecutorAllocationManagerSuite.scala | 15 +++++++------- docs/configuration.md | 20 +++++++++++++------ docs/job-scheduling.md | 9 ++++----- .../spark/deploy/yarn/ClientArguments.scala | 17 ++++++++++++---- 5 files changed, 46 insertions(+), 29 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala b/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala index b28da192c1c0d..5d5288bb6e60d 100644 --- a/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala +++ b/core/src/main/scala/org/apache/spark/ExecutorAllocationManager.scala @@ -49,6 +49,7 @@ import org.apache.spark.scheduler._ * spark.dynamicAllocation.enabled - Whether this feature is enabled * spark.dynamicAllocation.minExecutors - Lower bound on the number of executors * spark.dynamicAllocation.maxExecutors - Upper bound on the number of executors + * spark.dynamicAllocation.initialExecutors - Number of executors to start with * * spark.dynamicAllocation.schedulerBacklogTimeout (M) - * If there are backlogged tasks for this duration, add new executors @@ -70,9 +71,10 @@ private[spark] class ExecutorAllocationManager( import ExecutorAllocationManager._ - // Lower and upper bounds on the number of executors. These are required. - private val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", -1) - private val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors", -1) + // Lower and upper bounds on the number of executors. + private val minNumExecutors = conf.getInt("spark.dynamicAllocation.minExecutors", 0) + private val maxNumExecutors = conf.getInt("spark.dynamicAllocation.maxExecutors", + Integer.MAX_VALUE) // How long there must be backlogged tasks for before an addition is triggered private val schedulerBacklogTimeout = conf.getLong( @@ -132,10 +134,10 @@ private[spark] class ExecutorAllocationManager( */ private def validateSettings(): Unit = { if (minNumExecutors < 0 || maxNumExecutors < 0) { - throw new SparkException("spark.dynamicAllocation.{min/max}Executors must be set!") + throw new SparkException("spark.dynamicAllocation.{min/max}Executors must be positive!") } - if (minNumExecutors == 0 || maxNumExecutors == 0) { - throw new SparkException("spark.dynamicAllocation.{min/max}Executors cannot be 0!") + if (maxNumExecutors == 0) { + throw new SparkException("spark.dynamicAllocation.maxExecutors cannot be 0!") } if (minNumExecutors > maxNumExecutors) { throw new SparkException(s"spark.dynamicAllocation.minExecutors ($minNumExecutors) must " + diff --git a/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala b/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala index 0e4df17c1bf87..57081ddd959a5 100644 --- a/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala +++ b/core/src/test/scala/org/apache/spark/ExecutorAllocationManagerSuite.scala @@ -32,24 +32,23 @@ class ExecutorAllocationManagerSuite extends FunSuite with LocalSparkContext { import ExecutorAllocationManagerSuite._ test("verify min/max executors") { - // No min or max val conf = new SparkConf() .setMaster("local") .setAppName("test-executor-allocation-manager") .set("spark.dynamicAllocation.enabled", "true") .set("spark.dynamicAllocation.testing", "true") - intercept[SparkException] { new SparkContext(conf) } - SparkEnv.get.stop() // cleanup the created environment - SparkContext.clearActiveContext() + val sc0 = new SparkContext(conf) + assert(sc0.executorAllocationManager.isDefined) + sc0.stop() - // Only min - val conf1 = conf.clone().set("spark.dynamicAllocation.minExecutors", "1") + // Min < 0 + val conf1 = conf.clone().set("spark.dynamicAllocation.minExecutors", "-1") intercept[SparkException] { new SparkContext(conf1) } SparkEnv.get.stop() SparkContext.clearActiveContext() - // Only max - val conf2 = conf.clone().set("spark.dynamicAllocation.maxExecutors", "2") + // Max < 0 + val conf2 = conf.clone().set("spark.dynamicAllocation.maxExecutors", "-1") intercept[SparkException] { new SparkContext(conf2) } SparkEnv.get.stop() SparkContext.clearActiveContext() diff --git a/docs/configuration.md b/docs/configuration.md index e4e4b8d516b75..08c6befaf31ad 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -1098,24 +1098,32 @@ Apart from these, the following properties are also available, and may be useful available on YARN mode. For more detail, see the description here.

- This requires the following configurations to be set: + This requires spark.shuffle.service.enabled to be set. + The following configurations are also relevant: spark.dynamicAllocation.minExecutors, spark.dynamicAllocation.maxExecutors, and - spark.shuffle.service.enabled + spark.dynamicAllocation.initialExecutors spark.dynamicAllocation.minExecutors - (none) + 0 - Lower bound for the number of executors if dynamic allocation is enabled (required). + Lower bound for the number of executors if dynamic allocation is enabled. spark.dynamicAllocation.maxExecutors - (none) + Integer.MAX_VALUE + + Upper bound for the number of executors if dynamic allocation is enabled. + + + + spark.dynamicAllocation.maxExecutors + spark.dynamicAllocation.minExecutors - Upper bound for the number of executors if dynamic allocation is enabled (required). + Initial number of executors to run if dynamic allocation is enabled. diff --git a/docs/job-scheduling.md b/docs/job-scheduling.md index a5425eb3557b2..5295e351dd711 100644 --- a/docs/job-scheduling.md +++ b/docs/job-scheduling.md @@ -77,11 +77,10 @@ scheduling while sharing cluster resources efficiently. ### Configuration and Setup All configurations used by this feature live under the `spark.dynamicAllocation.*` namespace. -To enable this feature, your application must set `spark.dynamicAllocation.enabled` to `true` and -provide lower and upper bounds for the number of executors through -`spark.dynamicAllocation.minExecutors` and `spark.dynamicAllocation.maxExecutors`. Other relevant -configurations are described on the [configurations page](configuration.html#dynamic-allocation) -and in the subsequent sections in detail. +To enable this feature, your application must set `spark.dynamicAllocation.enabled` to `true`. +Other relevant configurations are described on the +[configurations page](configuration.html#dynamic-allocation) and in the subsequent sections in +detail. Additionally, your application must use an external shuffle service. The purpose of the service is to preserve the shuffle files written by executors so the executors can be safely removed (more diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala index f96b245512271..5eb2023802dfc 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala @@ -75,14 +75,23 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) .orElse(sparkConf.getOption("spark.yarn.dist.archives").map(p => Utils.resolveURIs(p))) .orElse(sys.env.get("SPARK_YARN_DIST_ARCHIVES")) .orNull - // If dynamic allocation is enabled, start at the max number of executors + // If dynamic allocation is enabled, start at the configured initial number of executors. + // Default to minExecutors if no initialExecutors is set. if (isDynamicAllocationEnabled) { + val minExecutorsConf = "spark.dynamicAllocation.minExecutors" + val initialExecutorsConf = "spark.dynamicAllocation.initialExecutors" val maxExecutorsConf = "spark.dynamicAllocation.maxExecutors" - if (!sparkConf.contains(maxExecutorsConf)) { + val minNumExecutors = sparkConf.getInt(minExecutorsConf, 0) + val initialNumExecutors = sparkConf.getInt(initialExecutorsConf, minNumExecutors) + val maxNumExecutors = sparkConf.getInt(maxExecutorsConf, Integer.MAX_VALUE) + + // If defined, initial executors must be between min and max + if (initialNumExecutors < minNumExecutors || initialNumExecutors > maxNumExecutors) { throw new IllegalArgumentException( - s"$maxExecutorsConf must be set if dynamic allocation is enabled!") + s"$initialExecutorsConf must be between $minExecutorsConf and $maxNumExecutors!") } - numExecutors = sparkConf.get(maxExecutorsConf).toInt + + numExecutors = initialNumExecutors } } From f5e63751f0ed50ceafdc2ec5173b161a5155b646 Mon Sep 17 00:00:00 2001 From: lianhuiwang Date: Mon, 2 Feb 2015 12:32:28 -0800 Subject: [PATCH 03/52] [SPARK-5173]support python application running on yarn cluster mode now when we run python application on yarn cluster mode through spark-submit, spark-submit does not support python application on yarn cluster mode. so i modify code of submit and yarn's AM in order to support it. through specifying .py file or primaryResource file via spark-submit, we can make pyspark run in yarn-cluster mode. example:spark-submit --master yarn-master --num-executors 1 --driver-memory 1g --executor-memory 1g xx.py --primaryResource yy.conf this config is same as pyspark on yarn-client mode. firstly,we put local path of .py or primaryResource to yarn's dist.files.that can be distributed on slave nodes.and then in spark-submit we transfer --py-files and --primaryResource to yarn.Client and use "org.apache.spark.deploy.PythonRunner" to user class that can run .py files on ApplicationMaster. in yarn.Client we transfer --py-files and --primaryResource to ApplicationMaster. in ApplicationMaster, user's class is org.apache.spark.deploy.PythonRunner, and user's args is primaryResource and -py-files. so that can make pyspark run on ApplicationMaster. JoshRosen tgravescs sryza Author: lianhuiwang Author: Wang Lianhui Closes #3976 from lianhuiwang/SPARK-5173 and squashes the following commits: 28a8a58 [lianhuiwang] fix variable name 67f8cee [lianhuiwang] update with andrewor's comments 0319ae3 [lianhuiwang] address with sryza's comments 2385ef6 [lianhuiwang] address with sryza's comments 03640ab [lianhuiwang] add sparkHome to env 47d2fc3 [lianhuiwang] fix test 2adc8f5 [lianhuiwang] add spark.test.home d60bc60 [lianhuiwang] fix test 5b30064 [lianhuiwang] add test 097a5ec [lianhuiwang] fix line length exceeds 100 905a106 [lianhuiwang] update with sryza and andrewor 's comments f1f55b6 [lianhuiwang] when yarn-cluster, all python files can be non-local 172eec1 [Wang Lianhui] fix a min submit's bug 9c941bc [lianhuiwang] support python application running on yarn cluster mode --- .../apache/spark/deploy/PythonRunner.scala | 2 +- .../org/apache/spark/deploy/SparkSubmit.scala | 49 ++++++++++++++++--- .../spark/deploy/SparkSubmitArguments.scala | 12 ----- .../spark/deploy/yarn/ApplicationMaster.scala | 14 ++++-- .../yarn/ApplicationMasterArguments.scala | 13 +++++ .../org/apache/spark/deploy/yarn/Client.scala | 19 ++++++- .../spark/deploy/yarn/ClientArguments.scala | 20 ++++++-- .../spark/deploy/yarn/YarnClusterSuite.scala | 44 +++++++++++++++++ 8 files changed, 141 insertions(+), 32 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala b/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala index 039c8719e2867..53e18c4bcec23 100644 --- a/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala +++ b/core/src/main/scala/org/apache/spark/deploy/PythonRunner.scala @@ -26,7 +26,7 @@ import org.apache.spark.api.python.PythonUtils import org.apache.spark.util.{RedirectThread, Utils} /** - * A main class used by spark-submit to launch Python applications. It executes python as a + * A main class used to launch Python applications. It executes python as a * subprocess and then has it connect back to the JVM to access system properties, etc. */ object PythonRunner { diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala index c240bcd705d93..02021be9f93d4 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmit.scala @@ -23,6 +23,8 @@ import java.net.URL import scala.collection.mutable.{ArrayBuffer, HashMap, Map} +import org.apache.hadoop.fs.Path + import org.apache.spark.executor.ExecutorURLClassLoader import org.apache.spark.util.Utils @@ -134,12 +136,27 @@ object SparkSubmit { } } + val isYarnCluster = clusterManager == YARN && deployMode == CLUSTER + + // Require all python files to be local, so we can add them to the PYTHONPATH + // In YARN cluster mode, python files are distributed as regular files, which can be non-local + if (args.isPython && !isYarnCluster) { + if (Utils.nonLocalPaths(args.primaryResource).nonEmpty) { + printErrorAndExit(s"Only local python files are supported: $args.primaryResource") + } + val nonLocalPyFiles = Utils.nonLocalPaths(args.pyFiles).mkString(",") + if (nonLocalPyFiles.nonEmpty) { + printErrorAndExit(s"Only local additional python files are supported: $nonLocalPyFiles") + } + } + // The following modes are not supported or applicable (clusterManager, deployMode) match { case (MESOS, CLUSTER) => printErrorAndExit("Cluster deploy mode is currently not supported for Mesos clusters.") - case (_, CLUSTER) if args.isPython => - printErrorAndExit("Cluster deploy mode is currently not supported for python applications.") + case (STANDALONE, CLUSTER) if args.isPython => + printErrorAndExit("Cluster deploy mode is currently not supported for python " + + "applications on standalone clusters.") case (_, CLUSTER) if isShell(args.primaryResource) => printErrorAndExit("Cluster deploy mode is not applicable to Spark shells.") case (_, CLUSTER) if isSqlShell(args.mainClass) => @@ -150,7 +167,7 @@ object SparkSubmit { } // If we're running a python app, set the main class to our specific python runner - if (args.isPython) { + if (args.isPython && deployMode == CLIENT) { if (args.primaryResource == PYSPARK_SHELL) { args.mainClass = "py4j.GatewayServer" args.childArgs = ArrayBuffer("--die-on-broken-pipe", "0") @@ -167,6 +184,13 @@ object SparkSubmit { } } + // In yarn-cluster mode for a python app, add primary resource and pyFiles to files + // that can be distributed with the job + if (args.isPython && isYarnCluster) { + args.files = mergeFileLists(args.files, args.primaryResource) + args.files = mergeFileLists(args.files, args.pyFiles) + } + // Special flag to avoid deprecation warnings at the client sysProps("SPARK_SUBMIT") = "true" @@ -245,7 +269,6 @@ object SparkSubmit { // Add the application jar automatically so the user doesn't have to call sc.addJar // For YARN cluster mode, the jar is already distributed on each node as "app.jar" // For python files, the primary resource is already distributed as a regular file - val isYarnCluster = clusterManager == YARN && deployMode == CLUSTER if (!isYarnCluster && !args.isPython) { var jars = sysProps.get("spark.jars").map(x => x.split(",").toSeq).getOrElse(Seq.empty) if (isUserJar(args.primaryResource)) { @@ -270,10 +293,22 @@ object SparkSubmit { // In yarn-cluster mode, use yarn.Client as a wrapper around the user class if (isYarnCluster) { childMainClass = "org.apache.spark.deploy.yarn.Client" - if (args.primaryResource != SPARK_INTERNAL) { - childArgs += ("--jar", args.primaryResource) + if (args.isPython) { + val mainPyFile = new Path(args.primaryResource).getName + childArgs += ("--primary-py-file", mainPyFile) + if (args.pyFiles != null) { + // These files will be distributed to each machine's working directory, so strip the + // path prefix + val pyFilesNames = args.pyFiles.split(",").map(p => (new Path(p)).getName).mkString(",") + childArgs += ("--py-files", pyFilesNames) + } + childArgs += ("--class", "org.apache.spark.deploy.PythonRunner") + } else { + if (args.primaryResource != SPARK_INTERNAL) { + childArgs += ("--jar", args.primaryResource) + } + childArgs += ("--class", args.mainClass) } - childArgs += ("--class", args.mainClass) if (args.childArgs != null) { args.childArgs.foreach { arg => childArgs += ("--arg", arg) } } diff --git a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala index 81ec08cb6d501..73e921fd83ef2 100644 --- a/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala +++ b/core/src/main/scala/org/apache/spark/deploy/SparkSubmitArguments.scala @@ -179,18 +179,6 @@ private[spark] class SparkSubmitArguments(args: Seq[String], env: Map[String, St SparkSubmit.printErrorAndExit("--py-files given but primary resource is not a Python script") } - // Require all python files to be local, so we can add them to the PYTHONPATH - if (isPython) { - if (Utils.nonLocalPaths(primaryResource).nonEmpty) { - SparkSubmit.printErrorAndExit(s"Only local python files are supported: $primaryResource") - } - val nonLocalPyFiles = Utils.nonLocalPaths(pyFiles).mkString(",") - if (nonLocalPyFiles.nonEmpty) { - SparkSubmit.printErrorAndExit( - s"Only local additional python files are supported: $nonLocalPyFiles") - } - } - if (master.startsWith("yarn")) { val hasHadoopEnv = env.contains("HADOOP_CONF_DIR") || env.contains("YARN_CONF_DIR") if (!hasHadoopEnv && !Utils.isTesting) { diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala index d3e327b2497b7..eb328b2b8ac50 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala @@ -34,7 +34,7 @@ import org.apache.hadoop.yarn.conf.YarnConfiguration import org.apache.spark.{Logging, SecurityManager, SparkConf, SparkContext, SparkEnv} import org.apache.spark.SparkException -import org.apache.spark.deploy.SparkHadoopUtil +import org.apache.spark.deploy.{PythonRunner, SparkHadoopUtil} import org.apache.spark.deploy.history.HistoryServer import org.apache.spark.scheduler.cluster.YarnSchedulerBackend import org.apache.spark.scheduler.cluster.CoarseGrainedClusterMessages._ @@ -135,7 +135,7 @@ private[spark] class ApplicationMaster( .get().addShutdownHook(cleanupHook, ApplicationMaster.SHUTDOWN_HOOK_PRIORITY) // Call this to force generation of secret so it gets populated into the - // Hadoop UGI. This has to happen before the startUserClass which does a + // Hadoop UGI. This has to happen before the startUserApplication which does a // doAs in order for the credentials to be passed on to the executor containers. val securityMgr = new SecurityManager(sparkConf) @@ -254,7 +254,7 @@ private[spark] class ApplicationMaster( private def runDriver(securityMgr: SecurityManager): Unit = { addAmIpFilter() - userClassThread = startUserClass() + userClassThread = startUserApplication() // This a bit hacky, but we need to wait until the spark.driver.port property has // been set by the Thread executing the user class. @@ -448,9 +448,13 @@ private[spark] class ApplicationMaster( * * Returns the user thread that was started. */ - private def startUserClass(): Thread = { - logInfo("Starting the user JAR in a separate Thread") + private def startUserApplication(): Thread = { + logInfo("Starting the user application in a separate Thread") System.setProperty("spark.executor.instances", args.numExecutors.toString) + if (args.primaryPyFile != null && args.primaryPyFile.endsWith(".py")) { + System.setProperty("spark.submit.pyFiles", + PythonRunner.formatPaths(args.pyFiles).mkString(",")) + } val mainMethod = Class.forName(args.userClass, false, Thread.currentThread.getContextClassLoader).getMethod("main", classOf[Array[String]]) diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala index d76a63276d752..e1a992af3aae7 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMasterArguments.scala @@ -24,6 +24,8 @@ import collection.mutable.ArrayBuffer class ApplicationMasterArguments(val args: Array[String]) { var userJar: String = null var userClass: String = null + var primaryPyFile: String = null + var pyFiles: String = null var userArgs: Seq[String] = Seq[String]() var executorMemory = 1024 var executorCores = 1 @@ -48,6 +50,14 @@ class ApplicationMasterArguments(val args: Array[String]) { userClass = value args = tail + case ("--primary-py-file") :: value :: tail => + primaryPyFile = value + args = tail + + case ("--py-files") :: value :: tail => + pyFiles = value + args = tail + case ("--args" | "--arg") :: value :: tail => userArgsBuffer += value args = tail @@ -81,6 +91,9 @@ class ApplicationMasterArguments(val args: Array[String]) { |Options: | --jar JAR_PATH Path to your application's JAR file | --class CLASS_NAME Name of your application's main class + | --primary-py-file A main Python file + | --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to + | place on the PYTHONPATH for Python apps. | --args ARGS Arguments to be passed to your application's main class. | Multiple invocations are possible, each will be passed in order. | --num-executors NUM Number of executors to start (Default: 2) diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala index 1a18e6509ef26..91e8574e94e2f 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/Client.scala @@ -21,7 +21,7 @@ import java.net.{InetAddress, UnknownHostException, URI, URISyntaxException} import java.nio.ByteBuffer import scala.collection.JavaConversions._ -import scala.collection.mutable.{HashMap, ListBuffer, Map} +import scala.collection.mutable.{ArrayBuffer, HashMap, ListBuffer, Map} import scala.util.{Try, Success, Failure} import com.google.common.base.Objects @@ -477,17 +477,32 @@ private[spark] class Client( } else { Nil } + val primaryPyFile = + if (args.primaryPyFile != null) { + Seq("--primary-py-file", args.primaryPyFile) + } else { + Nil + } + val pyFiles = + if (args.pyFiles != null) { + Seq("--py-files", args.pyFiles) + } else { + Nil + } val amClass = if (isClusterMode) { Class.forName("org.apache.spark.deploy.yarn.ApplicationMaster").getName } else { Class.forName("org.apache.spark.deploy.yarn.ExecutorLauncher").getName } + if (args.primaryPyFile != null && args.primaryPyFile.endsWith(".py")) { + args.userArgs = ArrayBuffer(args.primaryPyFile, args.pyFiles) ++ args.userArgs + } val userArgs = args.userArgs.flatMap { arg => Seq("--arg", YarnSparkHadoopUtil.escapeForShell(arg)) } val amArgs = - Seq(amClass) ++ userClass ++ userJar ++ userArgs ++ + Seq(amClass) ++ userClass ++ userJar ++ primaryPyFile ++ pyFiles ++ userArgs ++ Seq( "--executor-memory", args.executorMemory.toString + "m", "--executor-cores", args.executorCores.toString, diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala index 5eb2023802dfc..3bc7eb1abf341 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ClientArguments.scala @@ -30,7 +30,9 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) var archives: String = null var userJar: String = null var userClass: String = null - var userArgs: Seq[String] = Seq[String]() + var pyFiles: String = null + var primaryPyFile: String = null + var userArgs: ArrayBuffer[String] = new ArrayBuffer[String]() var executorMemory = 1024 // MB var executorCores = 1 var numExecutors = DEFAULT_NUMBER_EXECUTORS @@ -132,7 +134,6 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) } private def parseArgs(inputArgs: List[String]): Unit = { - val userArgsBuffer = new ArrayBuffer[String]() var args = inputArgs while (!args.isEmpty) { @@ -145,11 +146,15 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) userClass = value args = tail + case ("--primary-py-file") :: value :: tail => + primaryPyFile = value + args = tail + case ("--args" | "--arg") :: value :: tail => if (args(0) == "--args") { println("--args is deprecated. Use --arg instead.") } - userArgsBuffer += value + userArgs += value args = tail case ("--master-class" | "--am-class") :: value :: tail => @@ -205,6 +210,10 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) addJars = value args = tail + case ("--py-files") :: value :: tail => + pyFiles = value + args = tail + case ("--files") :: value :: tail => files = value args = tail @@ -219,8 +228,6 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) throw new IllegalArgumentException(getUsageMessage(args)) } } - - userArgs = userArgsBuffer.readOnly } private def getUsageMessage(unknownParam: List[String] = null): String = { @@ -232,6 +239,7 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) | --jar JAR_PATH Path to your application's JAR file (required in yarn-cluster | mode) | --class CLASS_NAME Name of your application's main class (required) + | --primary-py-file A main Python file | --arg ARG Argument to be passed to your application's main class. | Multiple invocations are possible, each will be passed in order. | --num-executors NUM Number of executors to start (Default: 2) @@ -244,6 +252,8 @@ private[spark] class ClientArguments(args: Array[String], sparkConf: SparkConf) | 'default') | --addJars jars Comma separated list of local jars that want SparkContext.addJar | to work with. + | --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to + | place on the PYTHONPATH for Python apps. | --files files Comma separated list of files to be distributed with the job. | --archives archives Comma separated list of archives to be distributed with the job. """.stripMargin diff --git a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala index d79b85e867fcd..7165918e1bfcf 100644 --- a/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala +++ b/yarn/src/test/scala/org/apache/spark/deploy/yarn/YarnClusterSuite.scala @@ -45,6 +45,29 @@ class YarnClusterSuite extends FunSuite with BeforeAndAfterAll with Matchers wit |log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{1}: %m%n """.stripMargin + private val TEST_PYFILE = """ + |import sys + |from operator import add + | + |from pyspark import SparkConf , SparkContext + |if __name__ == "__main__": + | if len(sys.argv) != 3: + | print >> sys.stderr, "Usage: test.py [master] [result file]" + | exit(-1) + | conf = SparkConf() + | conf.setMaster(sys.argv[1]).setAppName("python test in yarn cluster mode") + | sc = SparkContext(conf=conf) + | status = open(sys.argv[2],'w') + | result = "failure" + | rdd = sc.parallelize(range(10)) + | cnt = rdd.count() + | if cnt == 10: + | result = "success" + | status.write(result) + | status.close() + | sc.stop() + """.stripMargin + private var yarnCluster: MiniYARNCluster = _ private var tempDir: File = _ private var fakeSparkJar: File = _ @@ -98,6 +121,9 @@ class YarnClusterSuite extends FunSuite with BeforeAndAfterAll with Matchers wit } fakeSparkJar = File.createTempFile("sparkJar", null, tempDir) + val sparkHome = sys.props.getOrElse("spark.test.home", fail("spark.test.home is not set!")) + sys.props += ("spark.yarn.appMasterEnv.SPARK_HOME" -> sparkHome) + sys.props += ("spark.executorEnv.SPARK_HOME" -> sparkHome) sys.props += ("spark.yarn.jar" -> ("local:" + fakeSparkJar.getAbsolutePath())) sys.props += ("spark.executor.instances" -> "1") sys.props += ("spark.driver.extraClassPath" -> childClasspath) @@ -146,6 +172,24 @@ class YarnClusterSuite extends FunSuite with BeforeAndAfterAll with Matchers wit assert(Utils.exceptionString(exception).contains("Application finished with failed status")) } + test("run Python application in yarn-cluster mode") { + val primaryPyFile = new File(tempDir, "test.py") + Files.write(TEST_PYFILE, primaryPyFile, Charsets.UTF_8) + val pyFile = new File(tempDir, "test2.py") + Files.write(TEST_PYFILE, pyFile, Charsets.UTF_8) + var result = File.createTempFile("result", null, tempDir) + + val args = Array("--class", "org.apache.spark.deploy.PythonRunner", + "--primary-py-file", primaryPyFile.getAbsolutePath(), + "--py-files", pyFile.getAbsolutePath(), + "--arg", "yarn-cluster", + "--arg", result.getAbsolutePath(), + "--name", "python test in yarn-cluster mode", + "--num-executors", "1") + Client.main(args) + checkResult(result) + } + /** * This is a workaround for an issue with yarn-cluster mode: the Client class will not provide * any sort of error when the job process finishes successfully, but the job itself fails. So From 3f941b68a2336aa7876aeda99865e7c19b53bc5c Mon Sep 17 00:00:00 2001 From: Nicholas Chammas Date: Mon, 2 Feb 2015 12:33:49 -0800 Subject: [PATCH 04/52] [Docs] Fix Building Spark link text Author: Nicholas Chammas Closes #4312 from nchammas/patch-2 and squashes the following commits: 9d943aa [Nicholas Chammas] [Docs] Fix Building Spark link text --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 16628bd406775..af02339578195 100644 --- a/README.md +++ b/README.md @@ -26,7 +26,7 @@ To build Spark and its example programs, run: (You do not need to do this if you downloaded a pre-built package.) More detailed documentation is available from the project site, at -["Building Spark with Maven"](http://spark.apache.org/docs/latest/building-spark.html). +["Building Spark"](http://spark.apache.org/docs/latest/building-spark.html). ## Interactive Scala Shell From 62a93a1698e8d0a667eb1718ba75dcfc86eabaaf Mon Sep 17 00:00:00 2001 From: Xutingjun <1039320815@qq.com> Date: Mon, 2 Feb 2015 12:37:51 -0800 Subject: [PATCH 05/52] [SPARK-5530] Add executor container to executorIdToContainer when call killExecutor method, it will only go to the else branch, because the variable executorIdToContainer never be put any value. Author: Xutingjun <1039320815@qq.com> Closes #4309 from XuTingjun/dynamicAllocator and squashes the following commits: c823418 [Xutingjun] fix bugwq --- .../main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala | 1 + 1 file changed, 1 insertion(+) diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala index 3849586c6111e..040406c15030e 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala @@ -300,6 +300,7 @@ private[yarn] class YarnAllocator( assert(container.getResource.getMemory >= resource.getMemory) logInfo("Launching container %s for on host %s".format(containerId, executorHostname)) + executorIdToContainer(executorId) = container val containerSet = allocatedHostToContainersMap.getOrElseUpdate(executorHostname, new HashSet[ContainerId]) From 683e938242e29a0d584452e5230b4168b85bdab2 Mon Sep 17 00:00:00 2001 From: Liang-Chi Hsieh Date: Mon, 2 Feb 2015 13:53:55 -0800 Subject: [PATCH 06/52] [SPARK-5212][SQL] Add support of schema-less, custom field delimiter and SerDe for HiveQL transform This pr adds the support of schema-less syntax, custom field delimiter and SerDe for HiveQL's transform. Author: Liang-Chi Hsieh Closes #4014 from viirya/schema_less_trans and squashes the following commits: ac2d1fe [Liang-Chi Hsieh] Refactor codes for comments. a137933 [Liang-Chi Hsieh] Merge remote-tracking branch 'upstream/master' into schema_less_trans aa10fbd [Liang-Chi Hsieh] Add Hive golden answer files again. 575f695 [Liang-Chi Hsieh] Add Hive golden answer files for new unit tests. a422562 [Liang-Chi Hsieh] Use createQueryTest for unit tests and remove unnecessary imports. ccb71e3 [Liang-Chi Hsieh] Refactor codes for comments. 37bd391 [Liang-Chi Hsieh] Merge remote-tracking branch 'upstream/master' into schema_less_trans 6000889 [Liang-Chi Hsieh] Wrap input and output schema into ScriptInputOutputSchema. 21727f7 [Liang-Chi Hsieh] Move schema-less output to proper place. Use multilines instead of a long line SQL. 9a6dc04 [Liang-Chi Hsieh] setRecordReaderID is introduced in 0.13.1, use reflection API to call it. 7a14f31 [Liang-Chi Hsieh] Fix bug. 799b5e1 [Liang-Chi Hsieh] Call getSerializedClass instead of using Text. be2c3fc [Liang-Chi Hsieh] Fix style. 32d3046 [Liang-Chi Hsieh] Add SerDe support. ab22f7b [Liang-Chi Hsieh] Fix style. 7a48e42 [Liang-Chi Hsieh] Add support of custom field delimiter. b1729d9 [Liang-Chi Hsieh] Fix style. ccee49e [Liang-Chi Hsieh] Add unit test. f561c37 [Liang-Chi Hsieh] Add support of schema-less script transformation. --- .../plans/logical/ScriptTransformation.scala | 10 +- .../org/apache/spark/sql/hive/HiveQl.scala | 59 ++- .../spark/sql/hive/HiveStrategies.scala | 4 +- .../hive/execution/ScriptTransformation.scala | 220 +++++++- ...ansform-0-d5738de14dd6e29da712ec3318f4118f | 500 ++++++++++++++++++ ...ansform-1-49624ef4e2c3cc2040c06660b926219b | 500 ++++++++++++++++++ ...h SerDe-0-cdc393f3914c879787efe523f692b1e0 | 500 ++++++++++++++++++ ... SerDe3-0-58a8b7eb07a949bc44dccb723222957f | 500 ++++++++++++++++++ ... SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 | 500 ++++++++++++++++++ ...limiter-0-703cca3c02ced422feb11dc13b744484 | 500 ++++++++++++++++++ ...limiter-0-82639dda9ba42df817466dffe2929174 | 500 ++++++++++++++++++ ...imiter2-0-e8713b21483e1efb78ee90b61530479b | 500 ++++++++++++++++++ ...imiter2-0-e8d2b2e60551f69bfb44e555f5cff064 | 500 ++++++++++++++++++ ...imiter3-0-d4f4f471819345e9ce1964e281ea5289 | 500 ++++++++++++++++++ .../sql/hive/execution/HiveQuerySuite.scala | 76 ++- .../org/apache/spark/sql/hive/Shim12.scala | 6 +- .../org/apache/spark/sql/hive/Shim13.scala | 19 +- 17 files changed, 5360 insertions(+), 34 deletions(-) create mode 100644 sql/hive/src/test/resources/golden/schema-less transform-0-d5738de14dd6e29da712ec3318f4118f create mode 100644 sql/hive/src/test/resources/golden/schema-less transform-1-49624ef4e2c3cc2040c06660b926219b create mode 100644 sql/hive/src/test/resources/golden/transform with SerDe-0-cdc393f3914c879787efe523f692b1e0 create mode 100644 sql/hive/src/test/resources/golden/transform with SerDe3-0-58a8b7eb07a949bc44dccb723222957f create mode 100644 sql/hive/src/test/resources/golden/transform with SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter-0-703cca3c02ced422feb11dc13b744484 create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter-0-82639dda9ba42df817466dffe2929174 create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8713b21483e1efb78ee90b61530479b create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8d2b2e60551f69bfb44e555f5cff064 create mode 100644 sql/hive/src/test/resources/golden/transform with custom field delimiter3-0-d4f4f471819345e9ce1964e281ea5289 diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/ScriptTransformation.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/ScriptTransformation.scala index 4460c86ed9026..cfe2c7a39a17c 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/ScriptTransformation.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/plans/logical/ScriptTransformation.scala @@ -25,9 +25,17 @@ import org.apache.spark.sql.catalyst.expressions.{Attribute, Expression} * @param input the set of expression that should be passed to the script. * @param script the command that should be executed. * @param output the attributes that are produced by the script. + * @param ioschema the input and output schema applied in the execution of the script. */ case class ScriptTransformation( input: Seq[Expression], script: String, output: Seq[Attribute], - child: LogicalPlan) extends UnaryNode + child: LogicalPlan, + ioschema: ScriptInputOutputSchema) extends UnaryNode + +/** + * A placeholder for implementation specific input and output properties when passing data + * to a script. For example, in Hive this would specify which SerDes to use. + */ +trait ScriptInputOutputSchema diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala index 30a64b48d7951..ab305e1f82a55 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala @@ -33,7 +33,7 @@ import org.apache.spark.sql.catalyst.plans._ import org.apache.spark.sql.catalyst.plans.logical import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.execution.ExplainCommand -import org.apache.spark.sql.hive.execution.{HiveNativeCommand, DropTable, AnalyzeTable} +import org.apache.spark.sql.hive.execution.{HiveNativeCommand, DropTable, AnalyzeTable, HiveScriptIOSchema} import org.apache.spark.sql.types._ /* Implicit conversions */ @@ -627,29 +627,64 @@ https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C case Token("TOK_SELEXPR", Token("TOK_TRANSFORM", Token("TOK_EXPLIST", inputExprs) :: - Token("TOK_SERDE", Nil) :: + Token("TOK_SERDE", inputSerdeClause) :: Token("TOK_RECORDWRITER", writerClause) :: // TODO: Need to support other types of (in/out)put Token(script, Nil) :: - Token("TOK_SERDE", serdeClause) :: + Token("TOK_SERDE", outputSerdeClause) :: Token("TOK_RECORDREADER", readerClause) :: - outputClause :: Nil) :: Nil) => - - val output = outputClause match { - case Token("TOK_ALIASLIST", aliases) => - aliases.map { case Token(name, Nil) => AttributeReference(name, StringType)() } - case Token("TOK_TABCOLLIST", attributes) => - attributes.map { case Token("TOK_TABCOL", Token(name, Nil) :: dataType :: Nil) => - AttributeReference(name, nodeToDataType(dataType))() } + outputClause) :: Nil) => + + val (output, schemaLess) = outputClause match { + case Token("TOK_ALIASLIST", aliases) :: Nil => + (aliases.map { case Token(name, Nil) => AttributeReference(name, StringType)() }, + false) + case Token("TOK_TABCOLLIST", attributes) :: Nil => + (attributes.map { case Token("TOK_TABCOL", Token(name, Nil) :: dataType :: Nil) => + AttributeReference(name, nodeToDataType(dataType))() }, false) + case Nil => + (List(AttributeReference("key", StringType)(), + AttributeReference("value", StringType)()), true) } + + def matchSerDe(clause: Seq[ASTNode]) = clause match { + case Token("TOK_SERDEPROPS", propsClause) :: Nil => + val rowFormat = propsClause.map { + case Token(name, Token(value, Nil) :: Nil) => (name, value) + } + (rowFormat, "", Nil) + + case Token("TOK_SERDENAME", Token(serdeClass, Nil) :: Nil) :: Nil => + (Nil, serdeClass, Nil) + + case Token("TOK_SERDENAME", Token(serdeClass, Nil) :: + Token("TOK_TABLEPROPERTIES", + Token("TOK_TABLEPROPLIST", propsClause) :: Nil) :: Nil) :: Nil => + val serdeProps = propsClause.map { + case Token("TOK_TABLEPROPERTY", Token(name, Nil) :: Token(value, Nil) :: Nil) => + (name, value) + } + (Nil, serdeClass, serdeProps) + + case Nil => (Nil, "", Nil) + } + + val (inRowFormat, inSerdeClass, inSerdeProps) = matchSerDe(inputSerdeClause) + val (outRowFormat, outSerdeClass, outSerdeProps) = matchSerDe(outputSerdeClause) + val unescapedScript = BaseSemanticAnalyzer.unescapeSQLString(script) + val schema = HiveScriptIOSchema( + inRowFormat, outRowFormat, + inSerdeClass, outSerdeClass, + inSerdeProps, outSerdeProps, schemaLess) + Some( logical.ScriptTransformation( inputExprs.map(nodeToExpr), unescapedScript, output, - withWhere)) + withWhere, schema)) case _ => None } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala index ace9329cd5821..83244ce1e372a 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala @@ -166,8 +166,8 @@ private[hive] trait HiveStrategies { object Scripts extends Strategy { def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match { - case logical.ScriptTransformation(input, script, output, child) => - ScriptTransformation(input, script, output, planLater(child))(hiveContext) :: Nil + case logical.ScriptTransformation(input, script, output, child, schema: HiveScriptIOSchema) => + ScriptTransformation(input, script, output, planLater(child), schema)(hiveContext) :: Nil case _ => Nil } } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala index 0c8f676e9c5c8..c54fbb6e24690 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/ScriptTransformation.scala @@ -18,11 +18,26 @@ package org.apache.spark.sql.hive.execution import java.io.{BufferedReader, InputStreamReader} +import java.io.{DataInputStream, DataOutputStream, EOFException} +import java.util.Properties + +import org.apache.hadoop.hive.serde.serdeConstants +import org.apache.hadoop.hive.serde2.AbstractSerDe +import org.apache.hadoop.hive.serde2.Serializer +import org.apache.hadoop.hive.serde2.Deserializer +import org.apache.hadoop.hive.serde2.objectinspector._ +import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory.ObjectInspectorOptions +import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorUtils.ObjectInspectorCopyOption import org.apache.spark.annotation.DeveloperApi import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.plans.logical.ScriptInputOutputSchema import org.apache.spark.sql.execution._ -import org.apache.spark.sql.hive.HiveContext +import org.apache.spark.sql.types.DataType +import org.apache.spark.sql.hive.{HiveContext, HiveInspectors} +import org.apache.spark.sql.hive.HiveShim._ +import org.apache.spark.util.Utils + /* Implicit conversions */ import scala.collection.JavaConversions._ @@ -40,7 +55,8 @@ case class ScriptTransformation( input: Seq[Expression], script: String, output: Seq[Attribute], - child: SparkPlan)(@transient sc: HiveContext) + child: SparkPlan, + ioschema: HiveScriptIOSchema)(@transient sc: HiveContext) extends UnaryNode { override def otherCopyArgs = sc :: Nil @@ -53,28 +69,202 @@ case class ScriptTransformation( val inputStream = proc.getInputStream val outputStream = proc.getOutputStream val reader = new BufferedReader(new InputStreamReader(inputStream)) + + val (outputSerde, outputSoi) = ioschema.initOutputSerDe(output) + + val iterator: Iterator[Row] = new Iterator[Row] with HiveInspectors { + var cacheRow: Row = null + var curLine: String = null + var eof: Boolean = false + + override def hasNext: Boolean = { + if (outputSerde == null) { + if (curLine == null) { + curLine = reader.readLine() + curLine != null + } else { + true + } + } else { + !eof + } + } + + def deserialize(): Row = { + if (cacheRow != null) return cacheRow + + val mutableRow = new SpecificMutableRow(output.map(_.dataType)) + try { + val dataInputStream = new DataInputStream(inputStream) + val writable = outputSerde.getSerializedClass().newInstance + writable.readFields(dataInputStream) + + val raw = outputSerde.deserialize(writable) + val dataList = outputSoi.getStructFieldsDataAsList(raw) + val fieldList = outputSoi.getAllStructFieldRefs() + + var i = 0 + dataList.foreach( element => { + if (element == null) { + mutableRow.setNullAt(i) + } else { + mutableRow(i) = unwrap(element, fieldList(i).getFieldObjectInspector) + } + i += 1 + }) + return mutableRow + } catch { + case e: EOFException => + eof = true + return null + } + } - // TODO: This should be exposed as an iterator instead of reading in all the data at once. - val outputLines = collection.mutable.ArrayBuffer[Row]() - val readerThread = new Thread("Transform OutputReader") { - override def run() { - var curLine = reader.readLine() - while (curLine != null) { - // TODO: Use SerDe - outputLines += new GenericRow(curLine.split("\t").asInstanceOf[Array[Any]]) + override def next(): Row = { + if (!hasNext) { + throw new NoSuchElementException + } + + if (outputSerde == null) { + val prevLine = curLine curLine = reader.readLine() + + if (!ioschema.schemaLess) { + new GenericRow( + prevLine.split(ioschema.outputRowFormatMap("TOK_TABLEROWFORMATFIELD")) + .asInstanceOf[Array[Any]]) + } else { + new GenericRow( + prevLine.split(ioschema.outputRowFormatMap("TOK_TABLEROWFORMATFIELD"), 2) + .asInstanceOf[Array[Any]]) + } + } else { + val ret = deserialize() + if (!eof) { + cacheRow = null + cacheRow = deserialize() + } + ret } } } - readerThread.start() + + val (inputSerde, inputSoi) = ioschema.initInputSerDe(input) + val dataOutputStream = new DataOutputStream(outputStream) val outputProjection = new InterpretedProjection(input, child.output) + iter .map(outputProjection) - // TODO: Use SerDe - .map(_.mkString("", "\t", "\n").getBytes("utf-8")).foreach(outputStream.write) + .foreach { row => + if (inputSerde == null) { + val data = row.mkString("", ioschema.inputRowFormatMap("TOK_TABLEROWFORMATFIELD"), + ioschema.inputRowFormatMap("TOK_TABLEROWFORMATLINES")).getBytes("utf-8") + + outputStream.write(data) + } else { + val writable = inputSerde.serialize(row.asInstanceOf[GenericRow].values, inputSoi) + prepareWritable(writable).write(dataOutputStream) + } + } outputStream.close() - readerThread.join() - outputLines.toIterator + iterator + } + } +} + +/** + * The wrapper class of Hive input and output schema properties + */ +case class HiveScriptIOSchema ( + inputRowFormat: Seq[(String, String)], + outputRowFormat: Seq[(String, String)], + inputSerdeClass: String, + outputSerdeClass: String, + inputSerdeProps: Seq[(String, String)], + outputSerdeProps: Seq[(String, String)], + schemaLess: Boolean) extends ScriptInputOutputSchema with HiveInspectors { + + val defaultFormat = Map(("TOK_TABLEROWFORMATFIELD", "\t"), + ("TOK_TABLEROWFORMATLINES", "\n")) + + val inputRowFormatMap = inputRowFormat.toMap.withDefault((k) => defaultFormat(k)) + val outputRowFormatMap = outputRowFormat.toMap.withDefault((k) => defaultFormat(k)) + + + def initInputSerDe(input: Seq[Expression]): (AbstractSerDe, ObjectInspector) = { + val (columns, columnTypes) = parseAttrs(input) + val serde = initSerDe(inputSerdeClass, columns, columnTypes, inputSerdeProps) + (serde, initInputSoi(serde, columns, columnTypes)) + } + + def initOutputSerDe(output: Seq[Attribute]): (AbstractSerDe, StructObjectInspector) = { + val (columns, columnTypes) = parseAttrs(output) + val serde = initSerDe(outputSerdeClass, columns, columnTypes, outputSerdeProps) + (serde, initOutputputSoi(serde)) + } + + def parseAttrs(attrs: Seq[Expression]): (Seq[String], Seq[DataType]) = { + + val columns = attrs.map { + case aref: AttributeReference => aref.name + case e: NamedExpression => e.name + case _ => null + } + + val columnTypes = attrs.map { + case aref: AttributeReference => aref.dataType + case e: NamedExpression => e.dataType + case _ => null + } + + (columns, columnTypes) + } + + def initSerDe(serdeClassName: String, columns: Seq[String], + columnTypes: Seq[DataType], serdeProps: Seq[(String, String)]): AbstractSerDe = { + + val serde: AbstractSerDe = if (serdeClassName != "") { + val trimed_class = serdeClassName.split("'")(1) + Utils.classForName(trimed_class) + .newInstance.asInstanceOf[AbstractSerDe] + } else { + null + } + + if (serde != null) { + val columnTypesNames = columnTypes.map(_.toTypeInfo.getTypeName()).mkString(",") + + var propsMap = serdeProps.map(kv => { + (kv._1.split("'")(1), kv._2.split("'")(1)) + }).toMap + (serdeConstants.LIST_COLUMNS -> columns.mkString(",")) + propsMap = propsMap + (serdeConstants.LIST_COLUMN_TYPES -> columnTypesNames) + + val properties = new Properties() + properties.putAll(propsMap) + serde.initialize(null, properties) + } + + serde + } + + def initInputSoi(inputSerde: AbstractSerDe, columns: Seq[String], columnTypes: Seq[DataType]) + : ObjectInspector = { + + if (inputSerde != null) { + val fieldObjectInspectors = columnTypes.map(toInspector(_)) + ObjectInspectorFactory + .getStandardStructObjectInspector(columns, fieldObjectInspectors) + .asInstanceOf[ObjectInspector] + } else { + null + } + } + + def initOutputputSoi(outputSerde: AbstractSerDe): StructObjectInspector = { + if (outputSerde != null) { + outputSerde.getObjectInspector().asInstanceOf[StructObjectInspector] + } else { + null } } } diff --git a/sql/hive/src/test/resources/golden/schema-less transform-0-d5738de14dd6e29da712ec3318f4118f b/sql/hive/src/test/resources/golden/schema-less transform-0-d5738de14dd6e29da712ec3318f4118f new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/schema-less transform-0-d5738de14dd6e29da712ec3318f4118f @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/schema-less transform-1-49624ef4e2c3cc2040c06660b926219b b/sql/hive/src/test/resources/golden/schema-less transform-1-49624ef4e2c3cc2040c06660b926219b new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/schema-less transform-1-49624ef4e2c3cc2040c06660b926219b @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with SerDe-0-cdc393f3914c879787efe523f692b1e0 b/sql/hive/src/test/resources/golden/transform with SerDe-0-cdc393f3914c879787efe523f692b1e0 new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with SerDe-0-cdc393f3914c879787efe523f692b1e0 @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with SerDe3-0-58a8b7eb07a949bc44dccb723222957f b/sql/hive/src/test/resources/golden/transform with SerDe3-0-58a8b7eb07a949bc44dccb723222957f new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with SerDe3-0-58a8b7eb07a949bc44dccb723222957f @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 b/sql/hive/src/test/resources/golden/transform with SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with SerDe4-0-ba9ad2499a7408cb350c7abafaf9ea97 @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-703cca3c02ced422feb11dc13b744484 b/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-703cca3c02ced422feb11dc13b744484 new file mode 100644 index 0000000000000..e34118512c1d7 --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-703cca3c02ced422feb11dc13b744484 @@ -0,0 +1,500 @@ +238 +86 +311 +27 +165 +409 +255 +278 +98 +484 +265 +193 +401 +150 +273 +224 +369 +66 +128 +213 +146 +406 +429 +374 +152 +469 +145 +495 +37 +327 +281 +277 +209 +15 +82 +403 +166 +417 +430 +252 +292 +219 +287 +153 +193 +338 +446 +459 +394 +237 +482 +174 +413 +494 +207 +199 +466 +208 +174 +399 +396 +247 +417 +489 +162 +377 +397 +309 +365 +266 +439 +342 +367 +325 +167 +195 +475 +17 +113 +155 +203 +339 +0 +455 +128 +311 +316 +57 +302 +205 +149 +438 +345 +129 +170 +20 +489 +157 +378 +221 +92 +111 +47 +72 +4 +280 +35 +427 +277 +208 +356 +399 +169 +382 +498 +125 +386 +437 +469 +192 +286 +187 +176 +54 +459 +51 +138 +103 +239 +213 +216 +430 +278 +176 +289 +221 +65 +318 +332 +311 +275 +137 +241 +83 +333 +180 +284 +12 +230 +181 +67 +260 +404 +384 +489 +353 +373 +272 +138 +217 +84 +348 +466 +58 +8 +411 +230 +208 +348 +24 +463 +431 +179 +172 +42 +129 +158 +119 +496 +0 +322 +197 +468 +393 +454 +100 +298 +199 +191 +418 +96 +26 +165 +327 +230 +205 +120 +131 +51 +404 +43 +436 +156 +469 +468 +308 +95 +196 +288 +481 +457 +98 +282 +197 +187 +318 +318 +409 +470 +137 +369 +316 +169 +413 +85 +77 +0 +490 +87 +364 +179 +118 +134 +395 +282 +138 +238 +419 +15 +118 +72 +90 +307 +19 +435 +10 +277 +273 +306 +224 +309 +389 +327 +242 +369 +392 +272 +331 +401 +242 +452 +177 +226 +5 +497 +402 +396 +317 +395 +58 +35 +336 +95 +11 +168 +34 +229 +233 +143 +472 +322 +498 +160 +195 +42 +321 +430 +119 +489 +458 +78 +76 +41 +223 +492 +149 +449 +218 +228 +138 +453 +30 +209 +64 +468 +76 +74 +342 +69 +230 +33 +368 +103 +296 +113 +216 +367 +344 +167 +274 +219 +239 +485 +116 +223 +256 +263 +70 +487 +480 +401 +288 +191 +5 +244 +438 +128 +467 +432 +202 +316 +229 +469 +463 +280 +2 +35 +283 +331 +235 +80 +44 +193 +321 +335 +104 +466 +366 +175 +403 +483 +53 +105 +257 +406 +409 +190 +406 +401 +114 +258 +90 +203 +262 +348 +424 +12 +396 +201 +217 +164 +431 +454 +478 +298 +125 +431 +164 +424 +187 +382 +5 +70 +397 +480 +291 +24 +351 +255 +104 +70 +163 +438 +119 +414 +200 +491 +237 +439 +360 +248 +479 +305 +417 +199 +444 +120 +429 +169 +443 +323 +325 +277 +230 +478 +178 +468 +310 +317 +333 +493 +460 +207 +249 +265 +480 +83 +136 +353 +172 +214 +462 +233 +406 +133 +175 +189 +454 +375 +401 +421 +407 +384 +256 +26 +134 +67 +384 +379 +18 +462 +492 +100 +298 +9 +341 +498 +146 +458 +362 +186 +285 +348 +167 +18 +273 +183 +281 +344 +97 +469 +315 +84 +28 +37 +448 +152 +348 +307 +194 +414 +477 +222 +126 +90 +169 +403 +400 +200 +97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-82639dda9ba42df817466dffe2929174 b/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-82639dda9ba42df817466dffe2929174 new file mode 100644 index 0000000000000..e34118512c1d7 --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter-0-82639dda9ba42df817466dffe2929174 @@ -0,0 +1,500 @@ +238 +86 +311 +27 +165 +409 +255 +278 +98 +484 +265 +193 +401 +150 +273 +224 +369 +66 +128 +213 +146 +406 +429 +374 +152 +469 +145 +495 +37 +327 +281 +277 +209 +15 +82 +403 +166 +417 +430 +252 +292 +219 +287 +153 +193 +338 +446 +459 +394 +237 +482 +174 +413 +494 +207 +199 +466 +208 +174 +399 +396 +247 +417 +489 +162 +377 +397 +309 +365 +266 +439 +342 +367 +325 +167 +195 +475 +17 +113 +155 +203 +339 +0 +455 +128 +311 +316 +57 +302 +205 +149 +438 +345 +129 +170 +20 +489 +157 +378 +221 +92 +111 +47 +72 +4 +280 +35 +427 +277 +208 +356 +399 +169 +382 +498 +125 +386 +437 +469 +192 +286 +187 +176 +54 +459 +51 +138 +103 +239 +213 +216 +430 +278 +176 +289 +221 +65 +318 +332 +311 +275 +137 +241 +83 +333 +180 +284 +12 +230 +181 +67 +260 +404 +384 +489 +353 +373 +272 +138 +217 +84 +348 +466 +58 +8 +411 +230 +208 +348 +24 +463 +431 +179 +172 +42 +129 +158 +119 +496 +0 +322 +197 +468 +393 +454 +100 +298 +199 +191 +418 +96 +26 +165 +327 +230 +205 +120 +131 +51 +404 +43 +436 +156 +469 +468 +308 +95 +196 +288 +481 +457 +98 +282 +197 +187 +318 +318 +409 +470 +137 +369 +316 +169 +413 +85 +77 +0 +490 +87 +364 +179 +118 +134 +395 +282 +138 +238 +419 +15 +118 +72 +90 +307 +19 +435 +10 +277 +273 +306 +224 +309 +389 +327 +242 +369 +392 +272 +331 +401 +242 +452 +177 +226 +5 +497 +402 +396 +317 +395 +58 +35 +336 +95 +11 +168 +34 +229 +233 +143 +472 +322 +498 +160 +195 +42 +321 +430 +119 +489 +458 +78 +76 +41 +223 +492 +149 +449 +218 +228 +138 +453 +30 +209 +64 +468 +76 +74 +342 +69 +230 +33 +368 +103 +296 +113 +216 +367 +344 +167 +274 +219 +239 +485 +116 +223 +256 +263 +70 +487 +480 +401 +288 +191 +5 +244 +438 +128 +467 +432 +202 +316 +229 +469 +463 +280 +2 +35 +283 +331 +235 +80 +44 +193 +321 +335 +104 +466 +366 +175 +403 +483 +53 +105 +257 +406 +409 +190 +406 +401 +114 +258 +90 +203 +262 +348 +424 +12 +396 +201 +217 +164 +431 +454 +478 +298 +125 +431 +164 +424 +187 +382 +5 +70 +397 +480 +291 +24 +351 +255 +104 +70 +163 +438 +119 +414 +200 +491 +237 +439 +360 +248 +479 +305 +417 +199 +444 +120 +429 +169 +443 +323 +325 +277 +230 +478 +178 +468 +310 +317 +333 +493 +460 +207 +249 +265 +480 +83 +136 +353 +172 +214 +462 +233 +406 +133 +175 +189 +454 +375 +401 +421 +407 +384 +256 +26 +134 +67 +384 +379 +18 +462 +492 +100 +298 +9 +341 +498 +146 +458 +362 +186 +285 +348 +167 +18 +273 +183 +281 +344 +97 +469 +315 +84 +28 +37 +448 +152 +348 +307 +194 +414 +477 +222 +126 +90 +169 +403 +400 +200 +97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8713b21483e1efb78ee90b61530479b b/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8713b21483e1efb78ee90b61530479b new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8713b21483e1efb78ee90b61530479b @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8d2b2e60551f69bfb44e555f5cff064 b/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8d2b2e60551f69bfb44e555f5cff064 new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter2-0-e8d2b2e60551f69bfb44e555f5cff064 @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/resources/golden/transform with custom field delimiter3-0-d4f4f471819345e9ce1964e281ea5289 b/sql/hive/src/test/resources/golden/transform with custom field delimiter3-0-d4f4f471819345e9ce1964e281ea5289 new file mode 100644 index 0000000000000..7aae61e5eb82f --- /dev/null +++ b/sql/hive/src/test/resources/golden/transform with custom field delimiter3-0-d4f4f471819345e9ce1964e281ea5289 @@ -0,0 +1,500 @@ +238 val_238 +86 val_86 +311 val_311 +27 val_27 +165 val_165 +409 val_409 +255 val_255 +278 val_278 +98 val_98 +484 val_484 +265 val_265 +193 val_193 +401 val_401 +150 val_150 +273 val_273 +224 val_224 +369 val_369 +66 val_66 +128 val_128 +213 val_213 +146 val_146 +406 val_406 +429 val_429 +374 val_374 +152 val_152 +469 val_469 +145 val_145 +495 val_495 +37 val_37 +327 val_327 +281 val_281 +277 val_277 +209 val_209 +15 val_15 +82 val_82 +403 val_403 +166 val_166 +417 val_417 +430 val_430 +252 val_252 +292 val_292 +219 val_219 +287 val_287 +153 val_153 +193 val_193 +338 val_338 +446 val_446 +459 val_459 +394 val_394 +237 val_237 +482 val_482 +174 val_174 +413 val_413 +494 val_494 +207 val_207 +199 val_199 +466 val_466 +208 val_208 +174 val_174 +399 val_399 +396 val_396 +247 val_247 +417 val_417 +489 val_489 +162 val_162 +377 val_377 +397 val_397 +309 val_309 +365 val_365 +266 val_266 +439 val_439 +342 val_342 +367 val_367 +325 val_325 +167 val_167 +195 val_195 +475 val_475 +17 val_17 +113 val_113 +155 val_155 +203 val_203 +339 val_339 +0 val_0 +455 val_455 +128 val_128 +311 val_311 +316 val_316 +57 val_57 +302 val_302 +205 val_205 +149 val_149 +438 val_438 +345 val_345 +129 val_129 +170 val_170 +20 val_20 +489 val_489 +157 val_157 +378 val_378 +221 val_221 +92 val_92 +111 val_111 +47 val_47 +72 val_72 +4 val_4 +280 val_280 +35 val_35 +427 val_427 +277 val_277 +208 val_208 +356 val_356 +399 val_399 +169 val_169 +382 val_382 +498 val_498 +125 val_125 +386 val_386 +437 val_437 +469 val_469 +192 val_192 +286 val_286 +187 val_187 +176 val_176 +54 val_54 +459 val_459 +51 val_51 +138 val_138 +103 val_103 +239 val_239 +213 val_213 +216 val_216 +430 val_430 +278 val_278 +176 val_176 +289 val_289 +221 val_221 +65 val_65 +318 val_318 +332 val_332 +311 val_311 +275 val_275 +137 val_137 +241 val_241 +83 val_83 +333 val_333 +180 val_180 +284 val_284 +12 val_12 +230 val_230 +181 val_181 +67 val_67 +260 val_260 +404 val_404 +384 val_384 +489 val_489 +353 val_353 +373 val_373 +272 val_272 +138 val_138 +217 val_217 +84 val_84 +348 val_348 +466 val_466 +58 val_58 +8 val_8 +411 val_411 +230 val_230 +208 val_208 +348 val_348 +24 val_24 +463 val_463 +431 val_431 +179 val_179 +172 val_172 +42 val_42 +129 val_129 +158 val_158 +119 val_119 +496 val_496 +0 val_0 +322 val_322 +197 val_197 +468 val_468 +393 val_393 +454 val_454 +100 val_100 +298 val_298 +199 val_199 +191 val_191 +418 val_418 +96 val_96 +26 val_26 +165 val_165 +327 val_327 +230 val_230 +205 val_205 +120 val_120 +131 val_131 +51 val_51 +404 val_404 +43 val_43 +436 val_436 +156 val_156 +469 val_469 +468 val_468 +308 val_308 +95 val_95 +196 val_196 +288 val_288 +481 val_481 +457 val_457 +98 val_98 +282 val_282 +197 val_197 +187 val_187 +318 val_318 +318 val_318 +409 val_409 +470 val_470 +137 val_137 +369 val_369 +316 val_316 +169 val_169 +413 val_413 +85 val_85 +77 val_77 +0 val_0 +490 val_490 +87 val_87 +364 val_364 +179 val_179 +118 val_118 +134 val_134 +395 val_395 +282 val_282 +138 val_138 +238 val_238 +419 val_419 +15 val_15 +118 val_118 +72 val_72 +90 val_90 +307 val_307 +19 val_19 +435 val_435 +10 val_10 +277 val_277 +273 val_273 +306 val_306 +224 val_224 +309 val_309 +389 val_389 +327 val_327 +242 val_242 +369 val_369 +392 val_392 +272 val_272 +331 val_331 +401 val_401 +242 val_242 +452 val_452 +177 val_177 +226 val_226 +5 val_5 +497 val_497 +402 val_402 +396 val_396 +317 val_317 +395 val_395 +58 val_58 +35 val_35 +336 val_336 +95 val_95 +11 val_11 +168 val_168 +34 val_34 +229 val_229 +233 val_233 +143 val_143 +472 val_472 +322 val_322 +498 val_498 +160 val_160 +195 val_195 +42 val_42 +321 val_321 +430 val_430 +119 val_119 +489 val_489 +458 val_458 +78 val_78 +76 val_76 +41 val_41 +223 val_223 +492 val_492 +149 val_149 +449 val_449 +218 val_218 +228 val_228 +138 val_138 +453 val_453 +30 val_30 +209 val_209 +64 val_64 +468 val_468 +76 val_76 +74 val_74 +342 val_342 +69 val_69 +230 val_230 +33 val_33 +368 val_368 +103 val_103 +296 val_296 +113 val_113 +216 val_216 +367 val_367 +344 val_344 +167 val_167 +274 val_274 +219 val_219 +239 val_239 +485 val_485 +116 val_116 +223 val_223 +256 val_256 +263 val_263 +70 val_70 +487 val_487 +480 val_480 +401 val_401 +288 val_288 +191 val_191 +5 val_5 +244 val_244 +438 val_438 +128 val_128 +467 val_467 +432 val_432 +202 val_202 +316 val_316 +229 val_229 +469 val_469 +463 val_463 +280 val_280 +2 val_2 +35 val_35 +283 val_283 +331 val_331 +235 val_235 +80 val_80 +44 val_44 +193 val_193 +321 val_321 +335 val_335 +104 val_104 +466 val_466 +366 val_366 +175 val_175 +403 val_403 +483 val_483 +53 val_53 +105 val_105 +257 val_257 +406 val_406 +409 val_409 +190 val_190 +406 val_406 +401 val_401 +114 val_114 +258 val_258 +90 val_90 +203 val_203 +262 val_262 +348 val_348 +424 val_424 +12 val_12 +396 val_396 +201 val_201 +217 val_217 +164 val_164 +431 val_431 +454 val_454 +478 val_478 +298 val_298 +125 val_125 +431 val_431 +164 val_164 +424 val_424 +187 val_187 +382 val_382 +5 val_5 +70 val_70 +397 val_397 +480 val_480 +291 val_291 +24 val_24 +351 val_351 +255 val_255 +104 val_104 +70 val_70 +163 val_163 +438 val_438 +119 val_119 +414 val_414 +200 val_200 +491 val_491 +237 val_237 +439 val_439 +360 val_360 +248 val_248 +479 val_479 +305 val_305 +417 val_417 +199 val_199 +444 val_444 +120 val_120 +429 val_429 +169 val_169 +443 val_443 +323 val_323 +325 val_325 +277 val_277 +230 val_230 +478 val_478 +178 val_178 +468 val_468 +310 val_310 +317 val_317 +333 val_333 +493 val_493 +460 val_460 +207 val_207 +249 val_249 +265 val_265 +480 val_480 +83 val_83 +136 val_136 +353 val_353 +172 val_172 +214 val_214 +462 val_462 +233 val_233 +406 val_406 +133 val_133 +175 val_175 +189 val_189 +454 val_454 +375 val_375 +401 val_401 +421 val_421 +407 val_407 +384 val_384 +256 val_256 +26 val_26 +134 val_134 +67 val_67 +384 val_384 +379 val_379 +18 val_18 +462 val_462 +492 val_492 +100 val_100 +298 val_298 +9 val_9 +341 val_341 +498 val_498 +146 val_146 +458 val_458 +362 val_362 +186 val_186 +285 val_285 +348 val_348 +167 val_167 +18 val_18 +273 val_273 +183 val_183 +281 val_281 +344 val_344 +97 val_97 +469 val_469 +315 val_315 +84 val_84 +28 val_28 +37 val_37 +448 val_448 +152 val_152 +348 val_348 +307 val_307 +194 val_194 +414 val_414 +477 val_477 +222 val_222 +126 val_126 +90 val_90 +169 val_169 +403 val_403 +400 val_400 +200 val_200 +97 val_97 diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala index 60619f5d99578..4c53b10ba96e9 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala @@ -63,7 +63,7 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { sql("SHOW TABLES") } } - + createQueryTest("! operator", """ |SELECT a FROM ( @@ -329,6 +329,80 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { createQueryTest("transform", "SELECT TRANSFORM (key) USING 'cat' AS (tKey) FROM src") + createQueryTest("schema-less transform", + """ + |SELECT TRANSFORM (key, value) USING 'cat' FROM src; + |SELECT TRANSFORM (*) USING 'cat' FROM src; + """.stripMargin) + + val delimiter = "'\t'" + + createQueryTest("transform with custom field delimiter", + s""" + |SELECT TRANSFORM (key) ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} + |USING 'cat' AS (tKey) ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} FROM src; + """.stripMargin.replaceAll("\n", " ")) + + createQueryTest("transform with custom field delimiter2", + s""" + |SELECT TRANSFORM (key, value) ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} + |USING 'cat' ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} FROM src; + """.stripMargin.replaceAll("\n", " ")) + + createQueryTest("transform with custom field delimiter3", + s""" + |SELECT TRANSFORM (*) ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} + |USING 'cat' ROW FORMAT DELIMITED FIELDS TERMINATED BY ${delimiter} FROM src; + """.stripMargin.replaceAll("\n", " ")) + + createQueryTest("transform with SerDe", + """ + |SELECT TRANSFORM (key, value) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' + |USING 'cat' AS (tKey, tValue) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' FROM src; + """.stripMargin.replaceAll("\n", " ")) + + test("transform with SerDe2") { + + sql("CREATE TABLE small_src(key INT, value STRING)") + sql("INSERT OVERWRITE TABLE small_src SELECT key, value FROM src LIMIT 10") + + val expected = sql("SELECT key FROM small_src").collect().head + val res = sql( + """ + |SELECT TRANSFORM (key) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.avro.AvroSerDe' + |WITH SERDEPROPERTIES ('avro.schema.literal'='{"namespace": + |"testing.hive.avro.serde","name": "src","type": "record","fields": + |[{"name":"key","type":"int"}]}') USING 'cat' AS (tKey INT) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.avro.AvroSerDe' WITH SERDEPROPERTIES + |('avro.schema.literal'='{"namespace": "testing.hive.avro.serde","name": + |"src","type": "record","fields": [{"name":"key","type":"int"}]}') + |FROM small_src + """.stripMargin.replaceAll("\n", " ")).collect().head + + assert(expected(0) === res(0)) + } + + createQueryTest("transform with SerDe3", + """ + |SELECT TRANSFORM (*) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' WITH SERDEPROPERTIES + |('serialization.last.column.takes.rest'='true') USING 'cat' AS (tKey, tValue) + |ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' + |WITH SERDEPROPERTIES ('serialization.last.column.takes.rest'='true') FROM src; + """.stripMargin.replaceAll("\n", " ")) + + createQueryTest("transform with SerDe4", + """ + |SELECT TRANSFORM (*) ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' WITH SERDEPROPERTIES + |('serialization.last.column.takes.rest'='true') USING 'cat' ROW FORMAT SERDE + |'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe' WITH SERDEPROPERTIES + |('serialization.last.column.takes.rest'='true') FROM src; + """.stripMargin.replaceAll("\n", " ")) + createQueryTest("LIKE", "SELECT * FROM src WHERE value LIKE '%1%'") diff --git a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala index c0b7741bc3e53..254919e8f6fdc 100644 --- a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala +++ b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala @@ -38,7 +38,7 @@ import org.apache.hadoop.hive.serde2.objectinspector.{ObjectInspector, Primitive import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector.PrimitiveCategory import org.apache.hadoop.hive.serde2.objectinspector.primitive.{HiveDecimalObjectInspector, PrimitiveObjectInspectorFactory} import org.apache.hadoop.hive.serde2.typeinfo.{TypeInfo, TypeInfoFactory} -import org.apache.hadoop.io.NullWritable +import org.apache.hadoop.io.{NullWritable, Writable} import org.apache.hadoop.mapred.InputFormat import org.apache.spark.sql.types.{Decimal, DecimalType} @@ -241,6 +241,10 @@ private[hive] object HiveShim { Decimal(hdoi.getPrimitiveJavaObject(data).bigDecimalValue()) } } + + def prepareWritable(w: Writable): Writable = { + w + } } class ShimFileSinkDesc(var dir: String, var tableInfo: TableDesc, var compressed: Boolean) diff --git a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala index c04cda7bf1537..45ca59ae56a38 100644 --- a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala +++ b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala @@ -19,13 +19,14 @@ package org.apache.spark.sql.hive import java.util.{ArrayList => JArrayList} import java.util.Properties +import java.rmi.server.UID import scala.collection.JavaConversions._ import scala.language.implicitConversions import org.apache.hadoop.conf.Configuration import org.apache.hadoop.fs.Path -import org.apache.hadoop.io.NullWritable +import org.apache.hadoop.io.{NullWritable, Writable} import org.apache.hadoop.mapred.InputFormat import org.apache.hadoop.hive.common.StatsSetupConst import org.apache.hadoop.hive.common.`type`.{HiveDecimal} @@ -39,6 +40,7 @@ import org.apache.hadoop.hive.serde2.objectinspector.primitive.{HiveDecimalObjec import org.apache.hadoop.hive.serde2.objectinspector.{PrimitiveObjectInspector, ObjectInspector} import org.apache.hadoop.hive.serde2.{Deserializer, ColumnProjectionUtils} import org.apache.hadoop.hive.serde2.{io => hiveIo} +import org.apache.hadoop.hive.serde2.avro.AvroGenericRecordWritable import org.apache.hadoop.{io => hadoopIo} import org.apache.spark.Logging @@ -395,10 +397,23 @@ private[hive] object HiveShim { Decimal(hdoi.getPrimitiveJavaObject(data).bigDecimalValue(), hdoi.precision(), hdoi.scale()) } } + + /* + * Bug introduced in hive-0.13. AvroGenericRecordWritable has a member recordReaderID that + * is needed to initialize before serialization. + */ + def prepareWritable(w: Writable): Writable = { + w match { + case w: AvroGenericRecordWritable => + w.setRecordReaderID(new UID()) + case _ => + } + w + } } /* - * Bug introdiced in hive-0.13. FileSinkDesc is serilizable, but its member path is not. + * Bug introduced in hive-0.13. FileSinkDesc is serilizable, but its member path is not. * Fix it through wrapper. */ class ShimFileSinkDesc(var dir: String, var tableInfo: TableDesc, var compressed: Boolean) From e908322cd5991e6cbdaaafb8cd494759dac01225 Mon Sep 17 00:00:00 2001 From: Iulian Dragos Date: Mon, 2 Feb 2015 14:00:33 -0800 Subject: [PATCH 07/52] [SPARK-4631][streaming][FIX] Wait for a receiver to start before publishing test data. MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit This fixes two sources of non-deterministic failures in this test: - wait for a receiver to be up before pushing data through MQTT - gracefully handle the case where the MQTT client is overloaded. There’s a hard-coded limit of 10 in-flight messages, and this test may hit it. Instead of crashing, we retry sending the message. Both of these are needed to make the test pass reliably on my machine. Author: Iulian Dragos Closes #4270 from dragos/issue/fix-flaky-test-SPARK-4631 and squashes the following commits: f66c482 [Iulian Dragos] [SPARK-4631][streaming] Wait for a receiver to start before publishing test data. d408a8e [Iulian Dragos] Install callback before connecting to MQTT broker. --- .../streaming/mqtt/MQTTInputDStream.scala | 26 +++++++------- .../streaming/mqtt/MQTTStreamSuite.scala | 35 +++++++++++++++++-- 2 files changed, 46 insertions(+), 15 deletions(-) diff --git a/external/mqtt/src/main/scala/org/apache/spark/streaming/mqtt/MQTTInputDStream.scala b/external/mqtt/src/main/scala/org/apache/spark/streaming/mqtt/MQTTInputDStream.scala index 77661f71ada21..1ef91dd49284f 100644 --- a/external/mqtt/src/main/scala/org/apache/spark/streaming/mqtt/MQTTInputDStream.scala +++ b/external/mqtt/src/main/scala/org/apache/spark/streaming/mqtt/MQTTInputDStream.scala @@ -55,14 +55,14 @@ class MQTTInputDStream( brokerUrl: String, topic: String, storageLevel: StorageLevel - ) extends ReceiverInputDStream[String](ssc_) with Logging { - + ) extends ReceiverInputDStream[String](ssc_) { + def getReceiver(): Receiver[String] = { new MQTTReceiver(brokerUrl, topic, storageLevel) } } -private[streaming] +private[streaming] class MQTTReceiver( brokerUrl: String, topic: String, @@ -72,21 +72,15 @@ class MQTTReceiver( def onStop() { } - + def onStart() { - // Set up persistence for messages + // Set up persistence for messages val persistence = new MemoryPersistence() // Initializing Mqtt Client specifying brokerUrl, clientID and MqttClientPersistance val client = new MqttClient(brokerUrl, MqttClient.generateClientId(), persistence) - // Connect to MqttBroker - client.connect() - - // Subscribe to Mqtt topic - client.subscribe(topic) - // Callback automatically triggers as and when new message arrives on specified topic val callback: MqttCallback = new MqttCallback() { @@ -103,7 +97,15 @@ class MQTTReceiver( } } - // Set up callback for MqttClient + // Set up callback for MqttClient. This needs to happen before + // connecting or subscribing, otherwise messages may be lost client.setCallback(callback) + + // Connect to MqttBroker + client.connect() + + // Subscribe to Mqtt topic + client.subscribe(topic) + } } diff --git a/external/mqtt/src/test/scala/org/apache/spark/streaming/mqtt/MQTTStreamSuite.scala b/external/mqtt/src/test/scala/org/apache/spark/streaming/mqtt/MQTTStreamSuite.scala index fe53a29cba0c9..e84adc088a680 100644 --- a/external/mqtt/src/test/scala/org/apache/spark/streaming/mqtt/MQTTStreamSuite.scala +++ b/external/mqtt/src/test/scala/org/apache/spark/streaming/mqtt/MQTTStreamSuite.scala @@ -18,6 +18,8 @@ package org.apache.spark.streaming.mqtt import java.net.{URI, ServerSocket} +import java.util.concurrent.CountDownLatch +import java.util.concurrent.TimeUnit import scala.concurrent.duration._ import scala.language.postfixOps @@ -32,6 +34,8 @@ import org.scalatest.concurrent.Eventually import org.apache.spark.streaming.{Milliseconds, StreamingContext} import org.apache.spark.storage.StorageLevel import org.apache.spark.streaming.dstream.ReceiverInputDStream +import org.apache.spark.streaming.scheduler.StreamingListener +import org.apache.spark.streaming.scheduler.StreamingListenerReceiverStarted import org.apache.spark.SparkConf import org.apache.spark.util.Utils @@ -67,7 +71,7 @@ class MQTTStreamSuite extends FunSuite with Eventually with BeforeAndAfter { val sendMessage = "MQTT demo for spark streaming" val receiveStream: ReceiverInputDStream[String] = MQTTUtils.createStream(ssc, "tcp:" + brokerUri, topic, StorageLevel.MEMORY_ONLY) - var receiveMessage: List[String] = List() + @volatile var receiveMessage: List[String] = List() receiveStream.foreachRDD { rdd => if (rdd.collect.length > 0) { receiveMessage = receiveMessage ::: List(rdd.first) @@ -75,6 +79,11 @@ class MQTTStreamSuite extends FunSuite with Eventually with BeforeAndAfter { } } ssc.start() + + // wait for the receiver to start before publishing data, or we risk failing + // the test nondeterministically. See SPARK-4631 + waitForReceiverToStart() + publishData(sendMessage) eventually(timeout(10000 milliseconds), interval(100 milliseconds)) { assert(sendMessage.equals(receiveMessage(0))) @@ -121,8 +130,14 @@ class MQTTStreamSuite extends FunSuite with Eventually with BeforeAndAfter { val message: MqttMessage = new MqttMessage(data.getBytes("utf-8")) message.setQos(1) message.setRetained(true) - for (i <- 0 to 100) { - msgTopic.publish(message) + + for (i <- 0 to 10) { + try { + msgTopic.publish(message) + } catch { + case e: MqttException if e.getReasonCode == MqttException.REASON_CODE_MAX_INFLIGHT => + Thread.sleep(50) // wait for Spark streaming to consume something from the message queue + } } } } finally { @@ -131,4 +146,18 @@ class MQTTStreamSuite extends FunSuite with Eventually with BeforeAndAfter { client = null } } + + /** + * Block until at least one receiver has started or timeout occurs. + */ + private def waitForReceiverToStart() = { + val latch = new CountDownLatch(1) + ssc.addStreamingListener(new StreamingListener { + override def onReceiverStarted(receiverStarted: StreamingListenerReceiverStarted) { + latch.countDown() + } + }) + + assert(latch.await(10, TimeUnit.SECONDS), "Timeout waiting for receiver to start.") + } } From 2321dd1ef9b0ae70b686904fca4981549cc2d9b2 Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Mon, 2 Feb 2015 14:00:14 -0800 Subject: [PATCH 08/52] [HOTFIX] Add jetty references to build for YARN module. --- yarn/pom.xml | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) diff --git a/yarn/pom.xml b/yarn/pom.xml index 7595549e4b6dc..6bdf9d2416823 100644 --- a/yarn/pom.xml +++ b/yarn/pom.xml @@ -58,6 +58,30 @@ org.apache.hadoop hadoop-client + + + + com.google.guava + guava + + + org.eclipse.jetty + jetty-server + + + org.eclipse.jetty + jetty-plus + + + org.eclipse.jetty + jetty-util + + + org.eclipse.jetty + jetty-http + + + org.apache.hadoop hadoop-yarn-server-tests From 52f5754f45370f98e577a2aa96accf3ee2e2c8e2 Mon Sep 17 00:00:00 2001 From: Marcelo Vanzin Date: Wed, 21 Jan 2015 14:38:14 -0800 Subject: [PATCH 09/52] Make sure only owner can read / write to directories created for the job. Whenever a directory is created by the utility method, immediately restrict its permissions so that only the owner has access to its contents. Signed-off-by: Josh Rosen --- .../org/apache/spark/HttpFileServer.scala | 2 +- .../scala/org/apache/spark/SparkEnv.scala | 2 +- .../spark/broadcast/HttpBroadcast.scala | 2 +- .../spark/storage/DiskBlockManager.scala | 34 ++------ .../scala/org/apache/spark/util/Utils.scala | 77 +++++++++++++------ python/pyspark/context.py | 3 +- .../apache/spark/streaming/JavaAPISuite.java | 4 +- 7 files changed, 69 insertions(+), 55 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/HttpFileServer.scala b/core/src/main/scala/org/apache/spark/HttpFileServer.scala index 677c5e0f89d72..3f33332a81eaf 100644 --- a/core/src/main/scala/org/apache/spark/HttpFileServer.scala +++ b/core/src/main/scala/org/apache/spark/HttpFileServer.scala @@ -36,7 +36,7 @@ private[spark] class HttpFileServer( var serverUri : String = null def initialize() { - baseDir = Utils.createTempDir() + baseDir = Utils.createTempDir(Utils.getLocalDir(conf), "httpd") fileDir = new File(baseDir, "files") jarDir = new File(baseDir, "jars") fileDir.mkdir() diff --git a/core/src/main/scala/org/apache/spark/SparkEnv.scala b/core/src/main/scala/org/apache/spark/SparkEnv.scala index 1264a8126153b..f25db7f8de565 100644 --- a/core/src/main/scala/org/apache/spark/SparkEnv.scala +++ b/core/src/main/scala/org/apache/spark/SparkEnv.scala @@ -339,7 +339,7 @@ object SparkEnv extends Logging { // this is a temporary directory; in distributed mode, this is the executor's current working // directory. val sparkFilesDir: String = if (isDriver) { - Utils.createTempDir().getAbsolutePath + Utils.createTempDir(Utils.getLocalDir(conf), "userFiles").getAbsolutePath } else { "." } diff --git a/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala b/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala index 31d6958c403b3..ea98051532a0a 100644 --- a/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala +++ b/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala @@ -151,7 +151,7 @@ private[broadcast] object HttpBroadcast extends Logging { } private def createServer(conf: SparkConf) { - broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf)) + broadcastDir = Utils.createTempDir(Utils.getLocalDir(conf), "broadcast") val broadcastPort = conf.getInt("spark.broadcast.port", 0) server = new HttpServer(conf, broadcastDir, securityManager, broadcastPort, "HTTP broadcast server") diff --git a/core/src/main/scala/org/apache/spark/storage/DiskBlockManager.scala b/core/src/main/scala/org/apache/spark/storage/DiskBlockManager.scala index af05eb3ca69ce..53eaedacbf291 100644 --- a/core/src/main/scala/org/apache/spark/storage/DiskBlockManager.scala +++ b/core/src/main/scala/org/apache/spark/storage/DiskBlockManager.scala @@ -17,9 +17,8 @@ package org.apache.spark.storage +import java.util.UUID import java.io.{IOException, File} -import java.text.SimpleDateFormat -import java.util.{Date, Random, UUID} import org.apache.spark.{SparkConf, Logging} import org.apache.spark.executor.ExecutorExitCode @@ -37,7 +36,6 @@ import org.apache.spark.util.Utils private[spark] class DiskBlockManager(blockManager: BlockManager, conf: SparkConf) extends Logging { - private val MAX_DIR_CREATION_ATTEMPTS: Int = 10 private[spark] val subDirsPerLocalDir = blockManager.conf.getInt("spark.diskStore.subDirectories", 64) @@ -123,33 +121,15 @@ private[spark] class DiskBlockManager(blockManager: BlockManager, conf: SparkCon } private def createLocalDirs(conf: SparkConf): Array[File] = { - val dateFormat = new SimpleDateFormat("yyyyMMddHHmmss") Utils.getOrCreateLocalRootDirs(conf).flatMap { rootDir => - var foundLocalDir = false - var localDir: File = null - var localDirId: String = null - var tries = 0 - val rand = new Random() - while (!foundLocalDir && tries < MAX_DIR_CREATION_ATTEMPTS) { - tries += 1 - try { - localDirId = "%s-%04x".format(dateFormat.format(new Date), rand.nextInt(65536)) - localDir = new File(rootDir, s"spark-local-$localDirId") - if (!localDir.exists) { - foundLocalDir = localDir.mkdirs() - } - } catch { - case e: Exception => - logWarning(s"Attempt $tries to create local dir $localDir failed", e) - } - } - if (!foundLocalDir) { - logError(s"Failed $MAX_DIR_CREATION_ATTEMPTS attempts to create local dir in $rootDir." + - " Ignoring this directory.") - None - } else { + try { + val localDir = Utils.createDirectory(rootDir, "blockmgr") logInfo(s"Created local directory at $localDir") Some(localDir) + } catch { + case e: IOException => + logError(s"Failed to create local dir in $rootDir. Ignoring this directory.", e) + None } } } diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index 86ac307fc84ba..e0236d23c41ba 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -60,6 +60,8 @@ private[spark] object CallSite { private[spark] object Utils extends Logging { val random = new Random() + private val MAX_DIR_CREATION_ATTEMPTS: Int = 10 + /** Serialize an object using Java serialization */ def serialize[T](o: T): Array[Byte] = { val bos = new ByteArrayOutputStream() @@ -246,13 +248,28 @@ private[spark] object Utils extends Logging { retval } + /** + * JDK equivalent of `chmod 700 file`. + * + * @param file the file whose permissions will be modified + * @return true if the permissions were successfully changed, false otherwise. + */ + def chmod700(file: File): Boolean = { + file.setReadable(false, false) && + file.setReadable(true, true) && + file.setWritable(false, false) && + file.setWritable(true, true) && + file.setExecutable(false, false) && + file.setExecutable(true, true) + } + /** * Create a directory inside the given parent directory. The directory is guaranteed to be * newly created, and is not marked for automatic deletion. */ - def createDirectory(root: String): File = { + def createDirectory(root: String, namePrefix: String = "spark"): File = { var attempts = 0 - val maxAttempts = 10 + val maxAttempts = MAX_DIR_CREATION_ATTEMPTS var dir: File = null while (dir == null) { attempts += 1 @@ -264,6 +281,11 @@ private[spark] object Utils extends Logging { dir = new File(root, "spark-" + UUID.randomUUID.toString) if (dir.exists() || !dir.mkdirs()) { dir = null + } else { + if (!chmod700(dir)) { + dir.delete() + dir = null + } } } catch { case e: SecurityException => dir = null; } } @@ -275,8 +297,10 @@ private[spark] object Utils extends Logging { * Create a temporary directory inside the given parent directory. The directory will be * automatically deleted when the VM shuts down. */ - def createTempDir(root: String = System.getProperty("java.io.tmpdir")): File = { - val dir = createDirectory(root) + def createTempDir( + root: String = System.getProperty("java.io.tmpdir"), + namePrefix: String = "spark"): File = { + val dir = createDirectory(root, namePrefix) registerShutdownDeleteDir(dir) dir } @@ -599,26 +623,35 @@ private[spark] object Utils extends Logging { * If no directories could be created, this will return an empty list. */ private[spark] def getOrCreateLocalRootDirs(conf: SparkConf): Array[String] = { - val confValue = if (isRunningInYarnContainer(conf)) { + if (isRunningInYarnContainer(conf)) { // If we are in yarn mode, systems can have different disk layouts so we must set it - // to what Yarn on this system said was available. - getYarnLocalDirs(conf) + // to what Yarn on this system said was available. Note this assumes that Yarn has + // created the directories already, and that they are secured so that only the + // user has access to them. + getYarnLocalDirs(conf).split(",") } else { - Option(conf.getenv("SPARK_LOCAL_DIRS")).getOrElse( - conf.get("spark.local.dir", System.getProperty("java.io.tmpdir"))) - } - val rootDirs = confValue.split(',') - logDebug(s"Getting/creating local root dirs at '$confValue'") - - rootDirs.flatMap { rootDir => - val localDir: File = new File(rootDir) - val foundLocalDir = localDir.exists || localDir.mkdirs() - if (!foundLocalDir) { - logError(s"Failed to create local root dir in $rootDir. Ignoring this directory.") - None - } else { - Some(rootDir) - } + // In non-Yarn mode (or for the driver in yarn-client mode), we cannot trust the user + // configuration to point to a secure directory. So create a subdirectory with restricted + // permissions under each listed directory. + Option(conf.getenv("SPARK_LOCAL_DIRS")) + .getOrElse(conf.get("spark.local.dir", System.getProperty("java.io.tmpdir"))) + .split(",") + .flatMap { root => + try { + val rootDir = new File(root) + if (rootDir.exists || rootDir.mkdirs()) { + Some(createDirectory(root).getAbsolutePath()) + } else { + logError(s"Failed to create dir in $root. Ignoring this directory.") + None + } + } catch { + case e: IOException => + logError(s"Failed to create local root dir in $root. Ignoring this directory.") + None + } + } + .toArray } } diff --git a/python/pyspark/context.py b/python/pyspark/context.py index c0dec16ac1b25..bf1f61c8504ed 100644 --- a/python/pyspark/context.py +++ b/python/pyspark/context.py @@ -192,7 +192,8 @@ def _do_init(self, master, appName, sparkHome, pyFiles, environment, batchSize, # Create a temporary directory inside spark.local.dir: local_dir = self._jvm.org.apache.spark.util.Utils.getLocalDir(self._jsc.sc().conf()) self._temp_dir = \ - self._jvm.org.apache.spark.util.Utils.createTempDir(local_dir).getAbsolutePath() + self._jvm.org.apache.spark.util.Utils.createTempDir(local_dir, "pyspark") \ + .getAbsolutePath() # profiling stats collected for each PythonRDD if self._conf.get("spark.python.profile", "false") == "true": diff --git a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java index d4c40745658c2..2df8cf6a8a3df 100644 --- a/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java +++ b/streaming/src/test/java/org/apache/spark/streaming/JavaAPISuite.java @@ -1769,7 +1769,7 @@ public Iterable call(InputStream in) throws IOException { @SuppressWarnings("unchecked") @Test public void testTextFileStream() throws IOException { - File testDir = Utils.createTempDir(System.getProperty("java.io.tmpdir")); + File testDir = Utils.createTempDir(System.getProperty("java.io.tmpdir"), "spark"); List> expected = fileTestPrepare(testDir); JavaDStream input = ssc.textFileStream(testDir.toString()); @@ -1782,7 +1782,7 @@ public void testTextFileStream() throws IOException { @SuppressWarnings("unchecked") @Test public void testFileStream() throws IOException { - File testDir = Utils.createTempDir(System.getProperty("java.io.tmpdir")); + File testDir = Utils.createTempDir(System.getProperty("java.io.tmpdir"), "spark"); List> expected = fileTestPrepare(testDir); JavaPairInputDStream inputStream = ssc.fileStream( From bff65b5cca7ae0c6c49e6a04638d18104be4be7c Mon Sep 17 00:00:00 2001 From: Martin Weindel Date: Mon, 2 Feb 2015 13:46:18 -0800 Subject: [PATCH 10/52] Disabling Utils.chmod700 for Windows This patch makes Spark 1.2.1rc2 work again on Windows. Without it you get following log output on creating a Spark context: INFO org.apache.spark.SparkEnv:59 - Registering BlockManagerMaster ERROR org.apache.spark.util.Utils:75 - Failed to create local root dir in .... Ignoring this directory. ERROR org.apache.spark.storage.DiskBlockManager:75 - Failed to create any local dir. Author: Martin Weindel Author: mweindel Closes #4299 from MartinWeindel/branch-1.2 and squashes the following commits: 535cb7f [Martin Weindel] fixed last commit f17072e [Martin Weindel] moved condition to caller to avoid confusion on chmod700() return value 4de5e91 [Martin Weindel] reverted to unix line ends fe2740b [mweindel] moved comment ac4749c [mweindel] fixed chmod700 for Windows --- core/src/main/scala/org/apache/spark/util/Utils.scala | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index e0236d23c41ba..703b23add834b 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -282,7 +282,9 @@ private[spark] object Utils extends Logging { if (dir.exists() || !dir.mkdirs()) { dir = null } else { - if (!chmod700(dir)) { + // Restrict file permissions via chmod if available. + // For Windows this step is ignored. + if (!isWindows && !chmod700(dir)) { dir.delete() dir = null } From 5a5526164bdf9ecf1306d4570e816eb4df5cfd2b Mon Sep 17 00:00:00 2001 From: Jacek Lewandowski Date: Mon, 2 Feb 2015 14:07:19 -0800 Subject: [PATCH 11/52] SPARK-5425: Use synchronised methods in system properties to create SparkConf SPARK-5425: Fixed usages of system properties This patch fixes few problems caused by the fact that the Scala wrapper over system properties is not thread-safe and is basically invalid because it doesn't take into account the default values which could have been set in the properties object. The problem is fixed by modifying `Utils.getSystemProperties` method so that it uses `stringPropertyNames` method of the `Properties` class, which is thread-safe (internally it creates a defensive copy in a synchronized method) and returns keys of the properties which were set explicitly and which are defined as defaults. The other related problem, which is fixed here. was in `ResetSystemProperties` mix-in. It created a copy of the system properties in the wrong way. This patch also introduces a test case for thread-safeness of SparkConf creation. Refer to the discussion in https://github.com/apache/spark/pull/4220 for more details. Author: Jacek Lewandowski Closes #4222 from jacek-lewandowski/SPARK-5425-1.3 and squashes the following commits: 03da61b [Jacek Lewandowski] SPARK-5425: Modified Utils.getSystemProperties to return a map of all system properties - explicit + defaults 8faf2ea [Jacek Lewandowski] SPARK-5425: Use SerializationUtils to save properties in ResetSystemProperties trait 71aa572 [Jacek Lewandowski] SPARK-5425: Use synchronised methods in system properties to create SparkConf --- .../scala/org/apache/spark/SparkConf.scala | 5 ++-- .../scala/org/apache/spark/util/Utils.scala | 11 +++++--- .../org/apache/spark/SparkConfSuite.scala | 25 +++++++++++++++++++ .../spark/util/ResetSystemProperties.scala | 7 +++++- .../spark/examples/DriverSubmissionTest.scala | 4 ++- 5 files changed, 45 insertions(+), 7 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/SparkConf.scala b/core/src/main/scala/org/apache/spark/SparkConf.scala index cd91c8f87547b..4d4c69d42da98 100644 --- a/core/src/main/scala/org/apache/spark/SparkConf.scala +++ b/core/src/main/scala/org/apache/spark/SparkConf.scala @@ -23,6 +23,7 @@ import scala.collection.JavaConverters._ import scala.collection.mutable.LinkedHashSet import org.apache.spark.serializer.KryoSerializer +import org.apache.spark.util.Utils /** * Configuration for a Spark application. Used to set various Spark parameters as key-value pairs. @@ -53,8 +54,8 @@ class SparkConf(loadDefaults: Boolean) extends Cloneable with Logging { if (loadDefaults) { // Load any spark.* system properties - for ((k, v) <- System.getProperties.asScala if k.startsWith("spark.")) { - set(k, v) + for ((key, value) <- Utils.getSystemProperties if key.startsWith("spark.")) { + set(key, value) } } diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index 703b23add834b..31850b50bdba7 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -1347,9 +1347,14 @@ private[spark] object Utils extends Logging { hashAbs } - /** Returns a copy of the system properties that is thread-safe to iterator over. */ - def getSystemProperties(): Map[String, String] = { - System.getProperties.clone().asInstanceOf[java.util.Properties].toMap[String, String] + /** Returns the system properties map that is thread-safe to iterator over. It gets the + * properties which have been set explicitly, as well as those for which only a default value + * has been defined. */ + def getSystemProperties: Map[String, String] = { + val sysProps = for (key <- System.getProperties.stringPropertyNames()) yield + (key, System.getProperty(key)) + + sysProps.toMap } /** diff --git a/core/src/test/scala/org/apache/spark/SparkConfSuite.scala b/core/src/test/scala/org/apache/spark/SparkConfSuite.scala index 790976a5ac308..e08210ae60d17 100644 --- a/core/src/test/scala/org/apache/spark/SparkConfSuite.scala +++ b/core/src/test/scala/org/apache/spark/SparkConfSuite.scala @@ -17,6 +17,10 @@ package org.apache.spark +import java.util.concurrent.{TimeUnit, Executors} + +import scala.util.{Try, Random} + import org.scalatest.FunSuite import org.apache.spark.serializer.{KryoRegistrator, KryoSerializer} import org.apache.spark.util.ResetSystemProperties @@ -123,6 +127,27 @@ class SparkConfSuite extends FunSuite with LocalSparkContext with ResetSystemPro assert(conf.get("spark.test.a.b.c") === "a.b.c") } + test("Thread safeness - SPARK-5425") { + import scala.collection.JavaConversions._ + val executor = Executors.newSingleThreadScheduledExecutor() + val sf = executor.scheduleAtFixedRate(new Runnable { + override def run(): Unit = + System.setProperty("spark.5425." + Random.nextInt(), Random.nextInt().toString) + }, 0, 1, TimeUnit.MILLISECONDS) + + try { + val t0 = System.currentTimeMillis() + while ((System.currentTimeMillis() - t0) < 1000) { + val conf = Try(new SparkConf(loadDefaults = true)) + assert(conf.isSuccess === true) + } + } finally { + executor.shutdownNow() + for (key <- System.getProperties.stringPropertyNames() if key.startsWith("spark.5425.")) + System.getProperties.remove(key) + } + } + test("register kryo classes through registerKryoClasses") { val conf = new SparkConf().set("spark.kryo.registrationRequired", "true") diff --git a/core/src/test/scala/org/apache/spark/util/ResetSystemProperties.scala b/core/src/test/scala/org/apache/spark/util/ResetSystemProperties.scala index d4b92f33dd9e6..bad1aa99952cf 100644 --- a/core/src/test/scala/org/apache/spark/util/ResetSystemProperties.scala +++ b/core/src/test/scala/org/apache/spark/util/ResetSystemProperties.scala @@ -19,6 +19,7 @@ package org.apache.spark.util import java.util.Properties +import org.apache.commons.lang3.SerializationUtils import org.scalatest.{BeforeAndAfterEach, Suite} /** @@ -42,7 +43,11 @@ private[spark] trait ResetSystemProperties extends BeforeAndAfterEach { this: Su var oldProperties: Properties = null override def beforeEach(): Unit = { - oldProperties = new Properties(System.getProperties) + // we need SerializationUtils.clone instead of `new Properties(System.getProperties()` because + // the later way of creating a copy does not copy the properties but it initializes a new + // Properties object with the given properties as defaults. They are not recognized at all + // by standard Scala wrapper over Java Properties then. + oldProperties = SerializationUtils.clone(System.getProperties) super.beforeEach() } diff --git a/examples/src/main/scala/org/apache/spark/examples/DriverSubmissionTest.scala b/examples/src/main/scala/org/apache/spark/examples/DriverSubmissionTest.scala index 65251e93190f0..e757283823fc3 100644 --- a/examples/src/main/scala/org/apache/spark/examples/DriverSubmissionTest.scala +++ b/examples/src/main/scala/org/apache/spark/examples/DriverSubmissionTest.scala @@ -19,6 +19,8 @@ package org.apache.spark.examples import scala.collection.JavaConversions._ +import org.apache.spark.util.Utils + /** Prints out environmental information, sleeps, and then exits. Made to * test driver submission in the standalone scheduler. */ object DriverSubmissionTest { @@ -30,7 +32,7 @@ object DriverSubmissionTest { val numSecondsToSleep = args(0).toInt val env = System.getenv() - val properties = System.getProperties() + val properties = Utils.getSystemProperties println("Environment variables containing SPARK_TEST:") env.filter{case (k, v) => k.contains("SPARK_TEST")}.foreach(println) From 842d00032d0b09fb1f9cfc77359b77693e70a614 Mon Sep 17 00:00:00 2001 From: "Joseph K. Bradley" Date: Mon, 2 Feb 2015 14:34:48 -0800 Subject: [PATCH 12/52] [SPARK-5461] [graphx] Add isCheckpointed, getCheckpointedFiles methods to Graph Added the 2 methods to Graph and GraphImpl. Both make calls to the underlying vertex and edge RDDs. This is needed for another PR (for LDA): [https://github.com/apache/spark/pull/4047] Notes: * getCheckpointedFiles is plural and returns a Seq[String] instead of an Option[String]. * I attempted to test to make sure the methods returned the correct values after checkpointing. It did not work; I guess that checkpointing does not occur quickly enough? I noticed that there are not checkpointing tests for RDDs; is it just hard to test well? CC: rxin CC: mengxr (since related to LDA) Author: Joseph K. Bradley Closes #4253 from jkbradley/graphx-checkpoint and squashes the following commits: b680148 [Joseph K. Bradley] added class tag to firstParent call in VertexRDDImpl.isCheckpointed, though not needed to compile 250810e [Joseph K. Bradley] In EdgeRDDImple, VertexRDDImpl, added transient back to partitionsRDD, and made isCheckpointed check firstParent instead of partitionsRDD 695b7a3 [Joseph K. Bradley] changed partitionsRDD in EdgeRDDImpl, VertexRDDImpl to be non-transient cc00767 [Joseph K. Bradley] added overrides for isCheckpointed, getCheckpointFile in EdgeRDDImpl, VertexRDDImpl. The corresponding Graph methods now work. 188665f [Joseph K. Bradley] improved documentation 235738c [Joseph K. Bradley] Added isCheckpointed and getCheckpointFiles to Graph, GraphImpl --- .../main/scala/org/apache/spark/graphx/Graph.scala | 12 ++++++++++++ .../org/apache/spark/graphx/impl/EdgeRDDImpl.scala | 10 +++++++++- .../org/apache/spark/graphx/impl/GraphImpl.scala | 11 +++++++++++ .../org/apache/spark/graphx/impl/VertexRDDImpl.scala | 10 +++++++++- .../scala/org/apache/spark/graphx/GraphSuite.scala | 4 ++++ project/MimaExcludes.scala | 6 ++++++ 6 files changed, 51 insertions(+), 2 deletions(-) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/Graph.scala b/graphx/src/main/scala/org/apache/spark/graphx/Graph.scala index ab56580a3abc8..8494d06b1cdb7 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/Graph.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/Graph.scala @@ -104,6 +104,18 @@ abstract class Graph[VD: ClassTag, ED: ClassTag] protected () extends Serializab */ def checkpoint(): Unit + /** + * Return whether this Graph has been checkpointed or not. + * This returns true iff both the vertices RDD and edges RDD have been checkpointed. + */ + def isCheckpointed: Boolean + + /** + * Gets the name of the files to which this Graph was checkpointed. + * (The vertices RDD and edges RDD are checkpointed separately.) + */ + def getCheckpointFiles: Seq[String] + /** * Uncaches both vertices and edges of this graph. This is useful in iterative algorithms that * build a new graph in each iteration. diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala index f1550ac2e18ad..6c35d7029e078 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala @@ -73,7 +73,15 @@ class EdgeRDDImpl[ED: ClassTag, VD: ClassTag] private[graphx] ( override def checkpoint() = { partitionsRDD.checkpoint() } - + + override def isCheckpointed: Boolean = { + firstParent[(PartitionID, EdgePartition[ED, VD])].isCheckpointed + } + + override def getCheckpointFile: Option[String] = { + partitionsRDD.getCheckpointFile + } + /** The number of edges in the RDD. */ override def count(): Long = { partitionsRDD.map(_._2.size.toLong).reduce(_ + _) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala index 3f4a900d5b601..90a74d23a26cc 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/GraphImpl.scala @@ -70,6 +70,17 @@ class GraphImpl[VD: ClassTag, ED: ClassTag] protected ( replicatedVertexView.edges.checkpoint() } + override def isCheckpointed: Boolean = { + vertices.isCheckpointed && replicatedVertexView.edges.isCheckpointed + } + + override def getCheckpointFiles: Seq[String] = { + Seq(vertices.getCheckpointFile, replicatedVertexView.edges.getCheckpointFile).flatMap { + case Some(path) => Seq(path) + case None => Seq() + } + } + override def unpersist(blocking: Boolean = true): Graph[VD, ED] = { unpersistVertices(blocking) replicatedVertexView.edges.unpersist(blocking) diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala index 9732c5b00c6d9..3e4968d6c0d6f 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala @@ -74,7 +74,15 @@ class VertexRDDImpl[VD] private[graphx] ( override def checkpoint() = { partitionsRDD.checkpoint() } - + + override def isCheckpointed: Boolean = { + firstParent[ShippableVertexPartition[VD]].isCheckpointed + } + + override def getCheckpointFile: Option[String] = { + partitionsRDD.getCheckpointFile + } + /** The number of vertices in the RDD. */ override def count(): Long = { partitionsRDD.map(_.size).reduce(_ + _) diff --git a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala index ed9876b8dc21c..59a57ba7a33f1 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala @@ -375,6 +375,8 @@ class GraphSuite extends FunSuite with LocalSparkContext { val ring = (0L to 100L).zip((1L to 99L) :+ 0L).map { case (a, b) => Edge(a, b, 1)} val rdd = sc.parallelize(ring) val graph = Graph.fromEdges(rdd, 1.0F) + assert(!graph.isCheckpointed) + assert(graph.getCheckpointFiles.size === 0) graph.checkpoint() graph.edges.map(_.attr).count() graph.vertices.map(_._2).count() @@ -383,6 +385,8 @@ class GraphSuite extends FunSuite with LocalSparkContext { val verticesDependencies = graph.vertices.partitionsRDD.dependencies assert(edgesDependencies.forall(_.rdd.isInstanceOf[CheckpointRDD[_]])) assert(verticesDependencies.forall(_.rdd.isInstanceOf[CheckpointRDD[_]])) + assert(graph.isCheckpointed) + assert(graph.getCheckpointFiles.size === 2) } } diff --git a/project/MimaExcludes.scala b/project/MimaExcludes.scala index 14ba03ed4634b..45be1db9a5ebe 100644 --- a/project/MimaExcludes.scala +++ b/project/MimaExcludes.scala @@ -127,6 +127,12 @@ object MimaExcludes { // SPARK-5315 Spark Streaming Java API returns Scala DStream ProblemFilters.exclude[MissingMethodProblem]( "org.apache.spark.streaming.api.java.JavaDStreamLike.reduceByWindow") + ) ++ Seq( + // SPARK-5461 Graph should have isCheckpointed, getCheckpointFiles methods + ProblemFilters.exclude[MissingMethodProblem]( + "org.apache.spark.graphx.Graph.getCheckpointFiles"), + ProblemFilters.exclude[MissingMethodProblem]( + "org.apache.spark.graphx.Graph.isCheckpointed") ) case v if v.startsWith("1.2") => From 830934976e8cf9e894bd3e5758fb941cad5d2f0b Mon Sep 17 00:00:00 2001 From: Sandy Ryza Date: Mon, 2 Feb 2015 14:52:46 -0800 Subject: [PATCH 13/52] SPARK-5500. Document that feeding hadoopFile into a shuffle operation wi... ...ll cause problems Author: Sandy Ryza Closes #4293 from sryza/sandy-spark-5500 and squashes the following commits: e9ce742 [Sandy Ryza] Change to warning cc46e52 [Sandy Ryza] Add instructions and extend to NewHadoopRDD 6e1932a [Sandy Ryza] Throw exception on cache 0f6c4eb [Sandy Ryza] SPARK-5500. Document that feeding hadoopFile into a shuffle operation will cause problems --- .../scala/org/apache/spark/SparkContext.scala | 69 +++++++++++-------- .../org/apache/spark/rdd/HadoopRDD.scala | 12 +++- .../org/apache/spark/rdd/NewHadoopRDD.scala | 17 +++-- 3 files changed, 62 insertions(+), 36 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 3c61c10820ba9..228076f01c841 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -687,9 +687,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * @param minPartitions Minimum number of Hadoop Splits to generate. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def hadoopRDD[K, V]( conf: JobConf, @@ -705,12 +706,13 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli } /** Get an RDD for a Hadoop file with an arbitrary InputFormat - * - * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. - * */ + * + * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. + */ def hadoopFile[K, V]( path: String, inputFormatClass: Class[_ <: InputFormat[K, V]], @@ -741,9 +743,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * }}} * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def hadoopFile[K, V, F <: InputFormat[K, V]] (path: String, minPartitions: Int) @@ -764,9 +767,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * }}} * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def hadoopFile[K, V, F <: InputFormat[K, V]](path: String) (implicit km: ClassTag[K], vm: ClassTag[V], fm: ClassTag[F]): RDD[(K, V)] = @@ -788,9 +792,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * and extra configuration options to pass to the input format. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def newAPIHadoopFile[K, V, F <: NewInputFormat[K, V]]( path: String, @@ -810,9 +815,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * and extra configuration options to pass to the input format. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def newAPIHadoopRDD[K, V, F <: NewInputFormat[K, V]]( conf: Configuration = hadoopConfiguration, @@ -826,9 +832,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli /** Get an RDD for a Hadoop SequenceFile with given key and value types. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def sequenceFile[K, V](path: String, keyClass: Class[K], @@ -843,9 +850,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli /** Get an RDD for a Hadoop SequenceFile with given key and value types. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. * */ def sequenceFile[K, V](path: String, keyClass: Class[K], valueClass: Class[V]): RDD[(K, V)] = { assertNotStopped() @@ -869,9 +877,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli * allow it to figure out the Writable class to use in the subclass case. * * '''Note:''' Because Hadoop's RecordReader class re-uses the same Writable object for each - * record, directly caching the returned RDD will create many references to the same object. - * If you plan to directly cache Hadoop writable objects, you should first copy them using - * a `map` function. + * record, directly caching the returned RDD or directly passing it to an aggregation or shuffle + * operation will create many references to the same object. + * If you plan to directly cache, sort, or aggregate Hadoop writable objects, you should first + * copy them using a `map` function. */ def sequenceFile[K, V] (path: String, minPartitions: Int = defaultMinPartitions) diff --git a/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala b/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala index c3e3931042de2..89adddcf0ac36 100644 --- a/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/HadoopRDD.scala @@ -42,10 +42,11 @@ import org.apache.spark._ import org.apache.spark.annotation.DeveloperApi import org.apache.spark.broadcast.Broadcast import org.apache.spark.deploy.SparkHadoopUtil -import org.apache.spark.executor.{DataReadMethod, InputMetrics} +import org.apache.spark.executor.DataReadMethod import org.apache.spark.rdd.HadoopRDD.HadoopMapPartitionsWithSplitRDD import org.apache.spark.util.{NextIterator, Utils} import org.apache.spark.scheduler.{HostTaskLocation, HDFSCacheTaskLocation} +import org.apache.spark.storage.StorageLevel /** * A Spark split class that wraps around a Hadoop InputSplit. @@ -308,6 +309,15 @@ class HadoopRDD[K, V]( // Do nothing. Hadoop RDD should not be checkpointed. } + override def persist(storageLevel: StorageLevel): this.type = { + if (storageLevel.deserialized) { + logWarning("Caching NewHadoopRDDs as deserialized objects usually leads to undesired" + + " behavior because Hadoop's RecordReader reuses the same Writable object for all records." + + " Use a map transformation to make copies of the records.") + } + super.persist(storageLevel) + } + def getConf: Configuration = getJobConf() } diff --git a/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala b/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala index d86f95ac3e485..44b9ffd2a53fd 100644 --- a/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala +++ b/core/src/main/scala/org/apache/spark/rdd/NewHadoopRDD.scala @@ -29,16 +29,13 @@ import org.apache.hadoop.mapreduce.lib.input.{CombineFileSplit, FileSplit} import org.apache.spark.annotation.DeveloperApi import org.apache.spark.input.WholeTextFileInputFormat -import org.apache.spark.InterruptibleIterator -import org.apache.spark.Logging -import org.apache.spark.Partition -import org.apache.spark.SerializableWritable -import org.apache.spark.{SparkContext, TaskContext} +import org.apache.spark._ import org.apache.spark.executor.DataReadMethod import org.apache.spark.mapreduce.SparkHadoopMapReduceUtil import org.apache.spark.rdd.NewHadoopRDD.NewHadoopMapPartitionsWithSplitRDD import org.apache.spark.util.Utils import org.apache.spark.deploy.SparkHadoopUtil +import org.apache.spark.storage.StorageLevel private[spark] class NewHadoopPartition( rddId: Int, @@ -211,6 +208,16 @@ class NewHadoopRDD[K, V]( locs.getOrElse(split.getLocations.filter(_ != "localhost")) } + override def persist(storageLevel: StorageLevel): this.type = { + if (storageLevel.deserialized) { + logWarning("Caching NewHadoopRDDs as deserialized objects usually leads to undesired" + + " behavior because Hadoop's RecordReader reuses the same Writable object for all records." + + " Use a map transformation to make copies of the records.") + } + super.persist(storageLevel) + } + + def getConf: Configuration = confBroadcast.value.value } From 1646f89d967913ee1f231d9606f8502d13c25804 Mon Sep 17 00:00:00 2001 From: Daoyuan Wang Date: Mon, 2 Feb 2015 15:49:22 -0800 Subject: [PATCH 14/52] [SPARK-4508] [SQL] build native date type to conform behavior to Hive Store daysSinceEpoch as an Int value(4 bytes) to represent DateType, instead of using java.sql.Date(8 bytes as Long) in catalyst row. This ensures the same comparison behavior of Hive and Catalyst. Subsumes #3381 I thinks there are already some tests in JavaSQLSuite, and for python it will not affect python's datetime class. Author: Daoyuan Wang Closes #3732 from adrian-wang/datenative and squashes the following commits: 0ed0fdc [Daoyuan Wang] fix test data a2fdd4e [Daoyuan Wang] getDate c37832b [Daoyuan Wang] row to catalyst f0005b1 [Daoyuan Wang] add date in sql parser and java type conversion 024c9a6 [Daoyuan Wang] clean some import order d6715fc [Daoyuan Wang] refactoring Date as Primitive Int internally 374abd5 [Daoyuan Wang] spark native date type support --- .../main/scala/org/apache/spark/sql/Row.scala | 2 +- .../spark/sql/catalyst/ScalaReflection.scala | 9 +-- .../apache/spark/sql/catalyst/SqlParser.scala | 2 + .../spark/sql/catalyst/expressions/Cast.scala | 53 +++++++--------- .../expressions/codegen/CodeGenerator.scala | 3 + .../sql/catalyst/expressions/literals.scala | 2 +- .../apache/spark/sql/types/DateUtils.scala | 60 +++++++++++++++++++ .../apache/spark/sql/types/dataTypes.scala | 12 ++-- .../ExpressionEvaluationSuite.scala | 28 ++++----- .../spark/sql/types/DataTypeSuite.scala | 2 +- .../spark/sql/columnar/ColumnStats.scala | 19 +----- .../spark/sql/columnar/ColumnType.scala | 13 ++-- .../spark/sql/execution/pythonUdfs.scala | 4 +- .../org/apache/spark/sql/json/JsonRDD.scala | 6 +- .../org/apache/spark/sql/SQLQuerySuite.scala | 7 +++ .../sql/ScalaReflectionRelationSuite.scala | 3 +- .../spark/sql/columnar/ColumnStatsSuite.scala | 2 +- .../spark/sql/columnar/ColumnTypeSuite.scala | 6 +- .../sql/columnar/ColumnarTestUtils.scala | 6 +- .../org/apache/spark/sql/json/JsonSuite.scala | 7 ++- .../execution/HiveCompatibilitySuite.scala | 1 + .../apache/spark/sql/hive/HiveContext.scala | 4 +- .../spark/sql/hive/HiveInspectors.scala | 11 +++- .../apache/spark/sql/hive/TableReader.scala | 3 +- ...te cast-0-a7cd69b80c77a771a2c955db666be53d | 1 + ... test 1-0-bde89be08a12361073ff658fef768b7e | 1 + ... test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 | 1 + .../date_1-0-50131c0ba7b7a6b65c789a5a8497bada | 1 + ...date_1-1-23edf29bf7376c70d5ecf12720f4b1eb} | 0 ...ate_1-10-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...ate_1-11-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...ate_1-12-480c5f024a28232b7857be327c992509} | 0 ...ate_1-13-4c0ed7fcb75770d8790575b586bf14f4} | 0 ...date_1-14-44fc74c1993062c0a9522199ff27fea} | 0 ...ate_1-15-4855a66124b16d1d0d003235995ac06b} | 0 ...ate_1-16-8bc190dba0f641840b5e1e198a14c55b} | 0 ...ate_1-17-23edf29bf7376c70d5ecf12720f4b1eb} | 0 ...date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b} | 0 ... date_1-3-26b5c291400dfde455b3c1b878b71d0} | 0 ...date_1-4-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...date_1-5-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...date_1-6-559d01fb0b42c42f0c4927fa0f9deac4} | 0 ...date_1-7-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...date_1-8-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...date_1-9-8306558e0eabe936ac33dabaaa17fea4} | 0 .../spark/sql/hive/HiveInspectorSuite.scala | 4 +- .../sql/hive/execution/HiveQuerySuite.scala | 26 +++++++- .../org/apache/spark/sql/hive/Shim12.scala | 2 +- .../org/apache/spark/sql/hive/Shim13.scala | 2 +- 49 files changed, 191 insertions(+), 112 deletions(-) create mode 100644 sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala create mode 100644 sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d create mode 100644 sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e create mode 100644 sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 create mode 100644 sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada rename sql/hive/src/test/resources/golden/{date_1-0-23edf29bf7376c70d5ecf12720f4b1eb => date_1-1-23edf29bf7376c70d5ecf12720f4b1eb} (100%) rename sql/hive/src/test/resources/golden/{date_1-3-df16364a220ff96a6ea1cd478cbc1d0b => date_1-10-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-11-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-11-480c5f024a28232b7857be327c992509 => date_1-12-480c5f024a28232b7857be327c992509} (100%) rename sql/hive/src/test/resources/golden/{date_1-12-4c0ed7fcb75770d8790575b586bf14f4 => date_1-13-4c0ed7fcb75770d8790575b586bf14f4} (100%) rename sql/hive/src/test/resources/golden/{date_1-13-44fc74c1993062c0a9522199ff27fea => date_1-14-44fc74c1993062c0a9522199ff27fea} (100%) rename sql/hive/src/test/resources/golden/{date_1-14-4855a66124b16d1d0d003235995ac06b => date_1-15-4855a66124b16d1d0d003235995ac06b} (100%) rename sql/hive/src/test/resources/golden/{date_1-15-8bc190dba0f641840b5e1e198a14c55b => date_1-16-8bc190dba0f641840b5e1e198a14c55b} (100%) rename sql/hive/src/test/resources/golden/{date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b => date_1-17-23edf29bf7376c70d5ecf12720f4b1eb} (100%) rename sql/hive/src/test/resources/golden/{date_1-16-23edf29bf7376c70d5ecf12720f4b1eb => date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b} (100%) rename sql/hive/src/test/resources/golden/{date_1-2-abdce0c0d14d3fc7441b7c134b02f99a => date_1-3-26b5c291400dfde455b3c1b878b71d0} (100%) rename sql/hive/src/test/resources/golden/{date_1-6-df16364a220ff96a6ea1cd478cbc1d0b => date_1-4-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-5-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-5-5e70fc74158fbfca38134174360de12d => date_1-6-559d01fb0b42c42f0c4927fa0f9deac4} (100%) rename sql/hive/src/test/resources/golden/{date_1-9-df16364a220ff96a6ea1cd478cbc1d0b => date_1-7-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-8-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-8-1d5c58095cd52ea539d869f2ab1ab67d => date_1-9-8306558e0eabe936ac33dabaaa17fea4} (100%) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala index 41bb4f012f2e1..3a70d25534968 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala @@ -20,7 +20,7 @@ package org.apache.spark.sql import scala.util.hashing.MurmurHash3 import org.apache.spark.sql.catalyst.expressions.GenericRow - +import org.apache.spark.sql.types.DateUtils object Row { /** diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala index e0db587efb08d..8e79e532ca564 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala @@ -17,14 +17,13 @@ package org.apache.spark.sql.catalyst -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.apache.spark.util.Utils import org.apache.spark.sql.catalyst.expressions.{GenericRow, Attribute, AttributeReference, Row} import org.apache.spark.sql.catalyst.plans.logical.LocalRelation import org.apache.spark.sql.types._ - /** * A default version of ScalaReflection that uses the runtime universe. */ @@ -72,6 +71,7 @@ trait ScalaReflection { }.toArray) case (d: BigDecimal, _) => Decimal(d) case (d: java.math.BigDecimal, _) => Decimal(d) + case (d: java.sql.Date, _) => DateUtils.fromJavaDate(d) case (other, _) => other } @@ -85,6 +85,7 @@ trait ScalaReflection { } case (r: Row, s: StructType) => convertRowToScala(r, s) case (d: Decimal, _: DecimalType) => d.toJavaBigDecimal + case (i: Int, DateType) => DateUtils.toJavaDate(i) case (other, _) => other } @@ -159,7 +160,7 @@ trait ScalaReflection { valueDataType, valueContainsNull = valueNullable), nullable = true) case t if t <:< typeOf[String] => Schema(StringType, nullable = true) case t if t <:< typeOf[Timestamp] => Schema(TimestampType, nullable = true) - case t if t <:< typeOf[Date] => Schema(DateType, nullable = true) + case t if t <:< typeOf[java.sql.Date] => Schema(DateType, nullable = true) case t if t <:< typeOf[BigDecimal] => Schema(DecimalType.Unlimited, nullable = true) case t if t <:< typeOf[java.math.BigDecimal] => Schema(DecimalType.Unlimited, nullable = true) case t if t <:< typeOf[Decimal] => Schema(DecimalType.Unlimited, nullable = true) @@ -191,7 +192,7 @@ trait ScalaReflection { case obj: LongType.JvmType => LongType case obj: FloatType.JvmType => FloatType case obj: DoubleType.JvmType => DoubleType - case obj: DateType.JvmType => DateType + case obj: java.sql.Date => DateType case obj: java.math.BigDecimal => DecimalType.Unlimited case obj: Decimal => DecimalType.Unlimited case obj: TimestampType.JvmType => TimestampType diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index 594a423146d77..2ce8be8e24e85 100755 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -52,6 +52,7 @@ class SqlParser extends AbstractSparkSQLParser { protected val CAST = Keyword("CAST") protected val COALESCE = Keyword("COALESCE") protected val COUNT = Keyword("COUNT") + protected val DATE = Keyword("DATE") protected val DECIMAL = Keyword("DECIMAL") protected val DESC = Keyword("DESC") protected val DISTINCT = Keyword("DISTINCT") @@ -383,6 +384,7 @@ class SqlParser extends AbstractSparkSQLParser { | DOUBLE ^^^ DoubleType | fixedDecimalType | DECIMAL ^^^ DecimalType.Unlimited + | DATE ^^^ DateType ) protected lazy val fixedDecimalType: Parser[DataType] = diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala index ece5ee73618cb..b1bc858478ee1 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala @@ -113,7 +113,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // UDFToString private[this] def castToString(from: DataType): Any => Any = from match { case BinaryType => buildCast[Array[Byte]](_, new String(_, "UTF-8")) - case DateType => buildCast[Date](_, dateToString) + case DateType => buildCast[Int](_, d => DateUtils.toString(d)) case TimestampType => buildCast[Timestamp](_, timestampToString) case _ => buildCast[Any](_, _.toString) } @@ -131,7 +131,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w buildCast[Timestamp](_, t => t.getTime() != 0 || t.getNanos() != 0) case DateType => // Hive would return null when cast from date to boolean - buildCast[Date](_, d => null) + buildCast[Int](_, d => null) case LongType => buildCast[Long](_, _ != 0) case IntegerType => @@ -171,7 +171,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case ByteType => buildCast[Byte](_, b => new Timestamp(b)) case DateType => - buildCast[Date](_, d => new Timestamp(d.getTime)) + buildCast[Int](_, d => new Timestamp(DateUtils.toJavaDate(d).getTime)) // TimestampWritable.decimalToTimestamp case DecimalType() => buildCast[Decimal](_, d => decimalToTimestamp(d)) @@ -224,37 +224,24 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w } } - // Converts Timestamp to string according to Hive TimestampWritable convention - private[this] def timestampToDateString(ts: Timestamp): String = { - Cast.threadLocalDateFormat.get.format(ts) - } - // DateConverter private[this] def castToDate(from: DataType): Any => Any = from match { case StringType => buildCast[String](_, s => - try Date.valueOf(s) catch { case _: java.lang.IllegalArgumentException => null }) + try DateUtils.fromJavaDate(Date.valueOf(s)) + catch { case _: java.lang.IllegalArgumentException => null } + ) case TimestampType => // throw valid precision more than seconds, according to Hive. // Timestamp.nanos is in 0 to 999,999,999, no more than a second. - buildCast[Timestamp](_, t => new Date(Math.floor(t.getTime / 1000.0).toLong * 1000)) + buildCast[Timestamp](_, t => DateUtils.millisToDays(t.getTime)) // Hive throws this exception as a Semantic Exception - // It is never possible to compare result when hive return with exception, so we can return null + // It is never possible to compare result when hive return with exception, + // so we can return null // NULL is more reasonable here, since the query itself obeys the grammar. case _ => _ => null } - // Date cannot be cast to long, according to hive - private[this] def dateToLong(d: Date) = null - - // Date cannot be cast to double, according to hive - private[this] def dateToDouble(d: Date) = null - - // Converts Date to string according to Hive DateWritable convention - private[this] def dateToString(d: Date): String = { - Cast.threadLocalDateFormat.get.format(d) - } - // LongConverter private[this] def castToLong(from: DataType): Any => Any = from match { case StringType => @@ -264,7 +251,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1L else 0L) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t)) case x: NumericType => @@ -280,7 +267,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1 else 0) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toInt) case x: NumericType => @@ -296,7 +283,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1.toShort else 0.toShort) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toShort) case x: NumericType => @@ -312,7 +299,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1.toByte else 0.toByte) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toByte) case x: NumericType => @@ -342,7 +329,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => changePrecision(if (b) Decimal(1) else Decimal(0), target)) case DateType => - buildCast[Date](_, d => null) // date can't cast to decimal in Hive + buildCast[Int](_, d => null) // date can't cast to decimal in Hive case TimestampType => // Note that we lose precision here. buildCast[Timestamp](_, t => changePrecision(Decimal(timestampToDouble(t)), target)) @@ -367,7 +354,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1d else 0d) case DateType => - buildCast[Date](_, d => dateToDouble(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToDouble(t)) case x: NumericType => @@ -383,7 +370,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1f else 0f) case DateType => - buildCast[Date](_, d => dateToDouble(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToDouble(t).toFloat) case x: NumericType => @@ -442,16 +429,16 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w object Cast { // `SimpleDateFormat` is not thread-safe. - private[sql] val threadLocalDateFormat = new ThreadLocal[DateFormat] { + private[sql] val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { override def initialValue() = { - new SimpleDateFormat("yyyy-MM-dd") + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") } } // `SimpleDateFormat` is not thread-safe. - private[sql] val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { + private[sql] val threadLocalDateFormat = new ThreadLocal[DateFormat] { override def initialValue() = { - new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") + new SimpleDateFormat("yyyy-MM-dd") } } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala index 4cae5c4718683..1f80d84b744a1 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala @@ -246,6 +246,9 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin new String(${eval.primitiveTerm}.asInstanceOf[Array[Byte]]) """.children + case Cast(child @ DateType(), StringType) => + child.castOrNull(c => q"org.apache.spark.sql.types.DateUtils.toString($c)", StringType) + case Cast(child @ NumericType(), IntegerType) => child.castOrNull(c => q"$c.toInt", IntegerType) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala index 5b389aad7a85d..97bb96f48e2c7 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala @@ -35,7 +35,7 @@ object Literal { case d: java.math.BigDecimal => Literal(Decimal(d), DecimalType.Unlimited) case d: Decimal => Literal(d, DecimalType.Unlimited) case t: Timestamp => Literal(t, TimestampType) - case d: Date => Literal(d, DateType) + case d: Date => Literal(DateUtils.fromJavaDate(d), DateType) case a: Array[Byte] => Literal(a, BinaryType) case null => Literal(null, NullType) } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala new file mode 100644 index 0000000000000..8a1a3b81b3d2c --- /dev/null +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala @@ -0,0 +1,60 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.types + +import java.sql.Date +import java.util.{Calendar, TimeZone} + +import org.apache.spark.sql.catalyst.expressions.Cast + +/** + * helper function to convert between Int value of days since 1970-01-01 and java.sql.Date + */ +object DateUtils { + private val MILLIS_PER_DAY = 86400000 + + // Java TimeZone has no mention of thread safety. Use thread local instance to be safe. + private val LOCAL_TIMEZONE = new ThreadLocal[TimeZone] { + override protected def initialValue: TimeZone = { + Calendar.getInstance.getTimeZone + } + } + + private def javaDateToDays(d: Date): Int = { + millisToDays(d.getTime) + } + + def millisToDays(millisLocal: Long): Int = { + ((millisLocal + LOCAL_TIMEZONE.get().getOffset(millisLocal)) / MILLIS_PER_DAY).toInt + } + + private def toMillisSinceEpoch(days: Int): Long = { + val millisUtc = days.toLong * MILLIS_PER_DAY + millisUtc - LOCAL_TIMEZONE.get().getOffset(millisUtc) + } + + def fromJavaDate(date: java.sql.Date): Int = { + javaDateToDays(date) + } + + def toJavaDate(daysSinceEpoch: Int): java.sql.Date = { + new java.sql.Date(toMillisSinceEpoch(daysSinceEpoch)) + } + + def toString(days: Int): String = Cast.threadLocalDateFormat.get.format(toJavaDate(days)) +} diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala index 6ab99aa38877f..8ca0769fac287 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.types -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import scala.math.Numeric.{FloatAsIfIntegral, DoubleAsIfIntegral} import scala.reflect.ClassTag @@ -387,18 +387,16 @@ case object TimestampType extends NativeType { */ @DeveloperApi case object DateType extends NativeType { - private[sql] type JvmType = Date + private[sql] type JvmType = Int @transient private[sql] lazy val tag = ScalaReflectionLock.synchronized { typeTag[JvmType] } - private[sql] val ordering = new Ordering[JvmType] { - def compare(x: Date, y: Date) = x.compareTo(y) - } + private[sql] val ordering = implicitly[Ordering[JvmType]] /** - * The default size of a value of the DateType is 8 bytes. + * The default size of a value of the DateType is 4 bytes. */ - override def defaultSize: Int = 8 + override def defaultSize: Int = 4 } diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala index 37e64adeea853..25d1c105a00a6 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala @@ -303,6 +303,7 @@ class ExpressionEvaluationSuite extends FunSuite { val sd = "1970-01-01" val d = Date.valueOf(sd) + val zts = sd + " 00:00:00" val sts = sd + " 00:00:02" val nts = sts + ".1" val ts = Timestamp.valueOf(nts) @@ -319,14 +320,14 @@ class ExpressionEvaluationSuite extends FunSuite { checkEvaluation(Cast(Literal(1.toDouble) cast TimestampType, DoubleType), 1.toDouble) checkEvaluation(Cast(Literal(sd) cast DateType, StringType), sd) - checkEvaluation(Cast(Literal(d) cast StringType, DateType), d) + checkEvaluation(Cast(Literal(d) cast StringType, DateType), 0) checkEvaluation(Cast(Literal(nts) cast TimestampType, StringType), nts) checkEvaluation(Cast(Literal(ts) cast StringType, TimestampType), ts) // all convert to string type to check checkEvaluation( Cast(Cast(Literal(nts) cast TimestampType, DateType), StringType), sd) checkEvaluation( - Cast(Cast(Literal(ts) cast DateType, TimestampType), StringType), sts) + Cast(Cast(Literal(ts) cast DateType, TimestampType), StringType), zts) checkEvaluation(Cast("abdef" cast BinaryType, StringType), "abdef") @@ -377,8 +378,8 @@ class ExpressionEvaluationSuite extends FunSuite { } test("date") { - val d1 = Date.valueOf("1970-01-01") - val d2 = Date.valueOf("1970-01-02") + val d1 = DateUtils.fromJavaDate(Date.valueOf("1970-01-01")) + val d2 = DateUtils.fromJavaDate(Date.valueOf("1970-01-02")) checkEvaluation(Literal(d1) < Literal(d2), true) } @@ -459,22 +460,21 @@ class ExpressionEvaluationSuite extends FunSuite { test("date casting") { val d = Date.valueOf("1970-01-01") - checkEvaluation(Cast(d, ShortType), null) - checkEvaluation(Cast(d, IntegerType), null) - checkEvaluation(Cast(d, LongType), null) - checkEvaluation(Cast(d, FloatType), null) - checkEvaluation(Cast(d, DoubleType), null) - checkEvaluation(Cast(d, DecimalType.Unlimited), null) - checkEvaluation(Cast(d, DecimalType(10, 2)), null) - checkEvaluation(Cast(d, StringType), "1970-01-01") - checkEvaluation(Cast(Cast(d, TimestampType), StringType), "1970-01-01 00:00:00") + checkEvaluation(Cast(Literal(d), ShortType), null) + checkEvaluation(Cast(Literal(d), IntegerType), null) + checkEvaluation(Cast(Literal(d), LongType), null) + checkEvaluation(Cast(Literal(d), FloatType), null) + checkEvaluation(Cast(Literal(d), DoubleType), null) + checkEvaluation(Cast(Literal(d), DecimalType.Unlimited), null) + checkEvaluation(Cast(Literal(d), DecimalType(10, 2)), null) + checkEvaluation(Cast(Literal(d), StringType), "1970-01-01") + checkEvaluation(Cast(Cast(Literal(d), TimestampType), StringType), "1970-01-01 00:00:00") } test("timestamp casting") { val millis = 15 * 1000 + 2 val seconds = millis * 1000 + 2 val ts = new Timestamp(millis) - val ts1 = new Timestamp(15 * 1000) // a timestamp without the milliseconds part val tss = new Timestamp(seconds) checkEvaluation(Cast(ts, ShortType), 15) checkEvaluation(Cast(ts, IntegerType), 15) diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala index c147be9f6b1ae..7bcd6687d11a1 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala @@ -106,7 +106,7 @@ class DataTypeSuite extends FunSuite { checkDefaultSize(DoubleType, 8) checkDefaultSize(DecimalType(10, 5), 4096) checkDefaultSize(DecimalType.Unlimited, 4096) - checkDefaultSize(DateType, 8) + checkDefaultSize(DateType, 4) checkDefaultSize(TimestampType, 8) checkDefaultSize(StringType, 4096) checkDefaultSize(BinaryType, 4096) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala index 391b3dae5c8ce..cad0667b46435 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.columnar -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.{AttributeMap, Attribute, AttributeReference} @@ -215,22 +215,7 @@ private[sql] class StringColumnStats extends ColumnStats { def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) } -private[sql] class DateColumnStats extends ColumnStats { - protected var upper: Date = null - protected var lower: Date = null - - override def gatherStats(row: Row, ordinal: Int) { - super.gatherStats(row, ordinal) - if (!row.isNullAt(ordinal)) { - val value = row(ordinal).asInstanceOf[Date] - if (upper == null || value.compareTo(upper) > 0) upper = value - if (lower == null || value.compareTo(lower) < 0) lower = value - sizeInBytes += DATE.defaultSize - } - } - - def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) -} +private[sql] class DateColumnStats extends IntColumnStats private[sql] class TimestampColumnStats extends ColumnStats { protected var upper: Timestamp = null diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala index fcf2faa0914c0..db5bc0de363c7 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala @@ -335,21 +335,20 @@ private[sql] object STRING extends NativeColumnType(StringType, 7, 8) { } } -private[sql] object DATE extends NativeColumnType(DateType, 8, 8) { +private[sql] object DATE extends NativeColumnType(DateType, 8, 4) { override def extract(buffer: ByteBuffer) = { - val date = new Date(buffer.getLong()) - date + buffer.getInt } - override def append(v: Date, buffer: ByteBuffer): Unit = { - buffer.putLong(v.getTime) + override def append(v: Int, buffer: ByteBuffer): Unit = { + buffer.putInt(v) } override def getField(row: Row, ordinal: Int) = { - row(ordinal).asInstanceOf[Date] + row(ordinal).asInstanceOf[Int] } - override def setField(row: MutableRow, ordinal: Int, value: Date): Unit = { + def setField(row: MutableRow, ordinal: Int, value: Int): Unit = { row(ordinal) = value } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala index b85021acc9d4c..3a2f8d75dac5e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala @@ -135,6 +135,8 @@ object EvaluatePython { case (ud, udt: UserDefinedType[_]) => toJava(udt.serialize(ud), udt.sqlType) + case (date: Int, DateType) => DateUtils.toJavaDate(date) + // Pyrolite can handle Timestamp and Decimal case (other, _) => other } @@ -171,7 +173,7 @@ object EvaluatePython { }): Row case (c: java.util.Calendar, DateType) => - new java.sql.Date(c.getTime().getTime()) + DateUtils.fromJavaDate(new java.sql.Date(c.getTime().getTime())) case (c: java.util.Calendar, TimestampType) => new java.sql.Timestamp(c.getTime().getTime()) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala index 9171939f7e8f7..33ce71b51b213 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala @@ -377,10 +377,12 @@ private[sql] object JsonRDD extends Logging { } } - private def toDate(value: Any): Date = { + private def toDate(value: Any): Int = { value match { // only support string as date - case value: java.lang.String => new Date(DataTypeConversions.stringToTime(value).getTime) + case value: java.lang.String => + DateUtils.millisToDays(DataTypeConversions.stringToTime(value).getTime) + case value: java.sql.Date => DateUtils.fromJavaDate(value) } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index d82c34316cefa..a7f6a50a04fbd 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -296,6 +296,13 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { mapData.collect().take(1).map(Row.fromTuple).toSeq) } + test("date row") { + checkAnswer(sql( + """select cast("2015-01-28" as date) from testData limit 1"""), + Row(java.sql.Date.valueOf("2015-01-28")) + ) + } + test("from follow multiple brackets") { checkAnswer(sql( "select key from ((select * from testData limit 1) union all (select * from testData limit 1)) x limit 1"), diff --git a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala index a015884bae282..f26fcc0385b68 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala @@ -83,7 +83,8 @@ class ScalaReflectionRelationSuite extends FunSuite { assert(sql("SELECT * FROM reflectData").collect().head === Row("a", 1, 1L, 1.toFloat, 1.toDouble, 1.toShort, 1.toByte, true, - new java.math.BigDecimal(1), new Date(12345), new Timestamp(12345), Seq(1,2,3))) + new java.math.BigDecimal(1), new Date(70, 0, 1), // This is 1970-01-01 + new Timestamp(12345), Seq(1,2,3))) } test("query case class RDD with nulls") { diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala index be2b34de077c9..581fccf8ee613 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala @@ -30,7 +30,7 @@ class ColumnStatsSuite extends FunSuite { testColumnStats(classOf[FloatColumnStats], FLOAT, Row(Float.MaxValue, Float.MinValue, 0)) testColumnStats(classOf[DoubleColumnStats], DOUBLE, Row(Double.MaxValue, Double.MinValue, 0)) testColumnStats(classOf[StringColumnStats], STRING, Row(null, null, 0)) - testColumnStats(classOf[DateColumnStats], DATE, Row(null, null, 0)) + testColumnStats(classOf[DateColumnStats], DATE, Row(Int.MaxValue, Int.MinValue, 0)) testColumnStats(classOf[TimestampColumnStats], TIMESTAMP, Row(null, null, 0)) def testColumnStats[T <: NativeType, U <: ColumnStats]( diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala index 87e608a8853dc..9ce845912f1c7 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.columnar import java.nio.ByteBuffer -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.scalatest.FunSuite @@ -34,7 +34,7 @@ class ColumnTypeSuite extends FunSuite with Logging { test("defaultSize") { val checks = Map( INT -> 4, SHORT -> 2, LONG -> 8, BYTE -> 1, DOUBLE -> 8, FLOAT -> 4, BOOLEAN -> 1, - STRING -> 8, DATE -> 8, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) + STRING -> 8, DATE -> 4, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) checks.foreach { case (columnType, expectedSize) => assertResult(expectedSize, s"Wrong defaultSize for $columnType") { @@ -64,7 +64,7 @@ class ColumnTypeSuite extends FunSuite with Logging { checkActualSize(FLOAT, Float.MaxValue, 4) checkActualSize(BOOLEAN, true, 1) checkActualSize(STRING, "hello", 4 + "hello".getBytes("utf-8").length) - checkActualSize(DATE, new Date(0L), 8) + checkActualSize(DATE, 0, 4) checkActualSize(TIMESTAMP, new Timestamp(0L), 12) val binary = Array.fill[Byte](4)(0: Byte) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala index f941465fa3e35..60ed28cc97bf1 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala @@ -17,11 +17,11 @@ package org.apache.spark.sql.columnar +import java.sql.Timestamp + import scala.collection.immutable.HashSet import scala.util.Random -import java.sql.{Date, Timestamp} - import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.GenericMutableRow import org.apache.spark.sql.types.{DataType, NativeType} @@ -50,7 +50,7 @@ object ColumnarTestUtils { case STRING => Random.nextString(Random.nextInt(32)) case BOOLEAN => Random.nextBoolean() case BINARY => randomBytes(Random.nextInt(32)) - case DATE => new Date(Random.nextLong()) + case DATE => Random.nextInt() case TIMESTAMP => val timestamp = new Timestamp(Random.nextLong()) timestamp.setNanos(Random.nextInt(999999999)) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala index cb615388da0c7..1396c6b7246d1 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala @@ -67,14 +67,15 @@ class JsonSuite extends QueryTest { checkTypePromotion(Timestamp.valueOf(strTime), enforceCorrectType(strTime, TimestampType)) val strDate = "2014-10-15" - checkTypePromotion(Date.valueOf(strDate), enforceCorrectType(strDate, DateType)) + checkTypePromotion( + DateUtils.fromJavaDate(Date.valueOf(strDate)), enforceCorrectType(strDate, DateType)) val ISO8601Time1 = "1970-01-01T01:00:01.0Z" checkTypePromotion(new Timestamp(3601000), enforceCorrectType(ISO8601Time1, TimestampType)) - checkTypePromotion(new Date(3601000), enforceCorrectType(ISO8601Time1, DateType)) + checkTypePromotion(DateUtils.millisToDays(3601000), enforceCorrectType(ISO8601Time1, DateType)) val ISO8601Time2 = "1970-01-01T02:00:01-01:00" checkTypePromotion(new Timestamp(10801000), enforceCorrectType(ISO8601Time2, TimestampType)) - checkTypePromotion(new Date(10801000), enforceCorrectType(ISO8601Time2, DateType)) + checkTypePromotion(DateUtils.millisToDays(10801000), enforceCorrectType(ISO8601Time2, DateType)) } test("Get compatible type") { diff --git a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala index 0d934620aca09..a6266f611c219 100644 --- a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala +++ b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala @@ -357,6 +357,7 @@ class HiveCompatibilitySuite extends HiveQueryFileTest with BeforeAndAfter { "database_drop", "database_location", "database_properties", + "date_1", "date_2", "date_3", "date_4", diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala index b746942cb1067..724bd28d4b608 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.hive import java.io.{BufferedReader, InputStreamReader, PrintStream} -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import scala.collection.JavaConversions._ import scala.language.implicitConversions @@ -409,7 +409,7 @@ private object HiveContext { toHiveStructString((key, kType)) + ":" + toHiveStructString((value, vType)) }.toSeq.sorted.mkString("{", ",", "}") case (null, _) => "NULL" - case (d: Date, DateType) => new DateWritable(d).toString + case (d: Int, DateType) => new DateWritable(d).toString case (t: Timestamp, TimestampType) => new TimestampWritable(t).toString case (bin: Array[Byte], BinaryType) => new String(bin, "UTF-8") case (decimal: java.math.BigDecimal, DecimalType()) => diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala index 82dba99900df9..4afa2e71d77cc 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala @@ -267,7 +267,8 @@ private[hive] trait HiveInspectors { val temp = new Array[Byte](writable.getLength) System.arraycopy(writable.getBytes, 0, temp, 0, temp.length) temp - case poi: WritableConstantDateObjectInspector => poi.getWritableConstantValue.get() + case poi: WritableConstantDateObjectInspector => + DateUtils.fromJavaDate(poi.getWritableConstantValue.get()) case mi: StandardConstantMapObjectInspector => // take the value from the map inspector object, rather than the input data mi.getWritableConstantValue.map { case (k, v) => @@ -304,7 +305,8 @@ private[hive] trait HiveInspectors { System.arraycopy(bw.getBytes(), 0, result, 0, bw.getLength()) result case x: DateObjectInspector if x.preferWritable() => - x.getPrimitiveWritableObject(data).get() + DateUtils.fromJavaDate(x.getPrimitiveWritableObject(data).get()) + case x: DateObjectInspector => DateUtils.fromJavaDate(x.getPrimitiveJavaObject(data)) // org.apache.hadoop.hive.serde2.io.TimestampWritable.set will reset current time object // if next timestamp is null, so Timestamp object is cloned case x: TimestampObjectInspector if x.preferWritable() => @@ -343,6 +345,9 @@ private[hive] trait HiveInspectors { case _: JavaHiveDecimalObjectInspector => (o: Any) => HiveShim.createDecimal(o.asInstanceOf[Decimal].toJavaBigDecimal) + case _: JavaDateObjectInspector => + (o: Any) => DateUtils.toJavaDate(o.asInstanceOf[Int]) + case soi: StandardStructObjectInspector => val wrappers = soi.getAllStructFieldRefs.map(ref => wrapperFor(ref.getFieldObjectInspector)) (o: Any) => { @@ -426,7 +431,7 @@ private[hive] trait HiveInspectors { case _: BinaryObjectInspector if x.preferWritable() => HiveShim.getBinaryWritable(a) case _: BinaryObjectInspector => a.asInstanceOf[Array[Byte]] case _: DateObjectInspector if x.preferWritable() => HiveShim.getDateWritable(a) - case _: DateObjectInspector => a.asInstanceOf[java.sql.Date] + case _: DateObjectInspector => DateUtils.toJavaDate(a.asInstanceOf[Int]) case _: TimestampObjectInspector if x.preferWritable() => HiveShim.getTimestampWritable(a) case _: TimestampObjectInspector => a.asInstanceOf[java.sql.Timestamp] } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala index c368715f7c6f5..effaa5a443512 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala @@ -34,6 +34,7 @@ import org.apache.spark.SerializableWritable import org.apache.spark.broadcast.Broadcast import org.apache.spark.rdd.{EmptyRDD, HadoopRDD, RDD, UnionRDD} import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.types.DateUtils /** * A trait for subclasses that handle table scans. @@ -306,7 +307,7 @@ private[hive] object HadoopTableReader extends HiveInspectors { row.update(ordinal, oi.getPrimitiveJavaObject(value).clone()) case oi: DateObjectInspector => (value: Any, row: MutableRow, ordinal: Int) => - row.update(ordinal, oi.getPrimitiveJavaObject(value)) + row.update(ordinal, DateUtils.fromJavaDate(oi.getPrimitiveJavaObject(value))) case oi: BinaryObjectInspector => (value: Any, row: MutableRow, ordinal: Int) => row.update(ordinal, oi.getPrimitiveJavaObject(value)) diff --git a/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d b/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d new file mode 100644 index 0000000000000..98da82fa89386 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d @@ -0,0 +1 @@ +1970-01-01 1970-01-01 1969-12-31 16:00:00 1969-12-31 16:00:00 1970-01-01 00:00:00 diff --git a/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e b/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e new file mode 100644 index 0000000000000..27ba77ddaf615 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e @@ -0,0 +1 @@ +true diff --git a/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 b/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 new file mode 100644 index 0000000000000..27ba77ddaf615 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 @@ -0,0 +1 @@ +true diff --git a/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada b/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada new file mode 100644 index 0000000000000..573541ac9702d --- /dev/null +++ b/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada @@ -0,0 +1 @@ +0 diff --git a/sql/hive/src/test/resources/golden/date_1-0-23edf29bf7376c70d5ecf12720f4b1eb b/sql/hive/src/test/resources/golden/date_1-1-23edf29bf7376c70d5ecf12720f4b1eb similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-0-23edf29bf7376c70d5ecf12720f4b1eb rename to sql/hive/src/test/resources/golden/date_1-1-23edf29bf7376c70d5ecf12720f4b1eb diff --git a/sql/hive/src/test/resources/golden/date_1-3-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-10-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-3-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-10-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-11-480c5f024a28232b7857be327c992509 b/sql/hive/src/test/resources/golden/date_1-12-480c5f024a28232b7857be327c992509 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-11-480c5f024a28232b7857be327c992509 rename to sql/hive/src/test/resources/golden/date_1-12-480c5f024a28232b7857be327c992509 diff --git a/sql/hive/src/test/resources/golden/date_1-12-4c0ed7fcb75770d8790575b586bf14f4 b/sql/hive/src/test/resources/golden/date_1-13-4c0ed7fcb75770d8790575b586bf14f4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-12-4c0ed7fcb75770d8790575b586bf14f4 rename to sql/hive/src/test/resources/golden/date_1-13-4c0ed7fcb75770d8790575b586bf14f4 diff --git a/sql/hive/src/test/resources/golden/date_1-13-44fc74c1993062c0a9522199ff27fea b/sql/hive/src/test/resources/golden/date_1-14-44fc74c1993062c0a9522199ff27fea similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-13-44fc74c1993062c0a9522199ff27fea rename to sql/hive/src/test/resources/golden/date_1-14-44fc74c1993062c0a9522199ff27fea diff --git a/sql/hive/src/test/resources/golden/date_1-14-4855a66124b16d1d0d003235995ac06b b/sql/hive/src/test/resources/golden/date_1-15-4855a66124b16d1d0d003235995ac06b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-14-4855a66124b16d1d0d003235995ac06b rename to sql/hive/src/test/resources/golden/date_1-15-4855a66124b16d1d0d003235995ac06b diff --git a/sql/hive/src/test/resources/golden/date_1-15-8bc190dba0f641840b5e1e198a14c55b b/sql/hive/src/test/resources/golden/date_1-16-8bc190dba0f641840b5e1e198a14c55b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-15-8bc190dba0f641840b5e1e198a14c55b rename to sql/hive/src/test/resources/golden/date_1-16-8bc190dba0f641840b5e1e198a14c55b diff --git a/sql/hive/src/test/resources/golden/date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b b/sql/hive/src/test/resources/golden/date_1-17-23edf29bf7376c70d5ecf12720f4b1eb similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b rename to sql/hive/src/test/resources/golden/date_1-17-23edf29bf7376c70d5ecf12720f4b1eb diff --git a/sql/hive/src/test/resources/golden/date_1-16-23edf29bf7376c70d5ecf12720f4b1eb b/sql/hive/src/test/resources/golden/date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-16-23edf29bf7376c70d5ecf12720f4b1eb rename to sql/hive/src/test/resources/golden/date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b diff --git a/sql/hive/src/test/resources/golden/date_1-2-abdce0c0d14d3fc7441b7c134b02f99a b/sql/hive/src/test/resources/golden/date_1-3-26b5c291400dfde455b3c1b878b71d0 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-2-abdce0c0d14d3fc7441b7c134b02f99a rename to sql/hive/src/test/resources/golden/date_1-3-26b5c291400dfde455b3c1b878b71d0 diff --git a/sql/hive/src/test/resources/golden/date_1-6-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-4-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-6-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-4-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-5-5e70fc74158fbfca38134174360de12d b/sql/hive/src/test/resources/golden/date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-5-5e70fc74158fbfca38134174360de12d rename to sql/hive/src/test/resources/golden/date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 diff --git a/sql/hive/src/test/resources/golden/date_1-9-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-7-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-9-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-7-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-8-1d5c58095cd52ea539d869f2ab1ab67d b/sql/hive/src/test/resources/golden/date_1-9-8306558e0eabe936ac33dabaaa17fea4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-8-1d5c58095cd52ea539d869f2ab1ab67d rename to sql/hive/src/test/resources/golden/date_1-9-8306558e0eabe936ac33dabaaa17fea4 diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala index 2d3ff680125ad..09bbd5c867e4e 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala @@ -18,7 +18,6 @@ package org.apache.spark.sql.hive import java.util -import java.sql.Date import java.util.{Locale, TimeZone} import org.apache.hadoop.hive.ql.udf.UDAFPercentile @@ -76,7 +75,7 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { Literal(0.asInstanceOf[Float]) :: Literal(0.asInstanceOf[Double]) :: Literal("0") :: - Literal(new Date(2014, 9, 23)) :: + Literal(new java.sql.Date(114, 8, 23)) :: Literal(Decimal(BigDecimal(123.123))) :: Literal(new java.sql.Timestamp(123123)) :: Literal(Array[Byte](1,2,3)) :: @@ -143,7 +142,6 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { case (r1: Array[Byte], r2: Array[Byte]) if r1 != null && r2 != null && r1.length == r2.length => r1.zip(r2).map { case (b1, b2) => assert(b1 === b2) } - case (r1: Date, r2: Date) => assert(r1.compareTo(r2) === 0) case (r1, r2) => assert(r1 === r2) } } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala index 4c53b10ba96e9..4f67d1def65fc 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala @@ -253,8 +253,30 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { createQueryTest("Cast Timestamp to Timestamp in UDF", """ - | SELECT DATEDIFF(CAST(value AS timestamp), CAST('2002-03-21 00:00:00' AS timestamp)) - | FROM src LIMIT 1 + | SELECT DATEDIFF(CAST(value AS timestamp), CAST('2002-03-21 00:00:00' AS timestamp)) + | FROM src LIMIT 1 + """.stripMargin) + + createQueryTest("Date comparison test 1", + """ + | SELECT + | CAST(CAST('1970-01-01 22:00:00' AS timestamp) AS date) == + | CAST(CAST('1970-01-01 23:00:00' AS timestamp) AS date) + | FROM src LIMIT 1 + """.stripMargin) + + createQueryTest("Date comparison test 2", + "SELECT CAST(CAST(0 AS timestamp) AS date) > CAST(0 AS timestamp) FROM src LIMIT 1") + + createQueryTest("Date cast", + """ + | SELECT + | CAST(CAST(0 AS timestamp) AS date), + | CAST(CAST(CAST(0 AS timestamp) AS date) AS string), + | CAST(0 AS timestamp), + | CAST(CAST(0 AS timestamp) AS string), + | CAST(CAST(CAST('1970-01-01 23:00:00' AS timestamp) AS date) AS timestamp) + | FROM src LIMIT 1 """.stripMargin) createQueryTest("Simple Average", diff --git a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala index 254919e8f6fdc..b5a0754ff61f9 100644 --- a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala +++ b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala @@ -160,7 +160,7 @@ private[hive] object HiveShim { if (value == null) null else new hadoopIo.BytesWritable(value.asInstanceOf[Array[Byte]]) def getDateWritable(value: Any): hiveIo.DateWritable = - if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[java.sql.Date]) + if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[Int]) def getTimestampWritable(value: Any): hiveIo.TimestampWritable = if (value == null) { diff --git a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala index 45ca59ae56a38..e4c1809c8bb21 100644 --- a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala +++ b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala @@ -263,7 +263,7 @@ private[hive] object HiveShim { } def getDateWritable(value: Any): hiveIo.DateWritable = - if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[java.sql.Date]) + if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[Int]) def getTimestampWritable(value: Any): hiveIo.TimestampWritable = if (value == null) { From 46d50f151c02c6892fc84a37fdf2a521dc774d1c Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Mon, 2 Feb 2015 15:55:44 -0800 Subject: [PATCH 15/52] [SPARK-5513][MLLIB] Add nonnegative option to ml's ALS This PR ports the NNLS solver to the new ALS implementation. CC: coderxiang Author: Xiangrui Meng Closes #4302 from mengxr/SPARK-5513 and squashes the following commits: 4cbdab0 [Xiangrui Meng] fix serialization 88de634 [Xiangrui Meng] add NNLS to ml's ALS --- .../apache/spark/ml/recommendation/ALS.scala | 95 ++++++++++++++++--- .../spark/mllib/optimization/NNLS.scala | 4 +- .../spark/ml/recommendation/ALSSuite.scala | 11 +++ 3 files changed, 96 insertions(+), 14 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala index 979a19d3b2057..82d21d5e4cb6e 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala @@ -25,12 +25,14 @@ import scala.util.Sorting import com.github.fommil.netlib.BLAS.{getInstance => blas} import com.github.fommil.netlib.LAPACK.{getInstance => lapack} +import org.jblas.DoubleMatrix import org.netlib.util.intW import org.apache.spark.{HashPartitioner, Logging, Partitioner} import org.apache.spark.annotation.DeveloperApi import org.apache.spark.ml.{Estimator, Model} import org.apache.spark.ml.param._ +import org.apache.spark.mllib.optimization.NNLS import org.apache.spark.rdd.RDD import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Dsl._ @@ -80,6 +82,10 @@ private[recommendation] trait ALSParams extends Params with HasMaxIter with HasR val ratingCol = new Param[String](this, "ratingCol", "column name for ratings", Some("rating")) def getRatingCol: String = get(ratingCol) + val nonnegative = new BooleanParam( + this, "nonnegative", "whether to use nonnegative constraint for least squares", Some(false)) + val getNonnegative: Boolean = get(nonnegative) + /** * Validates and transforms the input schema. * @param schema input schema @@ -186,6 +192,7 @@ class ALS extends Estimator[ALSModel] with ALSParams { def setPredictionCol(value: String): this.type = set(predictionCol, value) def setMaxIter(value: Int): this.type = set(maxIter, value) def setRegParam(value: Double): this.type = set(regParam, value) + def setNonnegative(value: Boolean): this.type = set(nonnegative, value) /** Sets both numUserBlocks and numItemBlocks to the specific value. */ def setNumBlocks(value: Int): this.type = { @@ -207,7 +214,7 @@ class ALS extends Estimator[ALSModel] with ALSParams { val (userFactors, itemFactors) = ALS.train(ratings, rank = map(rank), numUserBlocks = map(numUserBlocks), numItemBlocks = map(numItemBlocks), maxIter = map(maxIter), regParam = map(regParam), implicitPrefs = map(implicitPrefs), - alpha = map(alpha)) + alpha = map(alpha), nonnegative = map(nonnegative)) val model = new ALSModel(this, map, map(rank), userFactors, itemFactors) Params.inheritValues(map, this, model) model @@ -232,11 +239,16 @@ object ALS extends Logging { /** Rating class for better code readability. */ case class Rating[@specialized(Int, Long) ID](user: ID, item: ID, rating: Float) + /** Trait for least squares solvers applied to the normal equation. */ + private[recommendation] trait LeastSquaresNESolver extends Serializable { + /** Solves a least squares problem (possibly with other constraints). */ + def solve(ne: NormalEquation, lambda: Double): Array[Float] + } + /** Cholesky solver for least square problems. */ - private[recommendation] class CholeskySolver { + private[recommendation] class CholeskySolver extends LeastSquaresNESolver { private val upper = "U" - private val info = new intW(0) /** * Solves a least squares problem with L2 regularization: @@ -247,7 +259,7 @@ object ALS extends Logging { * @param lambda regularization constant, which will be scaled by n * @return the solution x */ - def solve(ne: NormalEquation, lambda: Double): Array[Float] = { + override def solve(ne: NormalEquation, lambda: Double): Array[Float] = { val k = ne.k // Add scaled lambda to the diagonals of AtA. val scaledlambda = lambda * ne.n @@ -258,6 +270,7 @@ object ALS extends Logging { i += j j += 1 } + val info = new intW(0) lapack.dppsv(upper, k, 1, ne.ata, ne.atb, k, info) val code = info.`val` assert(code == 0, s"lapack.dppsv returned $code.") @@ -272,6 +285,63 @@ object ALS extends Logging { } } + /** NNLS solver. */ + private[recommendation] class NNLSSolver extends LeastSquaresNESolver { + private var rank: Int = -1 + private var workspace: NNLS.Workspace = _ + private var ata: DoubleMatrix = _ + private var initialized: Boolean = false + + private def initialize(rank: Int): Unit = { + if (!initialized) { + this.rank = rank + workspace = NNLS.createWorkspace(rank) + ata = new DoubleMatrix(rank, rank) + initialized = true + } else { + require(this.rank == rank) + } + } + + /** + * Solves a nonnegative least squares problem with L2 regularizatin: + * + * min_x_ norm(A x - b)^2^ + lambda * n * norm(x)^2^ + * subject to x >= 0 + */ + override def solve(ne: NormalEquation, lambda: Double): Array[Float] = { + val rank = ne.k + initialize(rank) + fillAtA(ne.ata, lambda * ne.n) + val x = NNLS.solve(ata, new DoubleMatrix(rank, 1, ne.atb: _*), workspace) + ne.reset() + x.map(x => x.toFloat) + } + + /** + * Given a triangular matrix in the order of fillXtX above, compute the full symmetric square + * matrix that it represents, storing it into destMatrix. + */ + private def fillAtA(triAtA: Array[Double], lambda: Double) { + var i = 0 + var pos = 0 + var a = 0.0 + val data = ata.data + while (i < rank) { + var j = 0 + while (j <= i) { + a = triAtA(pos) + data(i * rank + j) = a + data(j * rank + i) = a + pos += 1 + j += 1 + } + data(i * rank + i) += lambda + i += 1 + } + } + } + /** Representing a normal equation (ALS' subproblem). */ private[recommendation] class NormalEquation(val k: Int) extends Serializable { @@ -350,12 +420,14 @@ object ALS extends Logging { maxIter: Int = 10, regParam: Double = 1.0, implicitPrefs: Boolean = false, - alpha: Double = 1.0)( + alpha: Double = 1.0, + nonnegative: Boolean = false)( implicit ord: Ordering[ID]): (RDD[(ID, Array[Float])], RDD[(ID, Array[Float])]) = { val userPart = new HashPartitioner(numUserBlocks) val itemPart = new HashPartitioner(numItemBlocks) val userLocalIndexEncoder = new LocalIndexEncoder(userPart.numPartitions) val itemLocalIndexEncoder = new LocalIndexEncoder(itemPart.numPartitions) + val solver = if (nonnegative) new NNLSSolver else new CholeskySolver val blockRatings = partitionRatings(ratings, userPart, itemPart).cache() val (userInBlocks, userOutBlocks) = makeBlocks("user", blockRatings, userPart, itemPart) // materialize blockRatings and user blocks @@ -374,20 +446,20 @@ object ALS extends Logging { userFactors.setName(s"userFactors-$iter").persist() val previousItemFactors = itemFactors itemFactors = computeFactors(userFactors, userOutBlocks, itemInBlocks, rank, regParam, - userLocalIndexEncoder, implicitPrefs, alpha) + userLocalIndexEncoder, implicitPrefs, alpha, solver) previousItemFactors.unpersist() itemFactors.setName(s"itemFactors-$iter").persist() val previousUserFactors = userFactors userFactors = computeFactors(itemFactors, itemOutBlocks, userInBlocks, rank, regParam, - itemLocalIndexEncoder, implicitPrefs, alpha) + itemLocalIndexEncoder, implicitPrefs, alpha, solver) previousUserFactors.unpersist() } } else { for (iter <- 0 until maxIter) { itemFactors = computeFactors(userFactors, userOutBlocks, itemInBlocks, rank, regParam, - userLocalIndexEncoder) + userLocalIndexEncoder, solver = solver) userFactors = computeFactors(itemFactors, itemOutBlocks, userInBlocks, rank, regParam, - itemLocalIndexEncoder) + itemLocalIndexEncoder, solver = solver) } } val userIdAndFactors = userInBlocks @@ -879,6 +951,7 @@ object ALS extends Logging { * @param srcEncoder encoder for src local indices * @param implicitPrefs whether to use implicit preference * @param alpha the alpha constant in the implicit preference formulation + * @param solver solver for least squares problems * * @return dst factors */ @@ -890,7 +963,8 @@ object ALS extends Logging { regParam: Double, srcEncoder: LocalIndexEncoder, implicitPrefs: Boolean = false, - alpha: Double = 1.0): RDD[(Int, FactorBlock)] = { + alpha: Double = 1.0, + solver: LeastSquaresNESolver): RDD[(Int, FactorBlock)] = { val numSrcBlocks = srcFactorBlocks.partitions.length val YtY = if (implicitPrefs) Some(computeYtY(srcFactorBlocks, rank)) else None val srcOut = srcOutBlocks.join(srcFactorBlocks).flatMap { @@ -909,7 +983,6 @@ object ALS extends Logging { val dstFactors = new Array[Array[Float]](dstIds.length) var j = 0 val ls = new NormalEquation(rank) - val solver = new CholeskySolver // TODO: add NNLS solver while (j < dstIds.length) { ls.reset() if (implicitPrefs) { diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala index fef062e02b6ec..ccd93b318bc23 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/NNLS.scala @@ -19,13 +19,11 @@ package org.apache.spark.mllib.optimization import org.jblas.{DoubleMatrix, SimpleBlas} -import org.apache.spark.annotation.DeveloperApi - /** * Object used to solve nonnegative least squares problems using a modified * projected gradient method. */ -private[mllib] object NNLS { +private[spark] object NNLS { class Workspace(val n: Int) { val scratch = new DoubleMatrix(n, 1) val grad = new DoubleMatrix(n, 1) diff --git a/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala index 07aff56fb7d2f..ee08c3c32760e 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala @@ -444,4 +444,15 @@ class ALSSuite extends FunSuite with MLlibTestSparkContext with Logging { val (strUserFactors, _) = ALS.train(strRatings, rank = 2, maxIter = 4) assert(strUserFactors.first()._1.getClass === classOf[String]) } + + test("nonnegative constraint") { + val (ratings, _) = genImplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) + val (userFactors, itemFactors) = ALS.train(ratings, rank = 2, maxIter = 4, nonnegative = true) + def isNonnegative(factors: RDD[(Int, Array[Float])]): Boolean = { + factors.values.map { _.forall(_ >= 0.0) }.reduce(_ && _) + } + assert(isNonnegative(userFactors)) + assert(isNonnegative(itemFactors)) + // TODO: Validate the solution. + } } From b1aa8fe988301b924048039529234278aeb0298a Mon Sep 17 00:00:00 2001 From: DB Tsai Date: Mon, 2 Feb 2015 15:59:15 -0800 Subject: [PATCH 16/52] [SPARK-2309][MLlib] Multinomial Logistic Regression #1379 is automatically closed by asfgit, and github can not reopen it once it's closed, so this will be the new PR. Binary Logistic Regression can be extended to Multinomial Logistic Regression by running K-1 independent Binary Logistic Regression models. The following formula is implemented. http://www.slideshare.net/dbtsai/2014-0620-mlor-36132297/25 Author: DB Tsai Closes #3833 from dbtsai/mlor and squashes the following commits: 4e2f354 [DB Tsai] triger jenkins 697b7c9 [DB Tsai] address some feedback 4ce4d33 [DB Tsai] refactoring ff843b3 [DB Tsai] rebase f114135 [DB Tsai] refactoring 4348426 [DB Tsai] Addressed feedback from Sean Owen a252197 [DB Tsai] first commit --- .../classification/LogisticRegression.scala | 128 +++++++++-- .../spark/mllib/optimization/Gradient.scala | 200 +++++++++++++++--- .../GeneralizedLinearAlgorithm.scala | 101 +++++++-- .../spark/mllib/util/DataValidators.scala | 18 +- .../LogisticRegressionSuite.scala | 179 +++++++++++++++- 5 files changed, 565 insertions(+), 61 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala index 94d757bc317ab..282fb3ff283f4 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala @@ -18,30 +18,41 @@ package org.apache.spark.mllib.classification import org.apache.spark.annotation.Experimental -import org.apache.spark.mllib.linalg.Vector +import org.apache.spark.mllib.linalg.BLAS.dot +import org.apache.spark.mllib.linalg.{DenseVector, Vector} import org.apache.spark.mllib.optimization._ import org.apache.spark.mllib.regression._ -import org.apache.spark.mllib.util.DataValidators +import org.apache.spark.mllib.util.{DataValidators, MLUtils} import org.apache.spark.rdd.RDD /** - * Classification model trained using Logistic Regression. + * Classification model trained using Multinomial/Binary Logistic Regression. * * @param weights Weights computed for every feature. - * @param intercept Intercept computed for this model. + * @param intercept Intercept computed for this model. (Only used in Binary Logistic Regression. + * In Multinomial Logistic Regression, the intercepts will not be a single values, + * so the intercepts will be part of the weights.) + * @param numFeatures the dimension of the features. + * @param numClasses the number of possible outcomes for k classes classification problem in + * Multinomial Logistic Regression. By default, it is binary logistic regression + * so numClasses will be set to 2. */ class LogisticRegressionModel ( override val weights: Vector, - override val intercept: Double) + override val intercept: Double, + val numFeatures: Int, + val numClasses: Int) extends GeneralizedLinearModel(weights, intercept) with ClassificationModel with Serializable { + def this(weights: Vector, intercept: Double) = this(weights, intercept, weights.size, 2) + private var threshold: Option[Double] = Some(0.5) /** * :: Experimental :: - * Sets the threshold that separates positive predictions from negative predictions. An example - * with prediction score greater than or equal to this threshold is identified as an positive, - * and negative otherwise. The default value is 0.5. + * Sets the threshold that separates positive predictions from negative predictions + * in Binary Logistic Regression. An example with prediction score greater than or equal to + * this threshold is identified as an positive, and negative otherwise. The default value is 0.5. */ @Experimental def setThreshold(threshold: Double): this.type = { @@ -61,20 +72,68 @@ class LogisticRegressionModel ( override protected def predictPoint(dataMatrix: Vector, weightMatrix: Vector, intercept: Double) = { - val margin = weightMatrix.toBreeze.dot(dataMatrix.toBreeze) + intercept - val score = 1.0 / (1.0 + math.exp(-margin)) - threshold match { - case Some(t) => if (score > t) 1.0 else 0.0 - case None => score + require(dataMatrix.size == numFeatures) + + // If dataMatrix and weightMatrix have the same dimension, it's binary logistic regression. + if (numClasses == 2) { + require(numFeatures == weightMatrix.size) + val margin = dot(weights, dataMatrix) + intercept + val score = 1.0 / (1.0 + math.exp(-margin)) + threshold match { + case Some(t) => if (score > t) 1.0 else 0.0 + case None => score + } + } else { + val dataWithBiasSize = weightMatrix.size / (numClasses - 1) + + val weightsArray = weights match { + case dv: DenseVector => dv.values + case _ => + throw new IllegalArgumentException( + s"weights only supports dense vector but got type ${weights.getClass}.") + } + + val margins = (0 until numClasses - 1).map { i => + var margin = 0.0 + dataMatrix.foreachActive { (index, value) => + if (value != 0.0) margin += value * weightsArray((i * dataWithBiasSize) + index) + } + // Intercept is required to be added into margin. + if (dataMatrix.size + 1 == dataWithBiasSize) { + margin += weightsArray((i * dataWithBiasSize) + dataMatrix.size) + } + margin + } + + /** + * Find the one with maximum margins. If the maxMargin is negative, then the prediction + * result will be the first class. + * + * PS, if you want to compute the probabilities for each outcome instead of the outcome + * with maximum probability, remember to subtract the maxMargin from margins if maxMargin + * is positive to prevent overflow. + */ + var bestClass = 0 + var maxMargin = 0.0 + var i = 0 + while(i < margins.size) { + if (margins(i) > maxMargin) { + maxMargin = margins(i) + bestClass = i + 1 + } + i += 1 + } + bestClass.toDouble } } } /** - * Train a classification model for Logistic Regression using Stochastic Gradient Descent. By - * default L2 regularization is used, which can be changed via - * [[LogisticRegressionWithSGD.optimizer]]. - * NOTE: Labels used in Logistic Regression should be {0, 1}. + * Train a classification model for Binary Logistic Regression + * using Stochastic Gradient Descent. By default L2 regularization is used, + * which can be changed via [[LogisticRegressionWithSGD.optimizer]]. + * NOTE: Labels used in Logistic Regression should be {0, 1, ..., k - 1} + * for k classes multi-label classification problem. * Using [[LogisticRegressionWithLBFGS]] is recommended over this. */ class LogisticRegressionWithSGD private ( @@ -194,9 +253,10 @@ object LogisticRegressionWithSGD { } /** - * Train a classification model for Logistic Regression using Limited-memory BFGS. - * Standard feature scaling and L2 regularization are used by default. - * NOTE: Labels used in Logistic Regression should be {0, 1} + * Train a classification model for Multinomial/Binary Logistic Regression using + * Limited-memory BFGS. Standard feature scaling and L2 regularization are used by default. + * NOTE: Labels used in Logistic Regression should be {0, 1, ..., k - 1} + * for k classes multi-label classification problem. */ class LogisticRegressionWithLBFGS extends GeneralizedLinearAlgorithm[LogisticRegressionModel] with Serializable { @@ -205,9 +265,33 @@ class LogisticRegressionWithLBFGS override val optimizer = new LBFGS(new LogisticGradient, new SquaredL2Updater) - override protected val validators = List(DataValidators.binaryLabelValidator) + override protected val validators = List(multiLabelValidator) + + private def multiLabelValidator: RDD[LabeledPoint] => Boolean = { data => + if (numOfLinearPredictor > 1) { + DataValidators.multiLabelValidator(numOfLinearPredictor + 1)(data) + } else { + DataValidators.binaryLabelValidator(data) + } + } + + /** + * :: Experimental :: + * Set the number of possible outcomes for k classes classification problem in + * Multinomial Logistic Regression. + * By default, it is binary logistic regression so k will be set to 2. + */ + @Experimental + def setNumClasses(numClasses: Int): this.type = { + require(numClasses > 1) + numOfLinearPredictor = numClasses - 1 + if (numClasses > 2) { + optimizer.setGradient(new LogisticGradient(numClasses)) + } + this + } override protected def createModel(weights: Vector, intercept: Double) = { - new LogisticRegressionModel(weights, intercept) + new LogisticRegressionModel(weights, intercept, numFeatures, numOfLinearPredictor + 1) } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala index 1ca0f36c6ac34..0acdab797e8f3 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/optimization/Gradient.scala @@ -18,7 +18,7 @@ package org.apache.spark.mllib.optimization import org.apache.spark.annotation.DeveloperApi -import org.apache.spark.mllib.linalg.{Vector, Vectors} +import org.apache.spark.mllib.linalg.{DenseVector, Vector, Vectors} import org.apache.spark.mllib.linalg.BLAS.{axpy, dot, scal} import org.apache.spark.mllib.util.MLUtils @@ -55,24 +55,86 @@ abstract class Gradient extends Serializable { /** * :: DeveloperApi :: - * Compute gradient and loss for a logistic loss function, as used in binary classification. - * See also the documentation for the precise formulation. + * Compute gradient and loss for a multinomial logistic loss function, as used + * in multi-class classification (it is also used in binary logistic regression). + * + * In `The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition` + * by Trevor Hastie, Robert Tibshirani, and Jerome Friedman, which can be downloaded from + * http://statweb.stanford.edu/~tibs/ElemStatLearn/ , Eq. (4.17) on page 119 gives the formula of + * multinomial logistic regression model. A simple calculation shows that + * + * P(y=0|x, w) = 1 / (1 + \sum_i^{K-1} \exp(x w_i)) + * P(y=1|x, w) = exp(x w_1) / (1 + \sum_i^{K-1} \exp(x w_i)) + * ... + * P(y=K-1|x, w) = exp(x w_{K-1}) / (1 + \sum_i^{K-1} \exp(x w_i)) + * + * for K classes multiclass classification problem. + * + * The model weights w = (w_1, w_2, ..., w_{K-1})^T becomes a matrix which has dimension of + * (K-1) * (N+1) if the intercepts are added. If the intercepts are not added, the dimension + * will be (K-1) * N. + * + * As a result, the loss of objective function for a single instance of data can be written as + * l(w, x) = -log P(y|x, w) = -\alpha(y) log P(y=0|x, w) - (1-\alpha(y)) log P(y|x, w) + * = log(1 + \sum_i^{K-1}\exp(x w_i)) - (1-\alpha(y)) x w_{y-1} + * = log(1 + \sum_i^{K-1}\exp(margins_i)) - (1-\alpha(y)) margins_{y-1} + * + * where \alpha(i) = 1 if i != 0, and + * \alpha(i) = 0 if i == 0, + * margins_i = x w_i. + * + * For optimization, we have to calculate the first derivative of the loss function, and + * a simple calculation shows that + * + * \frac{\partial l(w, x)}{\partial w_{ij}} + * = (\exp(x w_i) / (1 + \sum_k^{K-1} \exp(x w_k)) - (1-\alpha(y)\delta_{y, i+1})) * x_j + * = multiplier_i * x_j + * + * where \delta_{i, j} = 1 if i == j, + * \delta_{i, j} = 0 if i != j, and + * multiplier + * = \exp(margins_i) / (1 + \sum_k^{K-1} \exp(margins_i)) - (1-\alpha(y)\delta_{y, i+1}) + * + * If any of margins is larger than 709.78, the numerical computation of multiplier and loss + * function will be suffered from arithmetic overflow. This issue occurs when there are outliers + * in data which are far away from hyperplane, and this will cause the failing of training once + * infinity / infinity is introduced. Note that this is only a concern when max(margins) > 0. + * + * Fortunately, when max(margins) = maxMargin > 0, the loss function and the multiplier can be + * easily rewritten into the following equivalent numerically stable formula. + * + * l(w, x) = log(1 + \sum_i^{K-1}\exp(margins_i)) - (1-\alpha(y)) margins_{y-1} + * = log(\exp(-maxMargin) + \sum_i^{K-1}\exp(margins_i - maxMargin)) + maxMargin + * - (1-\alpha(y)) margins_{y-1} + * = log(1 + sum) + maxMargin - (1-\alpha(y)) margins_{y-1} + * + * where sum = \exp(-maxMargin) + \sum_i^{K-1}\exp(margins_i - maxMargin) - 1. + * + * Note that each term, (margins_i - maxMargin) in \exp is smaller than zero; as a result, + * overflow will not happen with this formula. + * + * For multiplier, similar trick can be applied as the following, + * + * multiplier = \exp(margins_i) / (1 + \sum_k^{K-1} \exp(margins_i)) - (1-\alpha(y)\delta_{y, i+1}) + * = \exp(margins_i - maxMargin) / (1 + sum) - (1-\alpha(y)\delta_{y, i+1}) + * + * where each term in \exp is also smaller than zero, so overflow is not a concern. + * + * For the detailed mathematical derivation, see the reference at + * http://www.slideshare.net/dbtsai/2014-0620-mlor-36132297 + * + * @param numClasses the number of possible outcomes for k classes classification problem in + * Multinomial Logistic Regression. By default, it is binary logistic regression + * so numClasses will be set to 2. */ @DeveloperApi -class LogisticGradient extends Gradient { - override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { - val margin = -1.0 * dot(data, weights) - val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label - val gradient = data.copy - scal(gradientMultiplier, gradient) - val loss = - if (label > 0) { - // The following is equivalent to log(1 + exp(margin)) but more numerically stable. - MLUtils.log1pExp(margin) - } else { - MLUtils.log1pExp(margin) - margin - } +class LogisticGradient(numClasses: Int) extends Gradient { + def this() = this(2) + + override def compute(data: Vector, label: Double, weights: Vector): (Vector, Double) = { + val gradient = Vectors.zeros(weights.size) + val loss = compute(data, label, weights, gradient) (gradient, loss) } @@ -81,14 +143,104 @@ class LogisticGradient extends Gradient { label: Double, weights: Vector, cumGradient: Vector): Double = { - val margin = -1.0 * dot(data, weights) - val gradientMultiplier = (1.0 / (1.0 + math.exp(margin))) - label - axpy(gradientMultiplier, data, cumGradient) - if (label > 0) { - // The following is equivalent to log(1 + exp(margin)) but more numerically stable. - MLUtils.log1pExp(margin) - } else { - MLUtils.log1pExp(margin) - margin + val dataSize = data.size + + // (weights.size / dataSize + 1) is number of classes + require(weights.size % dataSize == 0 && numClasses == weights.size / dataSize + 1) + numClasses match { + case 2 => + /** + * For Binary Logistic Regression. + * + * Although the loss and gradient calculation for multinomial one is more generalized, + * and multinomial one can also be used in binary case, we still implement a specialized + * binary version for performance reason. + */ + val margin = -1.0 * dot(data, weights) + val multiplier = (1.0 / (1.0 + math.exp(margin))) - label + axpy(multiplier, data, cumGradient) + if (label > 0) { + // The following is equivalent to log(1 + exp(margin)) but more numerically stable. + MLUtils.log1pExp(margin) + } else { + MLUtils.log1pExp(margin) - margin + } + case _ => + /** + * For Multinomial Logistic Regression. + */ + val weightsArray = weights match { + case dv: DenseVector => dv.values + case _ => + throw new IllegalArgumentException( + s"weights only supports dense vector but got type ${weights.getClass}.") + } + val cumGradientArray = cumGradient match { + case dv: DenseVector => dv.values + case _ => + throw new IllegalArgumentException( + s"cumGradient only supports dense vector but got type ${cumGradient.getClass}.") + } + + // marginY is margins(label - 1) in the formula. + var marginY = 0.0 + var maxMargin = Double.NegativeInfinity + var maxMarginIndex = 0 + + val margins = Array.tabulate(numClasses - 1) { i => + var margin = 0.0 + data.foreachActive { (index, value) => + if (value != 0.0) margin += value * weightsArray((i * dataSize) + index) + } + if (i == label.toInt - 1) marginY = margin + if (margin > maxMargin) { + maxMargin = margin + maxMarginIndex = i + } + margin + } + + /** + * When maxMargin > 0, the original formula will cause overflow as we discuss + * in the previous comment. + * We address this by subtracting maxMargin from all the margins, so it's guaranteed + * that all of the new margins will be smaller than zero to prevent arithmetic overflow. + */ + val sum = { + var temp = 0.0 + if (maxMargin > 0) { + for (i <- 0 until numClasses - 1) { + margins(i) -= maxMargin + if (i == maxMarginIndex) { + temp += math.exp(-maxMargin) + } else { + temp += math.exp(margins(i)) + } + } + } else { + for (i <- 0 until numClasses - 1) { + temp += math.exp(margins(i)) + } + } + temp + } + + for (i <- 0 until numClasses - 1) { + val multiplier = math.exp(margins(i)) / (sum + 1.0) - { + if (label != 0.0 && label == i + 1) 1.0 else 0.0 + } + data.foreachActive { (index, value) => + if (value != 0.0) cumGradientArray(i * dataSize + index) += multiplier * value + } + } + + val loss = if (label > 0.0) math.log1p(sum) - marginY else math.log1p(sum) + + if (maxMargin > 0) { + loss + maxMargin + } else { + loss + } } } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala index 0287f04e2c777..17de215b97f9d 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/GeneralizedLinearAlgorithm.scala @@ -98,6 +98,23 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] protected var validateData: Boolean = true + /** + * In `GeneralizedLinearModel`, only single linear predictor is allowed for both weights + * and intercept. However, for multinomial logistic regression, with K possible outcomes, + * we are training K-1 independent binary logistic regression models which requires K-1 sets + * of linear predictor. + * + * As a result, the workaround here is if more than two sets of linear predictors are needed, + * we construct bigger `weights` vector which can hold both weights and intercepts. + * If the intercepts are added, the dimension of `weights` will be + * (numOfLinearPredictor) * (numFeatures + 1) . If the intercepts are not added, + * the dimension of `weights` will be (numOfLinearPredictor) * numFeatures. + * + * Thus, the intercepts will be encapsulated into weights, and we leave the value of intercept + * in GeneralizedLinearModel as zero. + */ + protected var numOfLinearPredictor: Int = 1 + /** * Whether to perform feature scaling before model training to reduce the condition numbers * which can significantly help the optimizer converging faster. The scaling correction will be @@ -106,6 +123,11 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] */ private var useFeatureScaling = false + /** + * The dimension of training features. + */ + protected var numFeatures: Int = 0 + /** * Set if the algorithm should use feature scaling to improve the convergence during optimization. */ @@ -141,8 +163,28 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] * RDD of LabeledPoint entries. */ def run(input: RDD[LabeledPoint]): M = { - val numFeatures: Int = input.first().features.size - val initialWeights = Vectors.dense(new Array[Double](numFeatures)) + numFeatures = input.first().features.size + + /** + * When `numOfLinearPredictor > 1`, the intercepts are encapsulated into weights, + * so the `weights` will include the intercepts. When `numOfLinearPredictor == 1`, + * the intercept will be stored as separated value in `GeneralizedLinearModel`. + * This will result in different behaviors since when `numOfLinearPredictor == 1`, + * users have no way to set the initial intercept, while in the other case, users + * can set the intercepts as part of weights. + * + * TODO: See if we can deprecate `intercept` in `GeneralizedLinearModel`, and always + * have the intercept as part of weights to have consistent design. + */ + val initialWeights = { + if (numOfLinearPredictor == 1) { + Vectors.dense(new Array[Double](numFeatures)) + } else if (addIntercept) { + Vectors.dense(new Array[Double]((numFeatures + 1) * numOfLinearPredictor)) + } else { + Vectors.dense(new Array[Double](numFeatures * numOfLinearPredictor)) + } + } run(input, initialWeights) } @@ -151,6 +193,7 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] * of LabeledPoint entries starting from the initial weights provided. */ def run(input: RDD[LabeledPoint], initialWeights: Vector): M = { + numFeatures = input.first().features.size if (input.getStorageLevel == StorageLevel.NONE) { logWarning("The input data is not directly cached, which may hurt performance if its" @@ -182,14 +225,14 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] * Currently, it's only enabled in LogisticRegressionWithLBFGS */ val scaler = if (useFeatureScaling) { - (new StandardScaler).fit(input.map(x => x.features)) + (new StandardScaler(withStd = true, withMean = false)).fit(input.map(x => x.features)) } else { null } // Prepend an extra variable consisting of all 1.0's for the intercept. val data = if (addIntercept) { - if(useFeatureScaling) { + if (useFeatureScaling) { input.map(labeledPoint => (labeledPoint.label, appendBias(scaler.transform(labeledPoint.features)))) } else { @@ -203,21 +246,31 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] } } - val initialWeightsWithIntercept = if (addIntercept) { + /** + * TODO: For better convergence, in logistic regression, the intercepts should be computed + * from the prior probability distribution of the outcomes; for linear regression, + * the intercept should be set as the average of response. + */ + val initialWeightsWithIntercept = if (addIntercept && numOfLinearPredictor == 1) { appendBias(initialWeights) } else { + /** If `numOfLinearPredictor > 1`, initialWeights already contains intercepts. */ initialWeights } val weightsWithIntercept = optimizer.optimize(data, initialWeightsWithIntercept) - val intercept = if (addIntercept) weightsWithIntercept(weightsWithIntercept.size - 1) else 0.0 - var weights = - if (addIntercept) { - Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)) - } else { - weightsWithIntercept - } + val intercept = if (addIntercept && numOfLinearPredictor == 1) { + weightsWithIntercept(weightsWithIntercept.size - 1) + } else { + 0.0 + } + + var weights = if (addIntercept && numOfLinearPredictor == 1) { + Vectors.dense(weightsWithIntercept.toArray.slice(0, weightsWithIntercept.size - 1)) + } else { + weightsWithIntercept + } /** * The weights and intercept are trained in the scaled space; we're converting them back to @@ -228,7 +281,29 @@ abstract class GeneralizedLinearAlgorithm[M <: GeneralizedLinearModel] * is the coefficient in the original space, and v_i is the variance of the column i. */ if (useFeatureScaling) { - weights = scaler.transform(weights) + if (numOfLinearPredictor == 1) { + weights = scaler.transform(weights) + } else { + /** + * For `numOfLinearPredictor > 1`, we have to transform the weights back to the original + * scale for each set of linear predictor. Note that the intercepts have to be explicitly + * excluded when `addIntercept == true` since the intercepts are part of weights now. + */ + var i = 0 + val n = weights.size / numOfLinearPredictor + val weightsArray = weights.toArray + while (i < numOfLinearPredictor) { + val start = i * n + val end = (i + 1) * n - { if (addIntercept) 1 else 0 } + + val partialWeightsArray = scaler.transform( + Vectors.dense(weightsArray.slice(start, end))).toArray + + System.arraycopy(partialWeightsArray, 0, weightsArray, start, partialWeightsArray.size) + i += 1 + } + weights = Vectors.dense(weightsArray) + } } // Warn at the end of the run as well, for increased visibility. diff --git a/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala b/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala index 45f95482a1def..be335a1aca58a 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/util/DataValidators.scala @@ -34,11 +34,27 @@ object DataValidators extends Logging { * * @return True if labels are all zero or one, false otherwise. */ - val binaryLabelValidator: RDD[LabeledPoint] => Boolean = { data => + val binaryLabelValidator: RDD[LabeledPoint] => Boolean = { data => val numInvalid = data.filter(x => x.label != 1.0 && x.label != 0.0).count() if (numInvalid != 0) { logError("Classification labels should be 0 or 1. Found " + numInvalid + " invalid labels") } numInvalid == 0 } + + /** + * Function to check if labels used for k class multi-label classification are + * in the range of {0, 1, ..., k - 1}. + * + * @return True if labels are all in the range of {0, 1, ..., k-1}, false otherwise. + */ + def multiLabelValidator(k: Int): RDD[LabeledPoint] => Boolean = { data => + val numInvalid = data.filter(x => + x.label - x.label.toInt != 0.0 || x.label < 0 || x.label > k - 1).count() + if (numInvalid != 0) { + logError("Classification labels should be in {0 to " + (k - 1) + "}. " + + "Found " + numInvalid + " invalid labels") + } + numInvalid == 0 + } } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala index 94b0e00f37267..3fb45938f75db 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/classification/LogisticRegressionSuite.scala @@ -17,13 +17,14 @@ package org.apache.spark.mllib.classification +import scala.util.control.Breaks._ import scala.util.Random import scala.collection.JavaConversions._ import org.scalatest.FunSuite import org.scalatest.Matchers -import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.mllib.regression._ import org.apache.spark.mllib.util.{LocalClusterSparkContext, MLlibTestSparkContext} import org.apache.spark.mllib.util.TestingUtils._ @@ -55,6 +56,97 @@ object LogisticRegressionSuite { val testData = (0 until nPoints).map(i => LabeledPoint(y(i), Vectors.dense(Array(x1(i))))) testData } + + /** + * Generates `k` classes multinomial synthetic logistic input in `n` dimensional space given the + * model weights and mean/variance of the features. The synthetic data will be drawn from + * the probability distribution constructed by weights using the following formula. + * + * P(y = 0 | x) = 1 / norm + * P(y = 1 | x) = exp(x * w_1) / norm + * P(y = 2 | x) = exp(x * w_2) / norm + * ... + * P(y = k-1 | x) = exp(x * w_{k-1}) / norm + * where norm = 1 + exp(x * w_1) + exp(x * w_2) + ... + exp(x * w_{k-1}) + * + * @param weights matrix is flatten into a vector; as a result, the dimension of weights vector + * will be (k - 1) * (n + 1) if `addIntercept == true`, and + * if `addIntercept != true`, the dimension will be (k - 1) * n. + * @param xMean the mean of the generated features. Lots of time, if the features are not properly + * standardized, the algorithm with poor implementation will have difficulty + * to converge. + * @param xVariance the variance of the generated features. + * @param addIntercept whether to add intercept. + * @param nPoints the number of instance of generated data. + * @param seed the seed for random generator. For consistent testing result, it will be fixed. + */ + def generateMultinomialLogisticInput( + weights: Array[Double], + xMean: Array[Double], + xVariance: Array[Double], + addIntercept: Boolean, + nPoints: Int, + seed: Int): Seq[LabeledPoint] = { + val rnd = new Random(seed) + + val xDim = xMean.size + val xWithInterceptsDim = if (addIntercept) xDim + 1 else xDim + val nClasses = weights.size / xWithInterceptsDim + 1 + + val x = Array.fill[Vector](nPoints)(Vectors.dense(Array.fill[Double](xDim)(rnd.nextGaussian()))) + + x.map(vector => { + // This doesn't work if `vector` is a sparse vector. + val vectorArray = vector.toArray + var i = 0 + while (i < vectorArray.size) { + vectorArray(i) = vectorArray(i) * math.sqrt(xVariance(i)) + xMean(i) + i += 1 + } + }) + + val y = (0 until nPoints).map { idx => + val xArray = x(idx).toArray + val margins = Array.ofDim[Double](nClasses) + val probs = Array.ofDim[Double](nClasses) + + for (i <- 0 until nClasses - 1) { + for (j <- 0 until xDim) margins(i + 1) += weights(i * xWithInterceptsDim + j) * xArray(j) + if (addIntercept) margins(i + 1) += weights((i + 1) * xWithInterceptsDim - 1) + } + // Preventing the overflow when we compute the probability + val maxMargin = margins.max + if (maxMargin > 0) for (i <-0 until nClasses) margins(i) -= maxMargin + + // Computing the probabilities for each class from the margins. + val norm = { + var temp = 0.0 + for (i <- 0 until nClasses) { + probs(i) = math.exp(margins(i)) + temp += probs(i) + } + temp + } + for (i <-0 until nClasses) probs(i) /= norm + + // Compute the cumulative probability so we can generate a random number and assign a label. + for (i <- 1 until nClasses) probs(i) += probs(i - 1) + val p = rnd.nextDouble() + var y = 0 + breakable { + for (i <- 0 until nClasses) { + if (p < probs(i)) { + y = i + break + } + } + } + y + } + + val testData = (0 until nPoints).map(i => LabeledPoint(y(i), x(i))) + testData + } } class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext with Matchers { @@ -285,6 +377,91 @@ class LogisticRegressionSuite extends FunSuite with MLlibTestSparkContext with M assert(modelB1.weights(0) !~== modelB3.weights(0) * 1.0E6 absTol 0.1) } + test("multinomial logistic regression with LBFGS") { + val nPoints = 10000 + + /** + * The following weights and xMean/xVariance are computed from iris dataset with lambda = 0.2. + * As a result, we are actually drawing samples from probability distribution of built model. + */ + val weights = Array( + -0.57997, 0.912083, -0.371077, -0.819866, 2.688191, + -0.16624, -0.84355, -0.048509, -0.301789, 4.170682) + + val xMean = Array(5.843, 3.057, 3.758, 1.199) + val xVariance = Array(0.6856, 0.1899, 3.116, 0.581) + + val testData = LogisticRegressionSuite.generateMultinomialLogisticInput( + weights, xMean, xVariance, true, nPoints, 42) + + val testRDD = sc.parallelize(testData, 2) + testRDD.cache() + + val lr = new LogisticRegressionWithLBFGS().setIntercept(true).setNumClasses(3) + lr.optimizer.setConvergenceTol(1E-15).setNumIterations(200) + + val model = lr.run(testRDD) + + /** + * The following is the instruction to reproduce the model using R's glmnet package. + * + * First of all, using the following scala code to save the data into `path`. + * + * testRDD.map(x => x.label+ ", " + x.features(0) + ", " + x.features(1) + ", " + + * x.features(2) + ", " + x.features(3)).saveAsTextFile("path") + * + * Using the following R code to load the data and train the model using glmnet package. + * + * library("glmnet") + * data <- read.csv("path", header=FALSE) + * label = factor(data$V1) + * features = as.matrix(data.frame(data$V2, data$V3, data$V4, data$V5)) + * weights = coef(glmnet(features,label, family="multinomial", alpha = 0, lambda = 0)) + * + * The model weights of mutinomial logstic regression in R have `K` set of linear predictors + * for `K` classes classification problem; however, only `K-1` set is required if the first + * outcome is chosen as a "pivot", and the other `K-1` outcomes are separately regressed against + * the pivot outcome. This can be done by subtracting the first weights from those `K-1` set + * weights. The mathematical discussion and proof can be found here: + * http://en.wikipedia.org/wiki/Multinomial_logistic_regression + * + * weights1 = weights$`1` - weights$`0` + * weights2 = weights$`2` - weights$`0` + * + * > weights1 + * 5 x 1 sparse Matrix of class "dgCMatrix" + * s0 + * 2.6228269 + * data.V2 -0.5837166 + * data.V3 0.9285260 + * data.V4 -0.3783612 + * data.V5 -0.8123411 + * > weights2 + * 5 x 1 sparse Matrix of class "dgCMatrix" + * s0 + * 4.11197445 + * data.V2 -0.16918650 + * data.V3 -0.81104784 + * data.V4 -0.06463799 + * data.V5 -0.29198337 + */ + + val weightsR = Vectors.dense(Array( + -0.5837166, 0.9285260, -0.3783612, -0.8123411, 2.6228269, + -0.1691865, -0.811048, -0.0646380, -0.2919834, 4.1119745)) + + assert(model.weights ~== weightsR relTol 0.05) + + val validationData = LogisticRegressionSuite.generateMultinomialLogisticInput( + weights, xMean, xVariance, true, nPoints, 17) + val validationRDD = sc.parallelize(validationData, 2) + // The validation accuracy is not good since this model (even the original weights) doesn't have + // very steep curve in logistic function so that when we draw samples from distribution, it's + // very easy to assign to another labels. However, this prediction result is consistent to R. + validatePrediction(model.predict(validationRDD.map(_.features)).collect(), validationData, 0.47) + + } + } class LogisticRegressionClusterSuite extends FunSuite with LocalClusterSparkContext { From dca6faa29a8dd805cf364ed2683efaf7928f2112 Mon Sep 17 00:00:00 2001 From: seayi <405078363@qq.com> Date: Mon, 2 Feb 2015 16:06:52 -0800 Subject: [PATCH 17/52] [SPARK-5195][sql]Update HiveMetastoreCatalog.scala(override the MetastoreRelation's sameresult method only compare databasename and table name) override the MetastoreRelation's sameresult method only compare databasename and table name because in previous : cache table t1; select count(*) from t1; it will read data from memory but the sql below will not,instead it read from hdfs: select count(*) from t1 t; because cache data is keyed by logical plan and compare with sameResult ,so when table with alias the same table 's logicalplan is not the same logical plan with out alias so modify the sameresult method only compare databasename and table name Author: seayi <405078363@qq.com> Author: Michael Armbrust Closes #3898 from seayi/branch-1.2 and squashes the following commits: 8f0c7d2 [seayi] Update CachedTableSuite.scala a277120 [seayi] Update HiveMetastoreCatalog.scala 8d910aa [seayi] Update HiveMetastoreCatalog.scala --- .../org/apache/spark/sql/hive/HiveMetastoreCatalog.scala | 9 +++++++++ .../org/apache/spark/sql/hive/CachedTableSuite.scala | 6 ++++++ 2 files changed, 15 insertions(+) diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala index 1a49f09bd9988..d910ee950904d 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala @@ -519,6 +519,15 @@ private[hive] case class MetastoreRelation } ) + /** Only compare database and tablename, not alias. */ + override def sameResult(plan: LogicalPlan): Boolean = { + plan match { + case mr: MetastoreRelation => + mr.databaseName == databaseName && mr.tableName == tableName + case _ => false + } + } + val tableDesc = HiveShim.getTableDesc( Class.forName( hiveQlTable.getSerializationLib, diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/CachedTableSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/CachedTableSuite.scala index 61e5117feab10..7c8b5205e239e 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/CachedTableSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/CachedTableSuite.scala @@ -64,6 +64,12 @@ class CachedTableSuite extends QueryTest { sql("SELECT * FROM src"), preCacheResults) + assertCached(sql("SELECT * FROM src s")) + + checkAnswer( + sql("SELECT * FROM src s"), + preCacheResults) + uncacheTable("src") assertCached(sql("SELECT * FROM src"), 0) } From 8aa3cfff661753d6d87a8d9a87373d403436dd92 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Mon, 2 Feb 2015 16:55:36 -0800 Subject: [PATCH 18/52] [SPARK-5514] DataFrame.collect should call executeCollect Author: Reynold Xin Closes #4313 from rxin/SPARK-5514 and squashes the following commits: e34e91b [Reynold Xin] [SPARK-5514] DataFrame.collect should call executeCollect --- sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 1096e396591df..5d42d4428d09e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -541,7 +541,7 @@ class DataFrame protected[sql]( /** * Returns an array that contains all of [[Row]]s in this [[DataFrame]]. */ - override def collect(): Array[Row] = rdd.collect() + override def collect(): Array[Row] = queryExecution.executedPlan.executeCollect() /** * Returns a Java list that contains all of [[Row]]s in this [[DataFrame]]. From f133dece569f7faedb06a0da6e9f86c5d615e9be Mon Sep 17 00:00:00 2001 From: "Joseph K. Bradley" Date: Mon, 2 Feb 2015 17:02:29 -0800 Subject: [PATCH 19/52] [SPARK-5534] [graphx] Graph getStorageLevel fix This fixes getStorageLevel for EdgeRDDImpl and VertexRDDImpl (and therefore for Graph). See code example on JIRA which failed before but works with this patch: [https://issues.apache.org/jira/browse/SPARK-5534] (The added unit tests also failed before but work with this fix.) Note: I used partitionsRDD, assuming that getStorageLevel will only be called on the driver. CC: mengxr (related to LDA PR), rxin ankurdave Thanks in advance! Author: Joseph K. Bradley Closes #4317 from jkbradley/graphx-storagelevel and squashes the following commits: 1c21e49 [Joseph K. Bradley] made graph getStorageLevel test more robust 18d64ca [Joseph K. Bradley] Added tests for getStorageLevel in VertexRDDSuite, EdgeRDDSuite, GraphSuite 17b488b [Joseph K. Bradley] overrode getStorageLevel in Vertex/EdgeRDDImpl to use partitionsRDD --- .../spark/graphx/impl/EdgeRDDImpl.scala | 2 + .../spark/graphx/impl/VertexRDDImpl.scala | 2 + .../apache/spark/graphx/EdgeRDDSuite.scala | 37 +++++++++++++++++++ .../org/apache/spark/graphx/GraphSuite.scala | 15 ++++++++ .../apache/spark/graphx/VertexRDDSuite.scala | 19 ++++++++-- 5 files changed, 71 insertions(+), 4 deletions(-) create mode 100644 graphx/src/test/scala/org/apache/spark/graphx/EdgeRDDSuite.scala diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala index 6c35d7029e078..56cb41661e300 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/EdgeRDDImpl.scala @@ -70,6 +70,8 @@ class EdgeRDDImpl[ED: ClassTag, VD: ClassTag] private[graphx] ( this } + override def getStorageLevel = partitionsRDD.getStorageLevel + override def checkpoint() = { partitionsRDD.checkpoint() } diff --git a/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala b/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala index 3e4968d6c0d6f..6dad167fa7411 100644 --- a/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala +++ b/graphx/src/main/scala/org/apache/spark/graphx/impl/VertexRDDImpl.scala @@ -71,6 +71,8 @@ class VertexRDDImpl[VD] private[graphx] ( this } + override def getStorageLevel = partitionsRDD.getStorageLevel + override def checkpoint() = { partitionsRDD.checkpoint() } diff --git a/graphx/src/test/scala/org/apache/spark/graphx/EdgeRDDSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/EdgeRDDSuite.scala new file mode 100644 index 0000000000000..eb1dbe52c2fda --- /dev/null +++ b/graphx/src/test/scala/org/apache/spark/graphx/EdgeRDDSuite.scala @@ -0,0 +1,37 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.graphx + +import org.scalatest.FunSuite + +import org.apache.spark.storage.StorageLevel + +class EdgeRDDSuite extends FunSuite with LocalSparkContext { + + test("cache, getStorageLevel") { + // test to see if getStorageLevel returns correct value after caching + withSpark { sc => + val verts = sc.parallelize(List((0L, 0), (1L, 1), (1L, 2), (2L, 3), (2L, 3), (2L, 3))) + val edges = EdgeRDD.fromEdges(sc.parallelize(List.empty[Edge[Int]])) + assert(edges.getStorageLevel == StorageLevel.NONE) + edges.cache() + assert(edges.getStorageLevel == StorageLevel.MEMORY_ONLY) + } + } + +} diff --git a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala index 59a57ba7a33f1..b61d9f0fbe5e4 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/GraphSuite.scala @@ -25,6 +25,7 @@ import org.apache.spark.SparkContext import org.apache.spark.graphx.Graph._ import org.apache.spark.graphx.PartitionStrategy._ import org.apache.spark.rdd._ +import org.apache.spark.storage.StorageLevel class GraphSuite extends FunSuite with LocalSparkContext { @@ -390,6 +391,20 @@ class GraphSuite extends FunSuite with LocalSparkContext { } } + test("cache, getStorageLevel") { + // test to see if getStorageLevel returns correct value + withSpark { sc => + val verts = sc.parallelize(List((1: VertexId, "a"), (2: VertexId, "b")), 1) + val edges = sc.parallelize(List(Edge(1, 2, 0), Edge(2, 1, 0)), 2) + val graph = Graph(verts, edges, "", StorageLevel.MEMORY_ONLY, StorageLevel.MEMORY_ONLY) + // Note: Before caching, graph.vertices is cached, but graph.edges is not (but graph.edges' + // parent RDD is cached). + graph.cache() + assert(graph.vertices.getStorageLevel == StorageLevel.MEMORY_ONLY) + assert(graph.edges.getStorageLevel == StorageLevel.MEMORY_ONLY) + } + } + test("non-default number of edge partitions") { val n = 10 val defaultParallelism = 3 diff --git a/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala index 42d3f21dbae98..131959cea3ef7 100644 --- a/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala +++ b/graphx/src/test/scala/org/apache/spark/graphx/VertexRDDSuite.scala @@ -17,12 +17,11 @@ package org.apache.spark.graphx -import org.apache.spark.SparkContext -import org.apache.spark.graphx.Graph._ -import org.apache.spark.graphx.impl.EdgePartition -import org.apache.spark.rdd._ import org.scalatest.FunSuite +import org.apache.spark.SparkContext +import org.apache.spark.storage.StorageLevel + class VertexRDDSuite extends FunSuite with LocalSparkContext { def vertices(sc: SparkContext, n: Int) = { @@ -110,4 +109,16 @@ class VertexRDDSuite extends FunSuite with LocalSparkContext { } } + test("cache, getStorageLevel") { + // test to see if getStorageLevel returns correct value after caching + withSpark { sc => + val verts = sc.parallelize(List((0L, 0), (1L, 1), (1L, 2), (2L, 3), (2L, 3), (2L, 3))) + val edges = EdgeRDD.fromEdges(sc.parallelize(List.empty[Edge[Int]])) + val rdd = VertexRDD(verts, edges, 0, (a: Int, b: Int) => a + b) + assert(rdd.getStorageLevel == StorageLevel.NONE) + rdd.cache() + assert(rdd.getStorageLevel == StorageLevel.MEMORY_ONLY) + } + } + } From ef65cf09b04f915ab463a6d3bac12795318897f2 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Mon, 2 Feb 2015 17:10:01 -0800 Subject: [PATCH 20/52] [SPARK-5540] hide ALS.solveLeastSquares This method survived the code review and it has been there since v1.1.0. It exposes jblas types. Let's remove it from the public API. I think no one calls it directly. Author: Xiangrui Meng Closes #4318 from mengxr/SPARK-5540 and squashes the following commits: 586ade6 [Xiangrui Meng] hide ALS.solveLeastSquares --- .../scala/org/apache/spark/mllib/recommendation/ALS.scala | 2 +- project/MimaExcludes.scala | 4 ++++ 2 files changed, 5 insertions(+), 1 deletion(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala index 5f84677be238d..a5ffe888ca880 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala @@ -615,7 +615,7 @@ class ALS private ( * Given A^T A and A^T b, find the x minimising ||Ax - b||_2, possibly subject * to nonnegativity constraints if `nonnegative` is true. */ - def solveLeastSquares(ata: DoubleMatrix, atb: DoubleMatrix, + private def solveLeastSquares(ata: DoubleMatrix, atb: DoubleMatrix, ws: NNLS.Workspace): Array[Double] = { if (!nonnegative) { Solve.solvePositive(ata, atb).data diff --git a/project/MimaExcludes.scala b/project/MimaExcludes.scala index 45be1db9a5ebe..78de1f0652741 100644 --- a/project/MimaExcludes.scala +++ b/project/MimaExcludes.scala @@ -66,6 +66,10 @@ object MimaExcludes { "org.apache.spark.mllib.linalg.Matrix.isTransposed"), ProblemFilters.exclude[MissingMethodProblem]( "org.apache.spark.mllib.linalg.Matrix.foreachActive") + ) ++ Seq( + // SPARK-5540 + ProblemFilters.exclude[MissingMethodProblem]( + "org.apache.spark.mllib.recommendation.ALS.solveLeastSquares") ) ++ Seq( // SPARK-3325 ProblemFilters.exclude[MissingMethodProblem]( From cfea30037ff4ac7e386a1478e7dce07ca3bb9072 Mon Sep 17 00:00:00 2001 From: Jacek Lewandowski Date: Mon, 2 Feb 2015 17:18:54 -0800 Subject: [PATCH 21/52] Spark 3883: SSL support for HttpServer and Akka SPARK-3883: SSL support for Akka connections and Jetty based file servers. This story introduced the following changes: - Introduced SSLOptions object which holds the SSL configuration and can build the appropriate configuration for Akka or Jetty. SSLOptions can be created by parsing SparkConf entries at a specified namespace. - SSLOptions is created and kept by SecurityManager - All Akka actor address creation snippets based on interpolated strings were replaced by a dedicated methods from AkkaUtils. Those methods select the proper Akka protocol - whether akka.tcp or akka.ssl.tcp - Added tests cases for AkkaUtils, FileServer, SSLOptions and SecurityManager - Added a way to use node local SSL configuration by executors and driver in standalone mode. It can be done by specifying spark.ssl.useNodeLocalConf in SparkConf. - Made CoarseGrainedExecutorBackend not overwrite the settings which are executor startup configuration - they are passed anyway from Worker Refer to https://github.com/apache/spark/pull/3571 for discussion and details Author: Jacek Lewandowski Author: Jacek Lewandowski Closes #3571 from jacek-lewandowski/SPARK-3883-master and squashes the following commits: 9ef4ed1 [Jacek Lewandowski] Merge pull request #2 from jacek-lewandowski/SPARK-3883-docs2 fb31b49 [Jacek Lewandowski] SPARK-3883: Added SSL setup documentation 2532668 [Jacek Lewandowski] SPARK-3883: Refactored AkkaUtils.protocol method to not use Try 90a8762 [Jacek Lewandowski] SPARK-3883: Refactored methods to resolve Akka address and made it possible to easily configure multiple communication layers for SSL 72b2541 [Jacek Lewandowski] SPARK-3883: A reference to the fallback SSLOptions can be provided when constructing SSLOptions 93050f4 [Jacek Lewandowski] SPARK-3883: SSL support for HttpServer and Akka --- .../scala/org/apache/spark/HttpServer.scala | 11 +- .../scala/org/apache/spark/SSLOptions.scala | 178 ++++++++++++++++ .../org/apache/spark/SecurityManager.scala | 100 ++++++++- .../scala/org/apache/spark/SparkConf.scala | 1 + .../spark/broadcast/HttpBroadcast.scala | 1 + .../spark/deploy/ApplicationDescription.scala | 9 + .../org/apache/spark/deploy/Client.scala | 5 +- .../spark/deploy/DriverDescription.scala | 8 + .../spark/deploy/client/AppClient.scala | 7 +- .../apache/spark/deploy/master/Master.scala | 8 +- .../spark/deploy/worker/ExecutorRunner.scala | 2 +- .../apache/spark/deploy/worker/Worker.scala | 67 +++++- .../CoarseGrainedExecutorBackend.scala | 16 +- .../cluster/SimrSchedulerBackend.scala | 4 +- .../cluster/SparkDeploySchedulerBackend.scala | 5 +- .../mesos/CoarseMesosSchedulerBackend.scala | 5 +- .../org/apache/spark/util/AkkaUtils.scala | 36 +++- .../scala/org/apache/spark/util/Utils.scala | 20 +- core/src/test/resources/keystore | Bin 0 -> 2247 bytes core/src/test/resources/truststore | Bin 0 -> 957 bytes core/src/test/resources/untrusted-keystore | Bin 0 -> 2246 bytes .../org/apache/spark/FileServerSuite.scala | 90 ++++++++ .../apache/spark/MapOutputTrackerSuite.scala | 2 +- .../org/apache/spark/SSLOptionsSuite.scala | 123 +++++++++++ .../org/apache/spark/SSLSampleConfigs.scala | 55 +++++ .../apache/spark/SecurityManagerSuite.scala | 50 ++++- .../org/apache/spark/deploy/ClientSuite.scala | 1 + .../spark/deploy/master/MasterSuite.scala | 26 ++- .../spark/deploy/worker/WorkerSuite.scala | 57 +++++ .../apache/spark/util/AkkaUtilsSuite.scala | 197 ++++++++++++++++-- docs/configuration.md | 80 +++++++ docs/security.md | 24 +++ .../spark/repl/ExecutorClassLoader.scala | 11 +- .../receiver/ReceiverSupervisorImpl.scala | 8 +- .../spark/deploy/yarn/ApplicationMaster.scala | 4 +- .../spark/deploy/yarn/YarnAllocator.scala | 7 +- 36 files changed, 1145 insertions(+), 73 deletions(-) create mode 100644 core/src/main/scala/org/apache/spark/SSLOptions.scala create mode 100644 core/src/test/resources/keystore create mode 100644 core/src/test/resources/truststore create mode 100644 core/src/test/resources/untrusted-keystore create mode 100644 core/src/test/scala/org/apache/spark/SSLOptionsSuite.scala create mode 100644 core/src/test/scala/org/apache/spark/SSLSampleConfigs.scala create mode 100644 core/src/test/scala/org/apache/spark/deploy/worker/WorkerSuite.scala diff --git a/core/src/main/scala/org/apache/spark/HttpServer.scala b/core/src/main/scala/org/apache/spark/HttpServer.scala index fa22787ce7ea3..09a9ccc226721 100644 --- a/core/src/main/scala/org/apache/spark/HttpServer.scala +++ b/core/src/main/scala/org/apache/spark/HttpServer.scala @@ -19,6 +19,7 @@ package org.apache.spark import java.io.File +import org.eclipse.jetty.server.ssl.SslSocketConnector import org.eclipse.jetty.util.security.{Constraint, Password} import org.eclipse.jetty.security.authentication.DigestAuthenticator import org.eclipse.jetty.security.{ConstraintMapping, ConstraintSecurityHandler, HashLoginService} @@ -72,7 +73,10 @@ private[spark] class HttpServer( */ private def doStart(startPort: Int): (Server, Int) = { val server = new Server() - val connector = new SocketConnector + + val connector = securityManager.fileServerSSLOptions.createJettySslContextFactory() + .map(new SslSocketConnector(_)).getOrElse(new SocketConnector) + connector.setMaxIdleTime(60 * 1000) connector.setSoLingerTime(-1) connector.setPort(startPort) @@ -149,13 +153,14 @@ private[spark] class HttpServer( } /** - * Get the URI of this HTTP server (http://host:port) + * Get the URI of this HTTP server (http://host:port or https://host:port) */ def uri: String = { if (server == null) { throw new ServerStateException("Server is not started") } else { - "http://" + Utils.localIpAddress + ":" + port + val scheme = if (securityManager.fileServerSSLOptions.enabled) "https" else "http" + s"$scheme://${Utils.localIpAddress}:$port" } } } diff --git a/core/src/main/scala/org/apache/spark/SSLOptions.scala b/core/src/main/scala/org/apache/spark/SSLOptions.scala new file mode 100644 index 0000000000000..2cdc167f85af0 --- /dev/null +++ b/core/src/main/scala/org/apache/spark/SSLOptions.scala @@ -0,0 +1,178 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark + +import java.io.File + +import com.typesafe.config.{Config, ConfigFactory, ConfigValueFactory} +import org.eclipse.jetty.util.ssl.SslContextFactory + +/** + * SSLOptions class is a common container for SSL configuration options. It offers methods to + * generate specific objects to configure SSL for different communication protocols. + * + * SSLOptions is intended to provide the maximum common set of SSL settings, which are supported + * by the protocol, which it can generate the configuration for. Since Akka doesn't support client + * authentication with SSL, SSLOptions cannot support it either. + * + * @param enabled enables or disables SSL; if it is set to false, the rest of the + * settings are disregarded + * @param keyStore a path to the key-store file + * @param keyStorePassword a password to access the key-store file + * @param keyPassword a password to access the private key in the key-store + * @param trustStore a path to the trust-store file + * @param trustStorePassword a password to access the trust-store file + * @param protocol SSL protocol (remember that SSLv3 was compromised) supported by Java + * @param enabledAlgorithms a set of encryption algorithms to use + */ +private[spark] case class SSLOptions( + enabled: Boolean = false, + keyStore: Option[File] = None, + keyStorePassword: Option[String] = None, + keyPassword: Option[String] = None, + trustStore: Option[File] = None, + trustStorePassword: Option[String] = None, + protocol: Option[String] = None, + enabledAlgorithms: Set[String] = Set.empty) { + + /** + * Creates a Jetty SSL context factory according to the SSL settings represented by this object. + */ + def createJettySslContextFactory(): Option[SslContextFactory] = { + if (enabled) { + val sslContextFactory = new SslContextFactory() + + keyStore.foreach(file => sslContextFactory.setKeyStorePath(file.getAbsolutePath)) + trustStore.foreach(file => sslContextFactory.setTrustStore(file.getAbsolutePath)) + keyStorePassword.foreach(sslContextFactory.setKeyStorePassword) + trustStorePassword.foreach(sslContextFactory.setTrustStorePassword) + keyPassword.foreach(sslContextFactory.setKeyManagerPassword) + protocol.foreach(sslContextFactory.setProtocol) + sslContextFactory.setIncludeCipherSuites(enabledAlgorithms.toSeq: _*) + + Some(sslContextFactory) + } else { + None + } + } + + /** + * Creates an Akka configuration object which contains all the SSL settings represented by this + * object. It can be used then to compose the ultimate Akka configuration. + */ + def createAkkaConfig: Option[Config] = { + import scala.collection.JavaConversions._ + if (enabled) { + Some(ConfigFactory.empty() + .withValue("akka.remote.netty.tcp.security.key-store", + ConfigValueFactory.fromAnyRef(keyStore.map(_.getAbsolutePath).getOrElse(""))) + .withValue("akka.remote.netty.tcp.security.key-store-password", + ConfigValueFactory.fromAnyRef(keyStorePassword.getOrElse(""))) + .withValue("akka.remote.netty.tcp.security.trust-store", + ConfigValueFactory.fromAnyRef(trustStore.map(_.getAbsolutePath).getOrElse(""))) + .withValue("akka.remote.netty.tcp.security.trust-store-password", + ConfigValueFactory.fromAnyRef(trustStorePassword.getOrElse(""))) + .withValue("akka.remote.netty.tcp.security.key-password", + ConfigValueFactory.fromAnyRef(keyPassword.getOrElse(""))) + .withValue("akka.remote.netty.tcp.security.random-number-generator", + ConfigValueFactory.fromAnyRef("")) + .withValue("akka.remote.netty.tcp.security.protocol", + ConfigValueFactory.fromAnyRef(protocol.getOrElse(""))) + .withValue("akka.remote.netty.tcp.security.enabled-algorithms", + ConfigValueFactory.fromIterable(enabledAlgorithms.toSeq)) + .withValue("akka.remote.netty.tcp.enable-ssl", + ConfigValueFactory.fromAnyRef(true))) + } else { + None + } + } + + /** Returns a string representation of this SSLOptions with all the passwords masked. */ + override def toString: String = s"SSLOptions{enabled=$enabled, " + + s"keyStore=$keyStore, keyStorePassword=${keyStorePassword.map(_ => "xxx")}, " + + s"trustStore=$trustStore, trustStorePassword=${trustStorePassword.map(_ => "xxx")}, " + + s"protocol=$protocol, enabledAlgorithms=$enabledAlgorithms}" + +} + +private[spark] object SSLOptions extends Logging { + + /** Resolves SSLOptions settings from a given Spark configuration object at a given namespace. + * + * The following settings are allowed: + * $ - `[ns].enabled` - `true` or `false`, to enable or disable SSL respectively + * $ - `[ns].keyStore` - a path to the key-store file; can be relative to the current directory + * $ - `[ns].keyStorePassword` - a password to the key-store file + * $ - `[ns].keyPassword` - a password to the private key + * $ - `[ns].trustStore` - a path to the trust-store file; can be relative to the current + * directory + * $ - `[ns].trustStorePassword` - a password to the trust-store file + * $ - `[ns].protocol` - a protocol name supported by a particular Java version + * $ - `[ns].enabledAlgorithms` - a comma separated list of ciphers + * + * For a list of protocols and ciphers supported by particular Java versions, you may go to + * [[https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https Oracle + * blog page]]. + * + * You can optionally specify the default configuration. If you do, for each setting which is + * missing in SparkConf, the corresponding setting is used from the default configuration. + * + * @param conf Spark configuration object where the settings are collected from + * @param ns the namespace name + * @param defaults the default configuration + * @return [[org.apache.spark.SSLOptions]] object + */ + def parse(conf: SparkConf, ns: String, defaults: Option[SSLOptions] = None): SSLOptions = { + val enabled = conf.getBoolean(s"$ns.enabled", defaultValue = defaults.exists(_.enabled)) + + val keyStore = conf.getOption(s"$ns.keyStore").map(new File(_)) + .orElse(defaults.flatMap(_.keyStore)) + + val keyStorePassword = conf.getOption(s"$ns.keyStorePassword") + .orElse(defaults.flatMap(_.keyStorePassword)) + + val keyPassword = conf.getOption(s"$ns.keyPassword") + .orElse(defaults.flatMap(_.keyPassword)) + + val trustStore = conf.getOption(s"$ns.trustStore").map(new File(_)) + .orElse(defaults.flatMap(_.trustStore)) + + val trustStorePassword = conf.getOption(s"$ns.trustStorePassword") + .orElse(defaults.flatMap(_.trustStorePassword)) + + val protocol = conf.getOption(s"$ns.protocol") + .orElse(defaults.flatMap(_.protocol)) + + val enabledAlgorithms = conf.getOption(s"$ns.enabledAlgorithms") + .map(_.split(",").map(_.trim).filter(_.nonEmpty).toSet) + .orElse(defaults.map(_.enabledAlgorithms)) + .getOrElse(Set.empty) + + new SSLOptions( + enabled, + keyStore, + keyStorePassword, + keyPassword, + trustStore, + trustStorePassword, + protocol, + enabledAlgorithms) + } + +} + diff --git a/core/src/main/scala/org/apache/spark/SecurityManager.scala b/core/src/main/scala/org/apache/spark/SecurityManager.scala index ec82d09cd079b..88d35a4bacc6e 100644 --- a/core/src/main/scala/org/apache/spark/SecurityManager.scala +++ b/core/src/main/scala/org/apache/spark/SecurityManager.scala @@ -18,7 +18,11 @@ package org.apache.spark import java.net.{Authenticator, PasswordAuthentication} +import java.security.KeyStore +import java.security.cert.X509Certificate +import javax.net.ssl._ +import com.google.common.io.Files import org.apache.hadoop.io.Text import org.apache.spark.deploy.SparkHadoopUtil @@ -55,7 +59,7 @@ import org.apache.spark.network.sasl.SecretKeyHolder * Spark also has a set of admin acls (`spark.admin.acls`) which is a set of users/administrators * who always have permission to view or modify the Spark application. * - * Spark does not currently support encryption after authentication. + * Starting from version 1.3, Spark has partial support for encrypted connections with SSL. * * At this point spark has multiple communication protocols that need to be secured and * different underlying mechanisms are used depending on the protocol: @@ -67,8 +71,9 @@ import org.apache.spark.network.sasl.SecretKeyHolder * to connect to the server. There is no control of the underlying * authentication mechanism so its not clear if the password is passed in * plaintext or uses DIGEST-MD5 or some other mechanism. - * Akka also has an option to turn on SSL, this option is not currently supported - * but we could add a configuration option in the future. + * + * Akka also has an option to turn on SSL, this option is currently supported (see + * the details below). * * - HTTP for broadcast and file server (via HttpServer) -> Spark currently uses Jetty * for the HttpServer. Jetty supports multiple authentication mechanisms - @@ -77,8 +82,9 @@ import org.apache.spark.network.sasl.SecretKeyHolder * to authenticate using DIGEST-MD5 via a single user and the shared secret. * Since we are using DIGEST-MD5, the shared secret is not passed on the wire * in plaintext. - * We currently do not support SSL (https), but Jetty can be configured to use it - * so we could add a configuration option for this in the future. + * + * We currently support SSL (https) for this communication protocol (see the details + * below). * * The Spark HttpServer installs the HashLoginServer and configures it to DIGEST-MD5. * Any clients must specify the user and password. There is a default @@ -142,9 +148,40 @@ import org.apache.spark.network.sasl.SecretKeyHolder * authentication. Spark will then use that user to compare against the view acls to do * authorization. If not filter is in place the user is generally null and no authorization * can take place. + * + * Connection encryption (SSL) configuration is organized hierarchically. The user can configure + * the default SSL settings which will be used for all the supported communication protocols unless + * they are overwritten by protocol specific settings. This way the user can easily provide the + * common settings for all the protocols without disabling the ability to configure each one + * individually. + * + * All the SSL settings like `spark.ssl.xxx` where `xxx` is a particular configuration property, + * denote the global configuration for all the supported protocols. In order to override the global + * configuration for the particular protocol, the properties must be overwritten in the + * protocol-specific namespace. Use `spark.ssl.yyy.xxx` settings to overwrite the global + * configuration for particular protocol denoted by `yyy`. Currently `yyy` can be either `akka` for + * Akka based connections or `fs` for broadcast and file server. + * + * Refer to [[org.apache.spark.SSLOptions]] documentation for the list of + * options that can be specified. + * + * SecurityManager initializes SSLOptions objects for different protocols separately. SSLOptions + * object parses Spark configuration at a given namespace and builds the common representation + * of SSL settings. SSLOptions is then used to provide protocol-specific configuration like + * TypeSafe configuration for Akka or SSLContextFactory for Jetty. + * + * SSL must be configured on each node and configured for each component involved in + * communication using the particular protocol. In YARN clusters, the key-store can be prepared on + * the client side then distributed and used by the executors as the part of the application + * (YARN allows the user to deploy files before the application is started). + * In standalone deployment, the user needs to provide key-stores and configuration + * options for master and workers. In this mode, the user may allow the executors to use the SSL + * settings inherited from the worker which spawned that executor. It can be accomplished by + * setting `spark.ssl.useNodeLocalConf` to `true`. */ -private[spark] class SecurityManager(sparkConf: SparkConf) extends Logging with SecretKeyHolder { +private[spark] class SecurityManager(sparkConf: SparkConf) + extends Logging with SecretKeyHolder { // key used to store the spark secret in the Hadoop UGI private val sparkSecretLookupKey = "sparkCookie" @@ -196,6 +233,57 @@ private[spark] class SecurityManager(sparkConf: SparkConf) extends Logging with ) } + // the default SSL configuration - it will be used by all communication layers unless overwritten + private val defaultSSLOptions = SSLOptions.parse(sparkConf, "spark.ssl", defaults = None) + + // SSL configuration for different communication layers - they can override the default + // configuration at a specified namespace. The namespace *must* start with spark.ssl. + val fileServerSSLOptions = SSLOptions.parse(sparkConf, "spark.ssl.fs", Some(defaultSSLOptions)) + val akkaSSLOptions = SSLOptions.parse(sparkConf, "spark.ssl.akka", Some(defaultSSLOptions)) + + logDebug(s"SSLConfiguration for file server: $fileServerSSLOptions") + logDebug(s"SSLConfiguration for Akka: $akkaSSLOptions") + + val (sslSocketFactory, hostnameVerifier) = if (fileServerSSLOptions.enabled) { + val trustStoreManagers = + for (trustStore <- fileServerSSLOptions.trustStore) yield { + val input = Files.asByteSource(fileServerSSLOptions.trustStore.get).openStream() + + try { + val ks = KeyStore.getInstance(KeyStore.getDefaultType) + ks.load(input, fileServerSSLOptions.trustStorePassword.get.toCharArray) + + val tmf = TrustManagerFactory.getInstance(TrustManagerFactory.getDefaultAlgorithm) + tmf.init(ks) + tmf.getTrustManagers + } finally { + input.close() + } + } + + lazy val credulousTrustStoreManagers = Array({ + logWarning("Using 'accept-all' trust manager for SSL connections.") + new X509TrustManager { + override def getAcceptedIssuers: Array[X509Certificate] = null + + override def checkClientTrusted(x509Certificates: Array[X509Certificate], s: String) {} + + override def checkServerTrusted(x509Certificates: Array[X509Certificate], s: String) {} + }: TrustManager + }) + + val sslContext = SSLContext.getInstance(fileServerSSLOptions.protocol.getOrElse("Default")) + sslContext.init(null, trustStoreManagers.getOrElse(credulousTrustStoreManagers), null) + + val hostVerifier = new HostnameVerifier { + override def verify(s: String, sslSession: SSLSession): Boolean = true + } + + (Some(sslContext.getSocketFactory), Some(hostVerifier)) + } else { + (None, None) + } + /** * Split a comma separated String, filter out any empty items, and return a Set of strings */ diff --git a/core/src/main/scala/org/apache/spark/SparkConf.scala b/core/src/main/scala/org/apache/spark/SparkConf.scala index 4d4c69d42da98..13aa9960ac33a 100644 --- a/core/src/main/scala/org/apache/spark/SparkConf.scala +++ b/core/src/main/scala/org/apache/spark/SparkConf.scala @@ -370,6 +370,7 @@ private[spark] object SparkConf { isAkkaConf(name) || name.startsWith("spark.akka") || name.startsWith("spark.auth") || + name.startsWith("spark.ssl") || isSparkPortConf(name) } diff --git a/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala b/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala index ea98051532a0a..1444c0dd3d2d6 100644 --- a/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala +++ b/core/src/main/scala/org/apache/spark/broadcast/HttpBroadcast.scala @@ -199,6 +199,7 @@ private[broadcast] object HttpBroadcast extends Logging { uc = new URL(url).openConnection() uc.setConnectTimeout(httpReadTimeout) } + Utils.setupSecureURLConnection(uc, securityManager) val in = { uc.setReadTimeout(httpReadTimeout) diff --git a/core/src/main/scala/org/apache/spark/deploy/ApplicationDescription.scala b/core/src/main/scala/org/apache/spark/deploy/ApplicationDescription.scala index 65a1a8fd7e929..ae55b4ff40b74 100644 --- a/core/src/main/scala/org/apache/spark/deploy/ApplicationDescription.scala +++ b/core/src/main/scala/org/apache/spark/deploy/ApplicationDescription.scala @@ -28,5 +28,14 @@ private[spark] class ApplicationDescription( val user = System.getProperty("user.name", "") + def copy( + name: String = name, + maxCores: Option[Int] = maxCores, + memoryPerSlave: Int = memoryPerSlave, + command: Command = command, + appUiUrl: String = appUiUrl, + eventLogDir: Option[String] = eventLogDir): ApplicationDescription = + new ApplicationDescription(name, maxCores, memoryPerSlave, command, appUiUrl, eventLogDir) + override def toString: String = "ApplicationDescription(" + name + ")" } diff --git a/core/src/main/scala/org/apache/spark/deploy/Client.scala b/core/src/main/scala/org/apache/spark/deploy/Client.scala index 7c1c831c248fc..38b3da0b13756 100644 --- a/core/src/main/scala/org/apache/spark/deploy/Client.scala +++ b/core/src/main/scala/org/apache/spark/deploy/Client.scala @@ -39,7 +39,8 @@ private class ClientActor(driverArgs: ClientArguments, conf: SparkConf) val timeout = AkkaUtils.askTimeout(conf) override def preStart() = { - masterActor = context.actorSelection(Master.toAkkaUrl(driverArgs.master)) + masterActor = context.actorSelection( + Master.toAkkaUrl(driverArgs.master, AkkaUtils.protocol(context.system))) context.system.eventStream.subscribe(self, classOf[RemotingLifecycleEvent]) @@ -161,7 +162,7 @@ object Client { "driverClient", Utils.localHostName(), 0, conf, new SecurityManager(conf)) // Verify driverArgs.master is a valid url so that we can use it in ClientActor safely - Master.toAkkaUrl(driverArgs.master) + Master.toAkkaUrl(driverArgs.master, AkkaUtils.protocol(actorSystem)) actorSystem.actorOf(Props(classOf[ClientActor], driverArgs, conf)) actorSystem.awaitTermination() diff --git a/core/src/main/scala/org/apache/spark/deploy/DriverDescription.scala b/core/src/main/scala/org/apache/spark/deploy/DriverDescription.scala index 58c95dc4f9116..b056a19ce6598 100644 --- a/core/src/main/scala/org/apache/spark/deploy/DriverDescription.scala +++ b/core/src/main/scala/org/apache/spark/deploy/DriverDescription.scala @@ -25,5 +25,13 @@ private[spark] class DriverDescription( val command: Command) extends Serializable { + def copy( + jarUrl: String = jarUrl, + mem: Int = mem, + cores: Int = cores, + supervise: Boolean = supervise, + command: Command = command): DriverDescription = + new DriverDescription(jarUrl, mem, cores, supervise, command) + override def toString: String = s"DriverDescription (${command.mainClass})" } diff --git a/core/src/main/scala/org/apache/spark/deploy/client/AppClient.scala b/core/src/main/scala/org/apache/spark/deploy/client/AppClient.scala index 39a7b0319b6a1..ffe940fbda2fb 100644 --- a/core/src/main/scala/org/apache/spark/deploy/client/AppClient.scala +++ b/core/src/main/scala/org/apache/spark/deploy/client/AppClient.scala @@ -47,7 +47,7 @@ private[spark] class AppClient( conf: SparkConf) extends Logging { - val masterAkkaUrls = masterUrls.map(Master.toAkkaUrl) + val masterAkkaUrls = masterUrls.map(Master.toAkkaUrl(_, AkkaUtils.protocol(actorSystem))) val REGISTRATION_TIMEOUT = 20.seconds val REGISTRATION_RETRIES = 3 @@ -107,8 +107,9 @@ private[spark] class AppClient( def changeMaster(url: String) { // activeMasterUrl is a valid Spark url since we receive it from master. activeMasterUrl = url - master = context.actorSelection(Master.toAkkaUrl(activeMasterUrl)) - masterAddress = Master.toAkkaAddress(activeMasterUrl) + master = context.actorSelection( + Master.toAkkaUrl(activeMasterUrl, AkkaUtils.protocol(actorSystem))) + masterAddress = Master.toAkkaAddress(activeMasterUrl, AkkaUtils.protocol(actorSystem)) } private def isPossibleMaster(remoteUrl: Address) = { diff --git a/core/src/main/scala/org/apache/spark/deploy/master/Master.scala b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala index d92d99310a583..5eeb9fe526248 100644 --- a/core/src/main/scala/org/apache/spark/deploy/master/Master.scala +++ b/core/src/main/scala/org/apache/spark/deploy/master/Master.scala @@ -860,9 +860,9 @@ private[spark] object Master extends Logging { * * @throws SparkException if the url is invalid */ - def toAkkaUrl(sparkUrl: String): String = { + def toAkkaUrl(sparkUrl: String, protocol: String): String = { val (host, port) = Utils.extractHostPortFromSparkUrl(sparkUrl) - "akka.tcp://%s@%s:%s/user/%s".format(systemName, host, port, actorName) + AkkaUtils.address(protocol, systemName, host, port, actorName) } /** @@ -870,9 +870,9 @@ private[spark] object Master extends Logging { * * @throws SparkException if the url is invalid */ - def toAkkaAddress(sparkUrl: String): Address = { + def toAkkaAddress(sparkUrl: String, protocol: String): Address = { val (host, port) = Utils.extractHostPortFromSparkUrl(sparkUrl) - Address("akka.tcp", systemName, host, port) + Address(protocol, systemName, host, port) } def startSystemAndActor( diff --git a/core/src/main/scala/org/apache/spark/deploy/worker/ExecutorRunner.scala b/core/src/main/scala/org/apache/spark/deploy/worker/ExecutorRunner.scala index acbdf0d8bd7bc..bc9f78b9e5c77 100644 --- a/core/src/main/scala/org/apache/spark/deploy/worker/ExecutorRunner.scala +++ b/core/src/main/scala/org/apache/spark/deploy/worker/ExecutorRunner.scala @@ -26,7 +26,7 @@ import com.google.common.base.Charsets.UTF_8 import com.google.common.io.Files import org.apache.spark.{SparkConf, Logging} -import org.apache.spark.deploy.{ApplicationDescription, Command, ExecutorState} +import org.apache.spark.deploy.{ApplicationDescription, ExecutorState} import org.apache.spark.deploy.DeployMessages.ExecutorStateChanged import org.apache.spark.util.logging.FileAppender diff --git a/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala b/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala index 13599830123d0..b20f5c0c82895 100755 --- a/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala +++ b/core/src/main/scala/org/apache/spark/deploy/worker/Worker.scala @@ -31,8 +31,8 @@ import scala.util.Random import akka.actor._ import akka.remote.{DisassociatedEvent, RemotingLifecycleEvent} -import org.apache.spark.{Logging, SecurityManager, SparkConf, SparkException} -import org.apache.spark.deploy.{ExecutorDescription, ExecutorState} +import org.apache.spark.{Logging, SecurityManager, SparkConf} +import org.apache.spark.deploy.{Command, ExecutorDescription, ExecutorState} import org.apache.spark.deploy.DeployMessages._ import org.apache.spark.deploy.master.{DriverState, Master} import org.apache.spark.deploy.worker.ui.WorkerWebUI @@ -93,7 +93,12 @@ private[spark] class Worker( var masterAddress: Address = null var activeMasterUrl: String = "" var activeMasterWebUiUrl : String = "" - val akkaUrl = "akka.tcp://%s@%s:%s/user/%s".format(actorSystemName, host, port, actorName) + val akkaUrl = AkkaUtils.address( + AkkaUtils.protocol(context.system), + actorSystemName, + host, + port, + actorName) @volatile var registered = false @volatile var connected = false val workerId = generateWorkerId() @@ -174,8 +179,9 @@ private[spark] class Worker( // activeMasterUrl it's a valid Spark url since we receive it from master. activeMasterUrl = url activeMasterWebUiUrl = uiUrl - master = context.actorSelection(Master.toAkkaUrl(activeMasterUrl)) - masterAddress = Master.toAkkaAddress(activeMasterUrl) + master = context.actorSelection( + Master.toAkkaUrl(activeMasterUrl, AkkaUtils.protocol(context.system))) + masterAddress = Master.toAkkaAddress(activeMasterUrl, AkkaUtils.protocol(context.system)) connected = true // Cancel any outstanding re-registration attempts because we found a new master registrationRetryTimer.foreach(_.cancel()) @@ -347,10 +353,20 @@ private[spark] class Worker( }.toSeq } appDirectories(appId) = appLocalDirs - - val manager = new ExecutorRunner(appId, execId, appDesc, cores_, memory_, - self, workerId, host, sparkHome, executorDir, akkaUrl, conf, appLocalDirs, - ExecutorState.LOADING) + val manager = new ExecutorRunner( + appId, + execId, + appDesc.copy(command = Worker.maybeUpdateSSLSettings(appDesc.command, conf)), + cores_, + memory_, + self, + workerId, + host, + sparkHome, + executorDir, + akkaUrl, + conf, + appLocalDirs, ExecutorState.LOADING) executors(appId + "/" + execId) = manager manager.start() coresUsed += cores_ @@ -406,7 +422,14 @@ private[spark] class Worker( case LaunchDriver(driverId, driverDesc) => { logInfo(s"Asked to launch driver $driverId") - val driver = new DriverRunner(conf, driverId, workDir, sparkHome, driverDesc, self, akkaUrl) + val driver = new DriverRunner( + conf, + driverId, + workDir, + sparkHome, + driverDesc.copy(command = Worker.maybeUpdateSSLSettings(driverDesc.command, conf)), + self, + akkaUrl) drivers(driverId) = driver driver.start() @@ -523,10 +546,32 @@ private[spark] object Worker extends Logging { val securityMgr = new SecurityManager(conf) val (actorSystem, boundPort) = AkkaUtils.createActorSystem(systemName, host, port, conf = conf, securityManager = securityMgr) - val masterAkkaUrls = masterUrls.map(Master.toAkkaUrl) + val masterAkkaUrls = masterUrls.map(Master.toAkkaUrl(_, AkkaUtils.protocol(actorSystem))) actorSystem.actorOf(Props(classOf[Worker], host, boundPort, webUiPort, cores, memory, masterAkkaUrls, systemName, actorName, workDir, conf, securityMgr), name = actorName) (actorSystem, boundPort) } + private[spark] def isUseLocalNodeSSLConfig(cmd: Command): Boolean = { + val pattern = """\-Dspark\.ssl\.useNodeLocalConf\=(.+)""".r + val result = cmd.javaOpts.collectFirst { + case pattern(_result) => _result.toBoolean + } + result.getOrElse(false) + } + + private[spark] def maybeUpdateSSLSettings(cmd: Command, conf: SparkConf): Command = { + val prefix = "spark.ssl." + val useNLC = "spark.ssl.useNodeLocalConf" + if (isUseLocalNodeSSLConfig(cmd)) { + val newJavaOpts = cmd.javaOpts + .filter(opt => !opt.startsWith(s"-D$prefix")) ++ + conf.getAll.collect { case (key, value) if key.startsWith(prefix) => s"-D$key=$value" } :+ + s"-D$useNLC=true" + cmd.copy(javaOpts = newJavaOpts) + } else { + cmd + } + } + } diff --git a/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala b/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala index 823825302658c..bc72c8970319c 100644 --- a/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala +++ b/core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala @@ -123,7 +123,11 @@ private[spark] object CoarseGrainedExecutorBackend extends Logging { val executorConf = new SparkConf val port = executorConf.getInt("spark.executor.port", 0) val (fetcher, _) = AkkaUtils.createActorSystem( - "driverPropsFetcher", hostname, port, executorConf, new SecurityManager(executorConf)) + "driverPropsFetcher", + hostname, + port, + executorConf, + new SecurityManager(executorConf)) val driver = fetcher.actorSelection(driverUrl) val timeout = AkkaUtils.askTimeout(executorConf) val fut = Patterns.ask(driver, RetrieveSparkProps, timeout) @@ -132,7 +136,15 @@ private[spark] object CoarseGrainedExecutorBackend extends Logging { fetcher.shutdown() // Create SparkEnv using properties we fetched from the driver. - val driverConf = new SparkConf().setAll(props) + val driverConf = new SparkConf() + for ((key, value) <- props) { + // this is required for SSL in standalone mode + if (SparkConf.isExecutorStartupConf(key)) { + driverConf.setIfMissing(key, value) + } else { + driverConf.set(key, value) + } + } val env = SparkEnv.createExecutorEnv( driverConf, executorId, hostname, port, cores, isLocal = false) diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/SimrSchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/SimrSchedulerBackend.scala index ee10aa061f4e9..06786a59524e7 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/SimrSchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/SimrSchedulerBackend.scala @@ -22,6 +22,7 @@ import org.apache.hadoop.fs.{Path, FileSystem} import org.apache.spark.{Logging, SparkContext, SparkEnv} import org.apache.spark.deploy.SparkHadoopUtil import org.apache.spark.scheduler.TaskSchedulerImpl +import org.apache.spark.util.AkkaUtils private[spark] class SimrSchedulerBackend( scheduler: TaskSchedulerImpl, @@ -38,7 +39,8 @@ private[spark] class SimrSchedulerBackend( override def start() { super.start() - val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format( + val driverUrl = AkkaUtils.address( + AkkaUtils.protocol(actorSystem), SparkEnv.driverActorSystemName, sc.conf.get("spark.driver.host"), sc.conf.get("spark.driver.port"), diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala index 7eb87a564d6f5..d2e1680a5fd1b 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/SparkDeploySchedulerBackend.scala @@ -21,7 +21,7 @@ import org.apache.spark.{Logging, SparkConf, SparkContext, SparkEnv} import org.apache.spark.deploy.{ApplicationDescription, Command} import org.apache.spark.deploy.client.{AppClient, AppClientListener} import org.apache.spark.scheduler.{ExecutorExited, ExecutorLossReason, SlaveLost, TaskSchedulerImpl} -import org.apache.spark.util.Utils +import org.apache.spark.util.{AkkaUtils, Utils} private[spark] class SparkDeploySchedulerBackend( scheduler: TaskSchedulerImpl, @@ -46,7 +46,8 @@ private[spark] class SparkDeploySchedulerBackend( super.start() // The endpoint for executors to talk to us - val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format( + val driverUrl = AkkaUtils.address( + AkkaUtils.protocol(actorSystem), SparkEnv.driverActorSystemName, conf.get("spark.driver.host"), conf.get("spark.driver.port"), diff --git a/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/CoarseMesosSchedulerBackend.scala b/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/CoarseMesosSchedulerBackend.scala index 5289661eb896b..0d1c2a916ca7f 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/CoarseMesosSchedulerBackend.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/cluster/mesos/CoarseMesosSchedulerBackend.scala @@ -31,7 +31,7 @@ import org.apache.mesos.Protos.{TaskInfo => MesosTaskInfo, TaskState => MesosTas import org.apache.spark.{Logging, SparkContext, SparkEnv, SparkException} import org.apache.spark.scheduler.TaskSchedulerImpl import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend -import org.apache.spark.util.Utils +import org.apache.spark.util.{Utils, AkkaUtils} /** * A SchedulerBackend that runs tasks on Mesos, but uses "coarse-grained" tasks, where it holds @@ -143,7 +143,8 @@ private[spark] class CoarseMesosSchedulerBackend( } val command = CommandInfo.newBuilder() .setEnvironment(environment) - val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format( + val driverUrl = AkkaUtils.address( + AkkaUtils.protocol(sc.env.actorSystem), SparkEnv.driverActorSystemName, conf.get("spark.driver.host"), conf.get("spark.driver.port"), diff --git a/core/src/main/scala/org/apache/spark/util/AkkaUtils.scala b/core/src/main/scala/org/apache/spark/util/AkkaUtils.scala index 4c9b1e3c46f0f..3d9c6192ff7f7 100644 --- a/core/src/main/scala/org/apache/spark/util/AkkaUtils.scala +++ b/core/src/main/scala/org/apache/spark/util/AkkaUtils.scala @@ -20,6 +20,7 @@ package org.apache.spark.util import scala.collection.JavaConversions.mapAsJavaMap import scala.concurrent.Await import scala.concurrent.duration.{Duration, FiniteDuration} +import scala.util.Try import akka.actor.{ActorRef, ActorSystem, ExtendedActorSystem} import akka.pattern.ask @@ -91,8 +92,11 @@ private[spark] object AkkaUtils extends Logging { val secureCookie = if (isAuthOn) secretKey else "" logDebug(s"In createActorSystem, requireCookie is: $requireCookie") - val akkaConf = ConfigFactory.parseMap(conf.getAkkaConf.toMap[String, String]).withFallback( - ConfigFactory.parseString( + val akkaSslConfig = securityManager.akkaSSLOptions.createAkkaConfig + .getOrElse(ConfigFactory.empty()) + + val akkaConf = ConfigFactory.parseMap(conf.getAkkaConf.toMap[String, String]) + .withFallback(akkaSslConfig).withFallback(ConfigFactory.parseString( s""" |akka.daemonic = on |akka.loggers = [""akka.event.slf4j.Slf4jLogger""] @@ -214,7 +218,7 @@ private[spark] object AkkaUtils extends Logging { val driverHost: String = conf.get("spark.driver.host", "localhost") val driverPort: Int = conf.getInt("spark.driver.port", 7077) Utils.checkHost(driverHost, "Expected hostname") - val url = s"akka.tcp://$driverActorSystemName@$driverHost:$driverPort/user/$name" + val url = address(protocol(actorSystem), driverActorSystemName, driverHost, driverPort, name) val timeout = AkkaUtils.lookupTimeout(conf) logInfo(s"Connecting to $name: $url") Await.result(actorSystem.actorSelection(url).resolveOne(timeout), timeout) @@ -228,9 +232,33 @@ private[spark] object AkkaUtils extends Logging { actorSystem: ActorSystem): ActorRef = { val executorActorSystemName = SparkEnv.executorActorSystemName Utils.checkHost(host, "Expected hostname") - val url = s"akka.tcp://$executorActorSystemName@$host:$port/user/$name" + val url = address(protocol(actorSystem), executorActorSystemName, host, port, name) val timeout = AkkaUtils.lookupTimeout(conf) logInfo(s"Connecting to $name: $url") Await.result(actorSystem.actorSelection(url).resolveOne(timeout), timeout) } + + def protocol(actorSystem: ActorSystem): String = { + val akkaConf = actorSystem.settings.config + val sslProp = "akka.remote.netty.tcp.enable-ssl" + protocol(akkaConf.hasPath(sslProp) && akkaConf.getBoolean(sslProp)) + } + + def protocol(ssl: Boolean = false): String = { + if (ssl) { + "akka.ssl.tcp" + } else { + "akka.tcp" + } + } + + def address( + protocol: String, + systemName: String, + host: String, + port: Any, + actorName: String): String = { + s"$protocol://$systemName@$host:$port/user/$actorName" + } + } diff --git a/core/src/main/scala/org/apache/spark/util/Utils.scala b/core/src/main/scala/org/apache/spark/util/Utils.scala index 31850b50bdba7..e9f2aed9ffbea 100644 --- a/core/src/main/scala/org/apache/spark/util/Utils.scala +++ b/core/src/main/scala/org/apache/spark/util/Utils.scala @@ -21,8 +21,9 @@ import java.io._ import java.lang.management.ManagementFactory import java.net._ import java.nio.ByteBuffer -import java.util.concurrent.{ConcurrentHashMap, Executors, ThreadFactory, ThreadPoolExecutor} -import java.util.{Locale, Properties, Random, UUID} +import java.util.{Properties, Locale, Random, UUID} +import java.util.concurrent.{ThreadFactory, ConcurrentHashMap, Executors, ThreadPoolExecutor} +import javax.net.ssl.HttpsURLConnection import scala.collection.JavaConversions._ import scala.collection.Map @@ -575,6 +576,7 @@ private[spark] object Utils extends Logging { logDebug("fetchFile not using security") uc = new URL(url).openConnection() } + Utils.setupSecureURLConnection(uc, securityMgr) val timeout = conf.getInt("spark.files.fetchTimeout", 60) * 1000 uc.setConnectTimeout(timeout) @@ -1820,6 +1822,20 @@ private[spark] object Utils extends Logging { PropertyConfigurator.configure(pro) } + /** + * If the given URL connection is HttpsURLConnection, it sets the SSL socket factory and + * the host verifier from the given security manager. + */ + def setupSecureURLConnection(urlConnection: URLConnection, sm: SecurityManager): URLConnection = { + urlConnection match { + case https: HttpsURLConnection => + sm.sslSocketFactory.foreach(https.setSSLSocketFactory) + sm.hostnameVerifier.foreach(https.setHostnameVerifier) + https + case connection => connection + } + } + def invoke( clazz: Class[_], obj: AnyRef, diff --git a/core/src/test/resources/keystore b/core/src/test/resources/keystore new file mode 100644 index 0000000000000000000000000000000000000000..f8310e39ba1e07c7559e5724f522c06ca47f5787 GIT binary patch literal 2247 zcmchYc{J1uAI9f5Gt8i|P1&wBlPn{@Y0#AI+9uMFEKS|9bCtJ0{)TM zX}X`!>67%Z@GWAuh_Ft8Kt!M*6TS&bii+!r0&qYVDgyu_5I7UgZ~dLDFFKbbe4NJ> z8h*OOS9N;OWepcs>OGoE=zuk2V{*wI)Z_e}>Z@^h>_v>&7v=eK%-(UR|F2)6ifSZm zB{$HW8@=O<)XbNH;_wk=FeM$Bjfx=?s>^D9Zr#6WTzln-!DYFW$=EZVD(3K>jS96w z-f`E>K|`eE2uJ#EUlg%5TBw+iWJz5iySD{o5{Ul(C)@&^f0t&B->D-6`JH0%@@;s@ zjMngAG004|Ao+Z!S-#o>U%j;FhYZ-6+Sr%89Pdns-=>tDGRpP7IeZ?->$L-DANQrdWKTa;0 zluk^040v;S@5DL7!>L;M8&vwCZAjLK*vpGqYx~-VYZs+3mb>>RYt{axVJiP>$3Y|} zz*eB_iPWr6Tc->>lU_2dn3A0UZrr!p`Ly9<%d%n&X#yvmACj3LY^dq?e=FaqJ!`fkB(%M!T4bA&bADq%;%h1-L)a{YF#I>*n5; zXt7P-gtHyc-1yawv9;te^CLkar+P2}c`q>)=Cwt62se##oHtS0qXNZJW*YMjnTYe| z1W+lZjRJNxO-J~$3RTEpZS0TIp!w}_nOBXJ>YGGE1!=AA8t_d9vGYswy&Plo@H7BgF?Rr;IN}~I_OZ5AE?Xc>e zduB^$Zl^0#&4F^xR^%KivoAj*R)05F<5T{9#!cLae!D`i$@(i5VdKPs;vD6ow-Pa0 zmfi>Du&L;*jI`*2mxHbvy2C)a@EF^M?KmG1vd1J;hO<00q{Ea0+F@!vpWZUoIem_pk7QGFApU$XWEZyP!S$ zy2#@wW_snjaE*mkb%s`~Ur~W0n&f9pXRDv9^a`mg8=d@ECh_CSHJ#du`ah#SxB9W1 z-pb!}YxjkPKt*mOLDS3IRD~MerwrgiggePgez$MStIAG30Vaz+z znP5Kohc09y*(6S=bZ0;6*@CtY{i164xeX%S_5pQfMC@N!nO0wH%Xtuc`Uu_?pnpJ3cKSbR^Nesz@fkeg8K_ zTJ35i8GW{Bgm&Uy_A)8Ar>TC80v~KUm51AD4|t?pz-*InPU(xFwfe7aK@- z&`sYxAFsV#57|9oUhntf^%Ms6?u7Ik>%Ezi3GO{ccd$K+?Z=*8-c9HP#s zOrXfNhRKwkI)1xzMcTvsXTrA@mGdnR9#$e8BDNj1us(Rjp^I@0JHr=J9h*keYb@4` zEbRm4_$*5QRieRoP)JDy&5{>VVsBkDRg>0s_n`ei%|c)v!>9n^H~H}eLNotr3B^*= z{jjq6yqK``^Vn@D41fS-8lW1evegh3Nw^$*J9JmC0%UznnvdunEUWXJm7jB#`FDt0 zo!SZ!fDlyn__i1(A!8e5JfGHGYq#O59PYAPUd^G9FA4GLhdQU@y3_KivZwp9e#sjZ z1)6E~Py4647bJ-*g&tbSSqXlAo`|VY0-a#1EcqqpmY_MpMl0!c@gNTqd?DPoAC6{F zX#Czw>93?(`H$;NoCL46jICSrt~xR}wNV^~dn<|;)#U(7hP$oGOzs-~AvLGK&g0zM zw^?bP=4NGFJ3;N}QsShyk0XSs?LW@9d~Sxj?AVZ{pOtdaJ7!gP>dq$(AFE$ic(QF_ zMtzQi_+9hZzoOnZ-qFt&6a;ssvcmgs))|WiZVphZ+9n#oo9dzuTg|>3rcC)~XD4Ad ZwPrecI^>>DS9jrYAM6Ze@sCox{su3o&c*-$ literal 0 HcmV?d00001 diff --git a/core/src/test/resources/truststore b/core/src/test/resources/truststore new file mode 100644 index 0000000000000000000000000000000000000000..a6b1d46e1f391995553771665934518114892962 GIT binary patch literal 957 zcmezO_TO6u1_mY|W(3omIr+(nIT`uIB|s66PaJ187+53pObsj<7?`UKnwZNCnwa7j zFf%bSF|h<%`7Sl!W#iOp^Jx3d%gD&h%3zRVC}6bQhKm@;iSrto7#bK@7#SNH7@I@^xuyn&24+w$on6z!sDvCGjI0dIO^o~u z22G4yOihf849&hp=Zrag|9n~Gc#H3$vhv=@pKm=9>UvU(ZZwCjnIky!nB{NDyiMQB zBZO<_+{laCF!_t`)YJQR{_Ib&x!G3fds+PIs-~1XLS?NdeqFL|Ki_tDnb_pb)#>@( zTD|J;>oi2PIZoZR+nId!%3~GY`%wb7osA|uXbd}Tx=!cX%NWDQox39rO%?vMzHf?~ z=1swLR-RoC+D>nNbu4gY&$gL|-rloc_5R@2ZL8S5%Xot9o!zH-pDYd6dHL#Xw%@*+ zy&LU+nmT%>zI)Xlb76*?{++DCc`NfA&lk?~bl&)QW6#lb?w*%6eoUWUYC4NO`N6ZZ z?8-A|%!_eU4)c+*d(ZiH(T7{hnV1hF?DgUa_CL zx_EQkYw>r1g2;ggOjE!>WMr_A)k`{P(!x=_M=);x=K055cF6ji^!W09N=!ueTVn;U z6EA8{^-Nzg`Ng@3($jCUF&@ae8^o zyyq)UdNa4Ognk!%pnCm3|2v5#(^qdW|F_DnC)CMo)7|XjC#6>R9=pT-w&U3U_Jbb| zump?#5z4RO57rKM+MK!exniP|!?*K7M~h9*`B~JdzSntD@o>*t-I;G@<(}y1FS)RE zvl(0Zzf0L`j^5p4uvCF<+hNhw literal 0 HcmV?d00001 diff --git a/core/src/test/resources/untrusted-keystore b/core/src/test/resources/untrusted-keystore new file mode 100644 index 0000000000000000000000000000000000000000..6015b02caa12817721fca3a83c8e58338b6d9aeb GIT binary patch literal 2246 zcmchYS5VUl7sc~W0)Ye-=~4xxg#Zav38z3~KrxBxU2`W=0g8?MR?KmjE9H~?^gpj7C>T*;?*E%{fv1t#2A zwmzrvHqay1&t+Fi_Z+)w1n4H+Y%AMXJ&rSoCSXIQW|Hr+fhOC{~-z zRlY#ibR-jPTxR#)AT!BEO?ezTUwe>&ocp&K#iX4G4x}&l;Dj))1SC+yocOHPKcyd#4h$$Ysx{PW2wSrMAGjmd{> zmZKc2Dyf?4ujwLhFCx*5Hx~U|Z)4cF@ukC(ds5*mRqTjWZQ!rEzURPjf;fj^#543K+ z!ssm8re)pqzo9BLWxDF++xd2(u`*)aHlZZpG29)-s8jv^L!<=2n_lp*^DBVw#MvPDYjjU59hk-*=5ySF?;vN-zNZGbmhBK9h zT^c^=AHxzXuw5SuT_j1a9=(n&J?~VzvG}qlOYj8&6PtlOG82v{Ls5creeldHDY=n} z6NS98Hi+3%9-T{Nl<}Y`*yL)P*pyGtkkOKUx$aHwg>deSRCRDu3S_Bt*qYqP;^=vW z>Sial$32p`22-|}%Wtf09n6kxR~g&{ z;kf$;?1pyH#legE8IIWJMw1!v9A-Bq$dIyn#d=DTZcOxsMZN<8A29U{XY8FE^^?*t(;Wc9KRLxuFXiP-G z>e>s*`P%O)W#bh}MOrv+{^3tN%a_tNb9D8h>-eF{WYv1B{AL3=1%=#OJh|?KR$7@~ zM1%siVBJLAn~Pz$VnIy*@}LG*a&*qN<%mI`ZQi8>jN6Bzl5(ULw7YAmA5UoEllgUDu` zAewV|((5eVYOO+`<3sL2d)BS_Mok%KAB6q1*Jc7zF$H5nC_yMo`6_U&c?)aPk4b$z zk=~H8I#D$8!fS_4;uOVeZ*ca0M>wc+>X_;202 zht3{zS6QTZ`z}%LI2uqFW?YIRHI*33>s?|kWxkxSkI|mB{+aCe>R$D#3C_eDcm?~4 z04*s~%RJne@gR@YM1zFG)0DX;`R-ZeVAqWJizOR@=|SzH@w)|jt`!(`wOVk zU(Gc+3x6OSUy2;rv#hrK`;koo{3~F+?Lz<_V{4;1#8arvZ&0V8@AqY z%gOfdX610i{YAs|(!9Q+SL{EgzRT#t9JFQIGR2S`6VaKXbv2cJ2H)BOR*n|BK8B>J zu4T{_d4E~Njm&*(N{Lz*K3`qRFrPLYtX(hoRRuEpLT4Gjc z7p!#ttliZeFa!Vrd9r93wA5ijq>e&GphCV$=V%&Tr1x)APN~~@unO~heb4>d#KTM- znh1b2&I@^pv~P&tiq}$Qc2}5{Y1K+f=lfqETn=T3E>iK(`_W8&jcZK}2tO)n$}*DS zW9s~&EeO=mYgrtHq(vr!#h3NAy`7YJ8V0q&`(N)hb2~hoF87PZRGUk~lN{xCT(jsw z;Yp@T1SAT~KqTCb3a(cP)&1DNK4h=JduK2)s(9XTV?-4(76KO@#|t*-6s2Dl=w}?& z`IEOv)DCjYr5eow*?MXh8OBgmy;!t>iQ6;NbaZ0pfS*It8}lB6l1(9$AdKemI=5q_ z{7jO%*zS`ZmPK|=YMq+2r-Np*`16dZu!n^|WkFZrL^nhKO "y", "spark.ssl.opt2" -> "z")) + .javaOpts should contain theSameElementsInOrderAs Seq( + "-Dasdf=dfgh", "-Dspark.ssl.opt1=x") + + Worker.maybeUpdateSSLSettings( + cmd("-Dspark.ssl.useNodeLocalConf=false", "-Dspark.ssl.opt1=x"), + conf("spark.ssl.opt1" -> "y", "spark.ssl.opt2" -> "z")) + .javaOpts should contain theSameElementsInOrderAs Seq( + "-Dspark.ssl.useNodeLocalConf=false", "-Dspark.ssl.opt1=x") + + Worker.maybeUpdateSSLSettings( + cmd("-Dspark.ssl.useNodeLocalConf=true", "-Dspark.ssl.opt1=x"), + conf("spark.ssl.opt1" -> "y", "spark.ssl.opt2" -> "z")) + .javaOpts should contain theSameElementsAs Seq( + "-Dspark.ssl.useNodeLocalConf=true", "-Dspark.ssl.opt1=y", "-Dspark.ssl.opt2=z") + + } +} diff --git a/core/src/test/scala/org/apache/spark/util/AkkaUtilsSuite.scala b/core/src/test/scala/org/apache/spark/util/AkkaUtilsSuite.scala index 6bbf72e929dcb..39e5d367d676c 100644 --- a/core/src/test/scala/org/apache/spark/util/AkkaUtilsSuite.scala +++ b/core/src/test/scala/org/apache/spark/util/AkkaUtilsSuite.scala @@ -17,6 +17,8 @@ package org.apache.spark.util +import java.util.concurrent.TimeoutException + import scala.concurrent.Await import akka.actor._ @@ -26,6 +28,7 @@ import org.scalatest.FunSuite import org.apache.spark._ import org.apache.spark.scheduler.MapStatus import org.apache.spark.storage.BlockManagerId +import org.apache.spark.SSLSampleConfigs._ /** @@ -47,7 +50,7 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro val masterTracker = new MapOutputTrackerMaster(conf) masterTracker.trackerActor = actorSystem.actorOf( - Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") + Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") val badconf = new SparkConf badconf.set("spark.authenticate", "true") @@ -60,7 +63,7 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro conf = conf, securityManager = securityManagerBad) val slaveTracker = new MapOutputTrackerWorker(conf) val selection = slaveSystem.actorSelection( - s"akka.tcp://spark@localhost:$boundPort/user/MapOutputTracker") + AkkaUtils.address(AkkaUtils.protocol(slaveSystem), "spark", "localhost", boundPort, "MapOutputTracker")) val timeout = AkkaUtils.lookupTimeout(conf) intercept[akka.actor.ActorNotFound] { slaveTracker.trackerActor = Await.result(selection.resolveOne(timeout), timeout) @@ -74,7 +77,7 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro val conf = new SparkConf conf.set("spark.authenticate", "false") conf.set("spark.authenticate.secret", "bad") - val securityManager = new SecurityManager(conf); + val securityManager = new SecurityManager(conf) val hostname = "localhost" val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", hostname, 0, @@ -85,18 +88,18 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro val masterTracker = new MapOutputTrackerMaster(conf) masterTracker.trackerActor = actorSystem.actorOf( - Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") + Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") val badconf = new SparkConf badconf.set("spark.authenticate", "false") badconf.set("spark.authenticate.secret", "good") - val securityManagerBad = new SecurityManager(badconf); + val securityManagerBad = new SecurityManager(badconf) val (slaveSystem, _) = AkkaUtils.createActorSystem("spark-slave", hostname, 0, conf = badconf, securityManager = securityManagerBad) val slaveTracker = new MapOutputTrackerWorker(conf) val selection = slaveSystem.actorSelection( - s"akka.tcp://spark@localhost:$boundPort/user/MapOutputTracker") + AkkaUtils.address(AkkaUtils.protocol(slaveSystem), "spark", "localhost", boundPort, "MapOutputTracker")) val timeout = AkkaUtils.lookupTimeout(conf) slaveTracker.trackerActor = Await.result(selection.resolveOne(timeout), timeout) @@ -124,7 +127,7 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro val conf = new SparkConf conf.set("spark.authenticate", "true") conf.set("spark.authenticate.secret", "good") - val securityManager = new SecurityManager(conf); + val securityManager = new SecurityManager(conf) val hostname = "localhost" val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", hostname, 0, @@ -135,12 +138,12 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro val masterTracker = new MapOutputTrackerMaster(conf) masterTracker.trackerActor = actorSystem.actorOf( - Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") + Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") val goodconf = new SparkConf goodconf.set("spark.authenticate", "true") goodconf.set("spark.authenticate.secret", "good") - val securityManagerGood = new SecurityManager(goodconf); + val securityManagerGood = new SecurityManager(goodconf) assert(securityManagerGood.isAuthenticationEnabled() === true) @@ -148,7 +151,7 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro conf = goodconf, securityManager = securityManagerGood) val slaveTracker = new MapOutputTrackerWorker(conf) val selection = slaveSystem.actorSelection( - s"akka.tcp://spark@localhost:$boundPort/user/MapOutputTracker") + AkkaUtils.address(AkkaUtils.protocol(slaveSystem), "spark", "localhost", boundPort, "MapOutputTracker")) val timeout = AkkaUtils.lookupTimeout(conf) slaveTracker.trackerActor = Await.result(selection.resolveOne(timeout), timeout) @@ -175,7 +178,7 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro conf.set("spark.authenticate", "true") conf.set("spark.authenticate.secret", "good") - val securityManager = new SecurityManager(conf); + val securityManager = new SecurityManager(conf) val hostname = "localhost" val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", hostname, 0, @@ -186,12 +189,12 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro val masterTracker = new MapOutputTrackerMaster(conf) masterTracker.trackerActor = actorSystem.actorOf( - Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") + Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") val badconf = new SparkConf badconf.set("spark.authenticate", "false") badconf.set("spark.authenticate.secret", "bad") - val securityManagerBad = new SecurityManager(badconf); + val securityManagerBad = new SecurityManager(badconf) assert(securityManagerBad.isAuthenticationEnabled() === false) @@ -199,7 +202,7 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro conf = badconf, securityManager = securityManagerBad) val slaveTracker = new MapOutputTrackerWorker(conf) val selection = slaveSystem.actorSelection( - s"akka.tcp://spark@localhost:$boundPort/user/MapOutputTracker") + AkkaUtils.address(AkkaUtils.protocol(slaveSystem), "spark", "localhost", boundPort, "MapOutputTracker")) val timeout = AkkaUtils.lookupTimeout(conf) intercept[akka.actor.ActorNotFound] { slaveTracker.trackerActor = Await.result(selection.resolveOne(timeout), timeout) @@ -209,4 +212,170 @@ class AkkaUtilsSuite extends FunSuite with LocalSparkContext with ResetSystemPro slaveSystem.shutdown() } + test("remote fetch ssl on") { + val conf = sparkSSLConfig() + val securityManager = new SecurityManager(conf) + + val hostname = "localhost" + val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", hostname, 0, + conf = conf, securityManager = securityManager) + System.setProperty("spark.hostPort", hostname + ":" + boundPort) + + assert(securityManager.isAuthenticationEnabled() === false) + + val masterTracker = new MapOutputTrackerMaster(conf) + masterTracker.trackerActor = actorSystem.actorOf( + Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") + + val slaveConf = sparkSSLConfig() + val securityManagerBad = new SecurityManager(slaveConf) + + val (slaveSystem, _) = AkkaUtils.createActorSystem("spark-slave", hostname, 0, + conf = slaveConf, securityManager = securityManagerBad) + val slaveTracker = new MapOutputTrackerWorker(conf) + val selection = slaveSystem.actorSelection( + AkkaUtils.address(AkkaUtils.protocol(slaveSystem), "spark", "localhost", boundPort, "MapOutputTracker")) + val timeout = AkkaUtils.lookupTimeout(conf) + slaveTracker.trackerActor = Await.result(selection.resolveOne(timeout), timeout) + + assert(securityManagerBad.isAuthenticationEnabled() === false) + + masterTracker.registerShuffle(10, 1) + masterTracker.incrementEpoch() + slaveTracker.updateEpoch(masterTracker.getEpoch) + + val size1000 = MapStatus.decompressSize(MapStatus.compressSize(1000L)) + masterTracker.registerMapOutput(10, 0, + MapStatus(BlockManagerId("a", "hostA", 1000), Array(1000L))) + masterTracker.incrementEpoch() + slaveTracker.updateEpoch(masterTracker.getEpoch) + + // this should succeed since security off + assert(slaveTracker.getServerStatuses(10, 0).toSeq === + Seq((BlockManagerId("a", "hostA", 1000), size1000))) + + actorSystem.shutdown() + slaveSystem.shutdown() + } + + + test("remote fetch ssl on and security enabled") { + val conf = sparkSSLConfig() + conf.set("spark.authenticate", "true") + conf.set("spark.authenticate.secret", "good") + val securityManager = new SecurityManager(conf) + + val hostname = "localhost" + val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", hostname, 0, + conf = conf, securityManager = securityManager) + System.setProperty("spark.hostPort", hostname + ":" + boundPort) + + assert(securityManager.isAuthenticationEnabled() === true) + + val masterTracker = new MapOutputTrackerMaster(conf) + masterTracker.trackerActor = actorSystem.actorOf( + Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") + + val slaveConf = sparkSSLConfig() + slaveConf.set("spark.authenticate", "true") + slaveConf.set("spark.authenticate.secret", "good") + val securityManagerBad = new SecurityManager(slaveConf) + + val (slaveSystem, _) = AkkaUtils.createActorSystem("spark-slave", hostname, 0, + conf = slaveConf, securityManager = securityManagerBad) + val slaveTracker = new MapOutputTrackerWorker(conf) + val selection = slaveSystem.actorSelection( + AkkaUtils.address(AkkaUtils.protocol(slaveSystem), "spark", "localhost", boundPort, "MapOutputTracker")) + val timeout = AkkaUtils.lookupTimeout(conf) + slaveTracker.trackerActor = Await.result(selection.resolveOne(timeout), timeout) + + assert(securityManagerBad.isAuthenticationEnabled() === true) + + masterTracker.registerShuffle(10, 1) + masterTracker.incrementEpoch() + slaveTracker.updateEpoch(masterTracker.getEpoch) + + val size1000 = MapStatus.decompressSize(MapStatus.compressSize(1000L)) + masterTracker.registerMapOutput(10, 0, + MapStatus(BlockManagerId("a", "hostA", 1000), Array(1000L))) + masterTracker.incrementEpoch() + slaveTracker.updateEpoch(masterTracker.getEpoch) + + assert(slaveTracker.getServerStatuses(10, 0).toSeq === + Seq((BlockManagerId("a", "hostA", 1000), size1000))) + + actorSystem.shutdown() + slaveSystem.shutdown() + } + + + test("remote fetch ssl on and security enabled - bad credentials") { + val conf = sparkSSLConfig() + conf.set("spark.authenticate", "true") + conf.set("spark.authenticate.secret", "good") + val securityManager = new SecurityManager(conf) + + val hostname = "localhost" + val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", hostname, 0, + conf = conf, securityManager = securityManager) + System.setProperty("spark.hostPort", hostname + ":" + boundPort) + + assert(securityManager.isAuthenticationEnabled() === true) + + val masterTracker = new MapOutputTrackerMaster(conf) + masterTracker.trackerActor = actorSystem.actorOf( + Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") + + val slaveConf = sparkSSLConfig() + slaveConf.set("spark.authenticate", "true") + slaveConf.set("spark.authenticate.secret", "bad") + val securityManagerBad = new SecurityManager(slaveConf) + + val (slaveSystem, _) = AkkaUtils.createActorSystem("spark-slave", hostname, 0, + conf = slaveConf, securityManager = securityManagerBad) + val slaveTracker = new MapOutputTrackerWorker(conf) + val selection = slaveSystem.actorSelection( + AkkaUtils.address(AkkaUtils.protocol(slaveSystem), "spark", "localhost", boundPort, "MapOutputTracker")) + val timeout = AkkaUtils.lookupTimeout(conf) + intercept[akka.actor.ActorNotFound] { + slaveTracker.trackerActor = Await.result(selection.resolveOne(timeout), timeout) + } + + actorSystem.shutdown() + slaveSystem.shutdown() + } + + + test("remote fetch ssl on - untrusted server") { + val conf = sparkSSLConfigUntrusted() + val securityManager = new SecurityManager(conf) + + val hostname = "localhost" + val (actorSystem, boundPort) = AkkaUtils.createActorSystem("spark", hostname, 0, + conf = conf, securityManager = securityManager) + System.setProperty("spark.hostPort", hostname + ":" + boundPort) + + assert(securityManager.isAuthenticationEnabled() === false) + + val masterTracker = new MapOutputTrackerMaster(conf) + masterTracker.trackerActor = actorSystem.actorOf( + Props(new MapOutputTrackerMasterActor(masterTracker, conf)), "MapOutputTracker") + + val slaveConf = sparkSSLConfig() + val securityManagerBad = new SecurityManager(slaveConf) + + val (slaveSystem, _) = AkkaUtils.createActorSystem("spark-slave", hostname, 0, + conf = slaveConf, securityManager = securityManagerBad) + val slaveTracker = new MapOutputTrackerWorker(conf) + val selection = slaveSystem.actorSelection( + AkkaUtils.address(AkkaUtils.protocol(slaveSystem), "spark", "localhost", boundPort, "MapOutputTracker")) + val timeout = AkkaUtils.lookupTimeout(conf) + intercept[TimeoutException] { + slaveTracker.trackerActor = Await.result(selection.resolveOne(timeout), timeout) + } + + actorSystem.shutdown() + slaveSystem.shutdown() + } + } diff --git a/docs/configuration.md b/docs/configuration.md index 08c6befaf31ad..62d3fca937b2c 100644 --- a/docs/configuration.md +++ b/docs/configuration.md @@ -1242,6 +1242,86 @@ Apart from these, the following properties are also available, and may be useful +#### Encryption + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
Property NameDefaultMeaning
spark.ssl.enabledfalse +

Whether to enable SSL connections on all supported protocols.

+ +

All the SSL settings like spark.ssl.xxx where xxx is a + particular configuration property, denote the global configuration for all the supported + protocols. In order to override the global configuration for the particular protocol, + the properties must be overwritten in the protocol-specific namespace.

+ +

Use spark.ssl.YYY.XXX settings to overwrite the global configuration for + particular protocol denoted by YYY. Currently YYY can be + either akka for Akka based connections or fs for broadcast and + file server.

+
spark.ssl.keyStoreNone + A path to a key-store file. The path can be absolute or relative to the directory where + the component is started in. +
spark.ssl.keyStorePasswordNone + A password to the key-store. +
spark.ssl.keyPasswordNone + A password to the private key in key-store. +
spark.ssl.trustStoreNone + A path to a trust-store file. The path can be absolute or relative to the directory + where the component is started in. +
spark.ssl.trustStorePasswordNone + A password to the trust-store. +
spark.ssl.protocolNone + A protocol name. The protocol must be supported by JVM. The reference list of protocols + one can find on this + page. +
spark.ssl.enabledAlgorithmsEmpty + A comma separated list of ciphers. The specified ciphers must be supported by JVM. + The reference list of protocols one can find on + this + page. +
+ + #### Spark Streaming diff --git a/docs/security.md b/docs/security.md index 1e206a139fb72..6e0a54fbc4ad7 100644 --- a/docs/security.md +++ b/docs/security.md @@ -20,6 +20,30 @@ Spark allows for a set of administrators to be specified in the acls who always If your applications are using event logging, the directory where the event logs go (`spark.eventLog.dir`) should be manually created and have the proper permissions set on it. If you want those log files secured, the permissions should be set to `drwxrwxrwxt` for that directory. The owner of the directory should be the super user who is running the history server and the group permissions should be restricted to super user group. This will allow all users to write to the directory but will prevent unprivileged users from removing or renaming a file unless they own the file or directory. The event log files will be created by Spark with permissions such that only the user and group have read and write access. +## Encryption + +Spark supports SSL for Akka and HTTP (for broadcast and file server) protocols. However SSL is not supported yet for WebUI and block transfer service. + +Connection encryption (SSL) configuration is organized hierarchically. The user can configure the default SSL settings which will be used for all the supported communication protocols unless they are overwritten by protocol-specific settings. This way the user can easily provide the common settings for all the protocols without disabling the ability to configure each one individually. The common SSL settings are at `spark.ssl` namespace in Spark configuration, while Akka SSL configuration is at `spark.ssl.akka` and HTTP for broadcast and file server SSL configuration is at `spark.ssl.fs`. The full breakdown can be found on the [configuration page](configuration.html). + +SSL must be configured on each node and configured for each component involved in communication using the particular protocol. + +### YARN mode +The key-store can be prepared on the client side and then distributed and used by the executors as the part of the application. It is possible because the user is able to deploy files before the application is started in YARN by using `spark.yarn.dist.files` or `spark.yarn.dist.archives` configuration settings. The responsibility for encryption of transferring these files is on YARN side and has nothing to do with Spark. + +### Standalone mode +The user needs to provide key-stores and configuration options for master and workers. They have to be set by attaching appropriate Java system properties in `SPARK_MASTER_OPTS` and in `SPARK_WORKER_OPTS` environment variables, or just in `SPARK_DAEMON_JAVA_OPTS`. In this mode, the user may allow the executors to use the SSL settings inherited from the worker which spawned that executor. It can be accomplished by setting `spark.ssl.useNodeLocalConf` to `true`. If that parameter is set, the settings provided by user on the client side, are not used by the executors. + +### Preparing the key-stores +Key-stores can be generated by `keytool` program. The reference documentation for this tool is +[here](https://docs.oracle.com/javase/7/docs/technotes/tools/solaris/keytool.html). The most basic +steps to configure the key-stores and the trust-store for the standalone deployment mode is as +follows: +* Generate a keys pair for each node +* Export the public key of the key pair to a file on each node +* Import all exported public keys into a single trust-store +* Distribute the trust-store over the nodes + ## Configuring Ports for Network Security Spark makes heavy use of the network, and some environments have strict requirements for using tight diff --git a/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala b/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala index b46df12da86dc..9805609120005 100644 --- a/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala +++ b/repl/src/main/scala/org/apache/spark/repl/ExecutorClassLoader.scala @@ -45,7 +45,7 @@ class ExecutorClassLoader(conf: SparkConf, classUri: String, parent: ClassLoader // Hadoop FileSystem object for our URI, if it isn't using HTTP var fileSystem: FileSystem = { - if (uri.getScheme() == "http") { + if (Set("http", "https", "ftp").contains(uri.getScheme)) { null } else { FileSystem.get(uri, SparkHadoopUtil.get.newConfiguration(conf)) @@ -78,13 +78,16 @@ class ExecutorClassLoader(conf: SparkConf, classUri: String, parent: ClassLoader if (fileSystem != null) { fileSystem.open(new Path(directory, pathInDirectory)) } else { - if (SparkEnv.get.securityManager.isAuthenticationEnabled()) { + val url = if (SparkEnv.get.securityManager.isAuthenticationEnabled()) { val uri = new URI(classUri + "/" + urlEncode(pathInDirectory)) val newuri = Utils.constructURIForAuthentication(uri, SparkEnv.get.securityManager) - newuri.toURL().openStream() + newuri.toURL } else { - new URL(classUri + "/" + urlEncode(pathInDirectory)).openStream() + new URL(classUri + "/" + urlEncode(pathInDirectory)) } + + Utils.setupSecureURLConnection(url.openConnection(), SparkEnv.get.securityManager) + .getInputStream } } val bytes = readAndTransformClass(name, inputStream) diff --git a/streaming/src/main/scala/org/apache/spark/streaming/receiver/ReceiverSupervisorImpl.scala b/streaming/src/main/scala/org/apache/spark/streaming/receiver/ReceiverSupervisorImpl.scala index 716cf2c7f32fc..7d29ed88cfcb4 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/receiver/ReceiverSupervisorImpl.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/receiver/ReceiverSupervisorImpl.scala @@ -67,8 +67,12 @@ private[streaming] class ReceiverSupervisorImpl( private val trackerActor = { val ip = env.conf.get("spark.driver.host", "localhost") val port = env.conf.getInt("spark.driver.port", 7077) - val url = "akka.tcp://%s@%s:%s/user/ReceiverTracker".format( - SparkEnv.driverActorSystemName, ip, port) + val url = AkkaUtils.address( + AkkaUtils.protocol(env.actorSystem), + SparkEnv.driverActorSystemName, + ip, + port, + "ReceiverTracker") env.actorSystem.actorSelection(url) } diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala index eb328b2b8ac50..37e98e01fddf7 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/ApplicationMaster.scala @@ -244,7 +244,9 @@ private[spark] class ApplicationMaster( host: String, port: String, isDriver: Boolean): Unit = { - val driverUrl = "akka.tcp://%s@%s:%s/user/%s".format( + + val driverUrl = AkkaUtils.address( + AkkaUtils.protocol(actorSystem), SparkEnv.driverActorSystemName, host, port, diff --git a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala index 040406c15030e..0dbb6154b3039 100644 --- a/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala +++ b/yarn/src/main/scala/org/apache/spark/deploy/yarn/YarnAllocator.scala @@ -34,9 +34,10 @@ import org.apache.hadoop.yarn.util.RackResolver import org.apache.log4j.{Level, Logger} -import org.apache.spark.{Logging, SecurityManager, SparkConf} +import org.apache.spark.{SparkEnv, Logging, SecurityManager, SparkConf} import org.apache.spark.deploy.yarn.YarnSparkHadoopUtil._ import org.apache.spark.scheduler.cluster.CoarseGrainedSchedulerBackend +import org.apache.spark.util.AkkaUtils /** * YarnAllocator is charged with requesting containers from the YARN ResourceManager and deciding @@ -106,7 +107,9 @@ private[yarn] class YarnAllocator( new ThreadFactoryBuilder().setNameFormat("ContainerLauncher #%d").setDaemon(true).build()) launcherPool.allowCoreThreadTimeOut(true) - private val driverUrl = "akka.tcp://sparkDriver@%s:%s/user/%s".format( + private val driverUrl = AkkaUtils.address( + AkkaUtils.protocol(securityMgr.akkaSSLOptions.enabled), + SparkEnv.driverActorSystemName, sparkConf.get("spark.driver.host"), sparkConf.get("spark.driver.port"), CoarseGrainedSchedulerBackend.ACTOR_NAME) From eccb9fbb2d1bf6f7c65fb4f017e9205bb3034ec6 Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Mon, 2 Feb 2015 17:52:17 -0800 Subject: [PATCH 22/52] Revert "[SPARK-4508] [SQL] build native date type to conform behavior to Hive" This reverts commit 1646f89d967913ee1f231d9606f8502d13c25804. --- .../main/scala/org/apache/spark/sql/Row.scala | 2 +- .../spark/sql/catalyst/ScalaReflection.scala | 9 ++- .../apache/spark/sql/catalyst/SqlParser.scala | 2 - .../spark/sql/catalyst/expressions/Cast.scala | 53 +++++++++------- .../expressions/codegen/CodeGenerator.scala | 3 - .../sql/catalyst/expressions/literals.scala | 2 +- .../apache/spark/sql/types/DateUtils.scala | 60 ------------------- .../apache/spark/sql/types/dataTypes.scala | 12 ++-- .../ExpressionEvaluationSuite.scala | 28 ++++----- .../spark/sql/types/DataTypeSuite.scala | 2 +- .../spark/sql/columnar/ColumnStats.scala | 19 +++++- .../spark/sql/columnar/ColumnType.scala | 13 ++-- .../spark/sql/execution/pythonUdfs.scala | 4 +- .../org/apache/spark/sql/json/JsonRDD.scala | 6 +- .../org/apache/spark/sql/SQLQuerySuite.scala | 7 --- .../sql/ScalaReflectionRelationSuite.scala | 3 +- .../spark/sql/columnar/ColumnStatsSuite.scala | 2 +- .../spark/sql/columnar/ColumnTypeSuite.scala | 6 +- .../sql/columnar/ColumnarTestUtils.scala | 6 +- .../org/apache/spark/sql/json/JsonSuite.scala | 7 +-- .../execution/HiveCompatibilitySuite.scala | 1 - .../apache/spark/sql/hive/HiveContext.scala | 4 +- .../spark/sql/hive/HiveInspectors.scala | 11 +--- .../apache/spark/sql/hive/TableReader.scala | 3 +- ...te cast-0-a7cd69b80c77a771a2c955db666be53d | 1 - ... test 1-0-bde89be08a12361073ff658fef768b7e | 1 - ... test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 | 1 - ...date_1-0-23edf29bf7376c70d5ecf12720f4b1eb} | 0 .../date_1-0-50131c0ba7b7a6b65c789a5a8497bada | 1 - ...date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b} | 0 ...ate_1-10-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...ate_1-11-480c5f024a28232b7857be327c992509} | 0 ...ate_1-12-4c0ed7fcb75770d8790575b586bf14f4} | 0 ...date_1-13-44fc74c1993062c0a9522199ff27fea} | 0 ...ate_1-14-4855a66124b16d1d0d003235995ac06b} | 0 ...ate_1-15-8bc190dba0f641840b5e1e198a14c55b} | 0 ...ate_1-16-23edf29bf7376c70d5ecf12720f4b1eb} | 0 ...date_1-2-abdce0c0d14d3fc7441b7c134b02f99a} | 0 ...date_1-3-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...date_1-4-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...date_1-5-5e70fc74158fbfca38134174360de12d} | 0 ...date_1-6-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...date_1-7-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...date_1-8-1d5c58095cd52ea539d869f2ab1ab67d} | 0 ...date_1-9-df16364a220ff96a6ea1cd478cbc1d0b} | 0 .../spark/sql/hive/HiveInspectorSuite.scala | 4 +- .../sql/hive/execution/HiveQuerySuite.scala | 26 +------- .../org/apache/spark/sql/hive/Shim12.scala | 2 +- .../org/apache/spark/sql/hive/Shim13.scala | 2 +- 49 files changed, 112 insertions(+), 191 deletions(-) delete mode 100644 sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala delete mode 100644 sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d delete mode 100644 sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e delete mode 100644 sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 rename sql/hive/src/test/resources/golden/{date_1-1-23edf29bf7376c70d5ecf12720f4b1eb => date_1-0-23edf29bf7376c70d5ecf12720f4b1eb} (100%) delete mode 100644 sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada rename sql/hive/src/test/resources/golden/{date_1-17-23edf29bf7376c70d5ecf12720f4b1eb => date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b} (100%) rename sql/hive/src/test/resources/golden/{date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-10-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-12-480c5f024a28232b7857be327c992509 => date_1-11-480c5f024a28232b7857be327c992509} (100%) rename sql/hive/src/test/resources/golden/{date_1-13-4c0ed7fcb75770d8790575b586bf14f4 => date_1-12-4c0ed7fcb75770d8790575b586bf14f4} (100%) rename sql/hive/src/test/resources/golden/{date_1-14-44fc74c1993062c0a9522199ff27fea => date_1-13-44fc74c1993062c0a9522199ff27fea} (100%) rename sql/hive/src/test/resources/golden/{date_1-15-4855a66124b16d1d0d003235995ac06b => date_1-14-4855a66124b16d1d0d003235995ac06b} (100%) rename sql/hive/src/test/resources/golden/{date_1-16-8bc190dba0f641840b5e1e198a14c55b => date_1-15-8bc190dba0f641840b5e1e198a14c55b} (100%) rename sql/hive/src/test/resources/golden/{date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b => date_1-16-23edf29bf7376c70d5ecf12720f4b1eb} (100%) rename sql/hive/src/test/resources/golden/{date_1-3-26b5c291400dfde455b3c1b878b71d0 => date_1-2-abdce0c0d14d3fc7441b7c134b02f99a} (100%) rename sql/hive/src/test/resources/golden/{date_1-10-df16364a220ff96a6ea1cd478cbc1d0b => date_1-3-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-4-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 => date_1-5-5e70fc74158fbfca38134174360de12d} (100%) rename sql/hive/src/test/resources/golden/{date_1-4-df16364a220ff96a6ea1cd478cbc1d0b => date_1-6-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-7-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-9-8306558e0eabe936ac33dabaaa17fea4 => date_1-8-1d5c58095cd52ea539d869f2ab1ab67d} (100%) rename sql/hive/src/test/resources/golden/{date_1-7-df16364a220ff96a6ea1cd478cbc1d0b => date_1-9-df16364a220ff96a6ea1cd478cbc1d0b} (100%) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala index 3a70d25534968..41bb4f012f2e1 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala @@ -20,7 +20,7 @@ package org.apache.spark.sql import scala.util.hashing.MurmurHash3 import org.apache.spark.sql.catalyst.expressions.GenericRow -import org.apache.spark.sql.types.DateUtils + object Row { /** diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala index 8e79e532ca564..e0db587efb08d 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala @@ -17,13 +17,14 @@ package org.apache.spark.sql.catalyst -import java.sql.Timestamp +import java.sql.{Date, Timestamp} import org.apache.spark.util.Utils import org.apache.spark.sql.catalyst.expressions.{GenericRow, Attribute, AttributeReference, Row} import org.apache.spark.sql.catalyst.plans.logical.LocalRelation import org.apache.spark.sql.types._ + /** * A default version of ScalaReflection that uses the runtime universe. */ @@ -71,7 +72,6 @@ trait ScalaReflection { }.toArray) case (d: BigDecimal, _) => Decimal(d) case (d: java.math.BigDecimal, _) => Decimal(d) - case (d: java.sql.Date, _) => DateUtils.fromJavaDate(d) case (other, _) => other } @@ -85,7 +85,6 @@ trait ScalaReflection { } case (r: Row, s: StructType) => convertRowToScala(r, s) case (d: Decimal, _: DecimalType) => d.toJavaBigDecimal - case (i: Int, DateType) => DateUtils.toJavaDate(i) case (other, _) => other } @@ -160,7 +159,7 @@ trait ScalaReflection { valueDataType, valueContainsNull = valueNullable), nullable = true) case t if t <:< typeOf[String] => Schema(StringType, nullable = true) case t if t <:< typeOf[Timestamp] => Schema(TimestampType, nullable = true) - case t if t <:< typeOf[java.sql.Date] => Schema(DateType, nullable = true) + case t if t <:< typeOf[Date] => Schema(DateType, nullable = true) case t if t <:< typeOf[BigDecimal] => Schema(DecimalType.Unlimited, nullable = true) case t if t <:< typeOf[java.math.BigDecimal] => Schema(DecimalType.Unlimited, nullable = true) case t if t <:< typeOf[Decimal] => Schema(DecimalType.Unlimited, nullable = true) @@ -192,7 +191,7 @@ trait ScalaReflection { case obj: LongType.JvmType => LongType case obj: FloatType.JvmType => FloatType case obj: DoubleType.JvmType => DoubleType - case obj: java.sql.Date => DateType + case obj: DateType.JvmType => DateType case obj: java.math.BigDecimal => DecimalType.Unlimited case obj: Decimal => DecimalType.Unlimited case obj: TimestampType.JvmType => TimestampType diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index 2ce8be8e24e85..594a423146d77 100755 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -52,7 +52,6 @@ class SqlParser extends AbstractSparkSQLParser { protected val CAST = Keyword("CAST") protected val COALESCE = Keyword("COALESCE") protected val COUNT = Keyword("COUNT") - protected val DATE = Keyword("DATE") protected val DECIMAL = Keyword("DECIMAL") protected val DESC = Keyword("DESC") protected val DISTINCT = Keyword("DISTINCT") @@ -384,7 +383,6 @@ class SqlParser extends AbstractSparkSQLParser { | DOUBLE ^^^ DoubleType | fixedDecimalType | DECIMAL ^^^ DecimalType.Unlimited - | DATE ^^^ DateType ) protected lazy val fixedDecimalType: Parser[DataType] = diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala index b1bc858478ee1..ece5ee73618cb 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala @@ -113,7 +113,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // UDFToString private[this] def castToString(from: DataType): Any => Any = from match { case BinaryType => buildCast[Array[Byte]](_, new String(_, "UTF-8")) - case DateType => buildCast[Int](_, d => DateUtils.toString(d)) + case DateType => buildCast[Date](_, dateToString) case TimestampType => buildCast[Timestamp](_, timestampToString) case _ => buildCast[Any](_, _.toString) } @@ -131,7 +131,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w buildCast[Timestamp](_, t => t.getTime() != 0 || t.getNanos() != 0) case DateType => // Hive would return null when cast from date to boolean - buildCast[Int](_, d => null) + buildCast[Date](_, d => null) case LongType => buildCast[Long](_, _ != 0) case IntegerType => @@ -171,7 +171,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case ByteType => buildCast[Byte](_, b => new Timestamp(b)) case DateType => - buildCast[Int](_, d => new Timestamp(DateUtils.toJavaDate(d).getTime)) + buildCast[Date](_, d => new Timestamp(d.getTime)) // TimestampWritable.decimalToTimestamp case DecimalType() => buildCast[Decimal](_, d => decimalToTimestamp(d)) @@ -224,24 +224,37 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w } } + // Converts Timestamp to string according to Hive TimestampWritable convention + private[this] def timestampToDateString(ts: Timestamp): String = { + Cast.threadLocalDateFormat.get.format(ts) + } + // DateConverter private[this] def castToDate(from: DataType): Any => Any = from match { case StringType => buildCast[String](_, s => - try DateUtils.fromJavaDate(Date.valueOf(s)) - catch { case _: java.lang.IllegalArgumentException => null } - ) + try Date.valueOf(s) catch { case _: java.lang.IllegalArgumentException => null }) case TimestampType => // throw valid precision more than seconds, according to Hive. // Timestamp.nanos is in 0 to 999,999,999, no more than a second. - buildCast[Timestamp](_, t => DateUtils.millisToDays(t.getTime)) + buildCast[Timestamp](_, t => new Date(Math.floor(t.getTime / 1000.0).toLong * 1000)) // Hive throws this exception as a Semantic Exception - // It is never possible to compare result when hive return with exception, - // so we can return null + // It is never possible to compare result when hive return with exception, so we can return null // NULL is more reasonable here, since the query itself obeys the grammar. case _ => _ => null } + // Date cannot be cast to long, according to hive + private[this] def dateToLong(d: Date) = null + + // Date cannot be cast to double, according to hive + private[this] def dateToDouble(d: Date) = null + + // Converts Date to string according to Hive DateWritable convention + private[this] def dateToString(d: Date): String = { + Cast.threadLocalDateFormat.get.format(d) + } + // LongConverter private[this] def castToLong(from: DataType): Any => Any = from match { case StringType => @@ -251,7 +264,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1L else 0L) case DateType => - buildCast[Int](_, d => null) + buildCast[Date](_, d => dateToLong(d)) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t)) case x: NumericType => @@ -267,7 +280,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1 else 0) case DateType => - buildCast[Int](_, d => null) + buildCast[Date](_, d => dateToLong(d)) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toInt) case x: NumericType => @@ -283,7 +296,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1.toShort else 0.toShort) case DateType => - buildCast[Int](_, d => null) + buildCast[Date](_, d => dateToLong(d)) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toShort) case x: NumericType => @@ -299,7 +312,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1.toByte else 0.toByte) case DateType => - buildCast[Int](_, d => null) + buildCast[Date](_, d => dateToLong(d)) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toByte) case x: NumericType => @@ -329,7 +342,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => changePrecision(if (b) Decimal(1) else Decimal(0), target)) case DateType => - buildCast[Int](_, d => null) // date can't cast to decimal in Hive + buildCast[Date](_, d => null) // date can't cast to decimal in Hive case TimestampType => // Note that we lose precision here. buildCast[Timestamp](_, t => changePrecision(Decimal(timestampToDouble(t)), target)) @@ -354,7 +367,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1d else 0d) case DateType => - buildCast[Int](_, d => null) + buildCast[Date](_, d => dateToDouble(d)) case TimestampType => buildCast[Timestamp](_, t => timestampToDouble(t)) case x: NumericType => @@ -370,7 +383,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1f else 0f) case DateType => - buildCast[Int](_, d => null) + buildCast[Date](_, d => dateToDouble(d)) case TimestampType => buildCast[Timestamp](_, t => timestampToDouble(t).toFloat) case x: NumericType => @@ -429,16 +442,16 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w object Cast { // `SimpleDateFormat` is not thread-safe. - private[sql] val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { + private[sql] val threadLocalDateFormat = new ThreadLocal[DateFormat] { override def initialValue() = { - new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") + new SimpleDateFormat("yyyy-MM-dd") } } // `SimpleDateFormat` is not thread-safe. - private[sql] val threadLocalDateFormat = new ThreadLocal[DateFormat] { + private[sql] val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { override def initialValue() = { - new SimpleDateFormat("yyyy-MM-dd") + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") } } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala index 1f80d84b744a1..4cae5c4718683 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala @@ -246,9 +246,6 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin new String(${eval.primitiveTerm}.asInstanceOf[Array[Byte]]) """.children - case Cast(child @ DateType(), StringType) => - child.castOrNull(c => q"org.apache.spark.sql.types.DateUtils.toString($c)", StringType) - case Cast(child @ NumericType(), IntegerType) => child.castOrNull(c => q"$c.toInt", IntegerType) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala index 97bb96f48e2c7..5b389aad7a85d 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala @@ -35,7 +35,7 @@ object Literal { case d: java.math.BigDecimal => Literal(Decimal(d), DecimalType.Unlimited) case d: Decimal => Literal(d, DecimalType.Unlimited) case t: Timestamp => Literal(t, TimestampType) - case d: Date => Literal(DateUtils.fromJavaDate(d), DateType) + case d: Date => Literal(d, DateType) case a: Array[Byte] => Literal(a, BinaryType) case null => Literal(null, NullType) } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala deleted file mode 100644 index 8a1a3b81b3d2c..0000000000000 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala +++ /dev/null @@ -1,60 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark.sql.types - -import java.sql.Date -import java.util.{Calendar, TimeZone} - -import org.apache.spark.sql.catalyst.expressions.Cast - -/** - * helper function to convert between Int value of days since 1970-01-01 and java.sql.Date - */ -object DateUtils { - private val MILLIS_PER_DAY = 86400000 - - // Java TimeZone has no mention of thread safety. Use thread local instance to be safe. - private val LOCAL_TIMEZONE = new ThreadLocal[TimeZone] { - override protected def initialValue: TimeZone = { - Calendar.getInstance.getTimeZone - } - } - - private def javaDateToDays(d: Date): Int = { - millisToDays(d.getTime) - } - - def millisToDays(millisLocal: Long): Int = { - ((millisLocal + LOCAL_TIMEZONE.get().getOffset(millisLocal)) / MILLIS_PER_DAY).toInt - } - - private def toMillisSinceEpoch(days: Int): Long = { - val millisUtc = days.toLong * MILLIS_PER_DAY - millisUtc - LOCAL_TIMEZONE.get().getOffset(millisUtc) - } - - def fromJavaDate(date: java.sql.Date): Int = { - javaDateToDays(date) - } - - def toJavaDate(daysSinceEpoch: Int): java.sql.Date = { - new java.sql.Date(toMillisSinceEpoch(daysSinceEpoch)) - } - - def toString(days: Int): String = Cast.threadLocalDateFormat.get.format(toJavaDate(days)) -} diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala index 8ca0769fac287..6ab99aa38877f 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.types -import java.sql.Timestamp +import java.sql.{Date, Timestamp} import scala.math.Numeric.{FloatAsIfIntegral, DoubleAsIfIntegral} import scala.reflect.ClassTag @@ -387,16 +387,18 @@ case object TimestampType extends NativeType { */ @DeveloperApi case object DateType extends NativeType { - private[sql] type JvmType = Int + private[sql] type JvmType = Date @transient private[sql] lazy val tag = ScalaReflectionLock.synchronized { typeTag[JvmType] } - private[sql] val ordering = implicitly[Ordering[JvmType]] + private[sql] val ordering = new Ordering[JvmType] { + def compare(x: Date, y: Date) = x.compareTo(y) + } /** - * The default size of a value of the DateType is 4 bytes. + * The default size of a value of the DateType is 8 bytes. */ - override def defaultSize: Int = 4 + override def defaultSize: Int = 8 } diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala index 25d1c105a00a6..37e64adeea853 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala @@ -303,7 +303,6 @@ class ExpressionEvaluationSuite extends FunSuite { val sd = "1970-01-01" val d = Date.valueOf(sd) - val zts = sd + " 00:00:00" val sts = sd + " 00:00:02" val nts = sts + ".1" val ts = Timestamp.valueOf(nts) @@ -320,14 +319,14 @@ class ExpressionEvaluationSuite extends FunSuite { checkEvaluation(Cast(Literal(1.toDouble) cast TimestampType, DoubleType), 1.toDouble) checkEvaluation(Cast(Literal(sd) cast DateType, StringType), sd) - checkEvaluation(Cast(Literal(d) cast StringType, DateType), 0) + checkEvaluation(Cast(Literal(d) cast StringType, DateType), d) checkEvaluation(Cast(Literal(nts) cast TimestampType, StringType), nts) checkEvaluation(Cast(Literal(ts) cast StringType, TimestampType), ts) // all convert to string type to check checkEvaluation( Cast(Cast(Literal(nts) cast TimestampType, DateType), StringType), sd) checkEvaluation( - Cast(Cast(Literal(ts) cast DateType, TimestampType), StringType), zts) + Cast(Cast(Literal(ts) cast DateType, TimestampType), StringType), sts) checkEvaluation(Cast("abdef" cast BinaryType, StringType), "abdef") @@ -378,8 +377,8 @@ class ExpressionEvaluationSuite extends FunSuite { } test("date") { - val d1 = DateUtils.fromJavaDate(Date.valueOf("1970-01-01")) - val d2 = DateUtils.fromJavaDate(Date.valueOf("1970-01-02")) + val d1 = Date.valueOf("1970-01-01") + val d2 = Date.valueOf("1970-01-02") checkEvaluation(Literal(d1) < Literal(d2), true) } @@ -460,21 +459,22 @@ class ExpressionEvaluationSuite extends FunSuite { test("date casting") { val d = Date.valueOf("1970-01-01") - checkEvaluation(Cast(Literal(d), ShortType), null) - checkEvaluation(Cast(Literal(d), IntegerType), null) - checkEvaluation(Cast(Literal(d), LongType), null) - checkEvaluation(Cast(Literal(d), FloatType), null) - checkEvaluation(Cast(Literal(d), DoubleType), null) - checkEvaluation(Cast(Literal(d), DecimalType.Unlimited), null) - checkEvaluation(Cast(Literal(d), DecimalType(10, 2)), null) - checkEvaluation(Cast(Literal(d), StringType), "1970-01-01") - checkEvaluation(Cast(Cast(Literal(d), TimestampType), StringType), "1970-01-01 00:00:00") + checkEvaluation(Cast(d, ShortType), null) + checkEvaluation(Cast(d, IntegerType), null) + checkEvaluation(Cast(d, LongType), null) + checkEvaluation(Cast(d, FloatType), null) + checkEvaluation(Cast(d, DoubleType), null) + checkEvaluation(Cast(d, DecimalType.Unlimited), null) + checkEvaluation(Cast(d, DecimalType(10, 2)), null) + checkEvaluation(Cast(d, StringType), "1970-01-01") + checkEvaluation(Cast(Cast(d, TimestampType), StringType), "1970-01-01 00:00:00") } test("timestamp casting") { val millis = 15 * 1000 + 2 val seconds = millis * 1000 + 2 val ts = new Timestamp(millis) + val ts1 = new Timestamp(15 * 1000) // a timestamp without the milliseconds part val tss = new Timestamp(seconds) checkEvaluation(Cast(ts, ShortType), 15) checkEvaluation(Cast(ts, IntegerType), 15) diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala index 7bcd6687d11a1..c147be9f6b1ae 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala @@ -106,7 +106,7 @@ class DataTypeSuite extends FunSuite { checkDefaultSize(DoubleType, 8) checkDefaultSize(DecimalType(10, 5), 4096) checkDefaultSize(DecimalType.Unlimited, 4096) - checkDefaultSize(DateType, 4) + checkDefaultSize(DateType, 8) checkDefaultSize(TimestampType, 8) checkDefaultSize(StringType, 4096) checkDefaultSize(BinaryType, 4096) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala index cad0667b46435..391b3dae5c8ce 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.columnar -import java.sql.Timestamp +import java.sql.{Date, Timestamp} import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.{AttributeMap, Attribute, AttributeReference} @@ -215,7 +215,22 @@ private[sql] class StringColumnStats extends ColumnStats { def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) } -private[sql] class DateColumnStats extends IntColumnStats +private[sql] class DateColumnStats extends ColumnStats { + protected var upper: Date = null + protected var lower: Date = null + + override def gatherStats(row: Row, ordinal: Int) { + super.gatherStats(row, ordinal) + if (!row.isNullAt(ordinal)) { + val value = row(ordinal).asInstanceOf[Date] + if (upper == null || value.compareTo(upper) > 0) upper = value + if (lower == null || value.compareTo(lower) < 0) lower = value + sizeInBytes += DATE.defaultSize + } + } + + def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) +} private[sql] class TimestampColumnStats extends ColumnStats { protected var upper: Timestamp = null diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala index db5bc0de363c7..fcf2faa0914c0 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala @@ -335,20 +335,21 @@ private[sql] object STRING extends NativeColumnType(StringType, 7, 8) { } } -private[sql] object DATE extends NativeColumnType(DateType, 8, 4) { +private[sql] object DATE extends NativeColumnType(DateType, 8, 8) { override def extract(buffer: ByteBuffer) = { - buffer.getInt + val date = new Date(buffer.getLong()) + date } - override def append(v: Int, buffer: ByteBuffer): Unit = { - buffer.putInt(v) + override def append(v: Date, buffer: ByteBuffer): Unit = { + buffer.putLong(v.getTime) } override def getField(row: Row, ordinal: Int) = { - row(ordinal).asInstanceOf[Int] + row(ordinal).asInstanceOf[Date] } - def setField(row: MutableRow, ordinal: Int, value: Int): Unit = { + override def setField(row: MutableRow, ordinal: Int, value: Date): Unit = { row(ordinal) = value } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala index 3a2f8d75dac5e..b85021acc9d4c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala @@ -135,8 +135,6 @@ object EvaluatePython { case (ud, udt: UserDefinedType[_]) => toJava(udt.serialize(ud), udt.sqlType) - case (date: Int, DateType) => DateUtils.toJavaDate(date) - // Pyrolite can handle Timestamp and Decimal case (other, _) => other } @@ -173,7 +171,7 @@ object EvaluatePython { }): Row case (c: java.util.Calendar, DateType) => - DateUtils.fromJavaDate(new java.sql.Date(c.getTime().getTime())) + new java.sql.Date(c.getTime().getTime()) case (c: java.util.Calendar, TimestampType) => new java.sql.Timestamp(c.getTime().getTime()) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala index 33ce71b51b213..9171939f7e8f7 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala @@ -377,12 +377,10 @@ private[sql] object JsonRDD extends Logging { } } - private def toDate(value: Any): Int = { + private def toDate(value: Any): Date = { value match { // only support string as date - case value: java.lang.String => - DateUtils.millisToDays(DataTypeConversions.stringToTime(value).getTime) - case value: java.sql.Date => DateUtils.fromJavaDate(value) + case value: java.lang.String => new Date(DataTypeConversions.stringToTime(value).getTime) } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index a7f6a50a04fbd..d82c34316cefa 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -296,13 +296,6 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { mapData.collect().take(1).map(Row.fromTuple).toSeq) } - test("date row") { - checkAnswer(sql( - """select cast("2015-01-28" as date) from testData limit 1"""), - Row(java.sql.Date.valueOf("2015-01-28")) - ) - } - test("from follow multiple brackets") { checkAnswer(sql( "select key from ((select * from testData limit 1) union all (select * from testData limit 1)) x limit 1"), diff --git a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala index f26fcc0385b68..a015884bae282 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala @@ -83,8 +83,7 @@ class ScalaReflectionRelationSuite extends FunSuite { assert(sql("SELECT * FROM reflectData").collect().head === Row("a", 1, 1L, 1.toFloat, 1.toDouble, 1.toShort, 1.toByte, true, - new java.math.BigDecimal(1), new Date(70, 0, 1), // This is 1970-01-01 - new Timestamp(12345), Seq(1,2,3))) + new java.math.BigDecimal(1), new Date(12345), new Timestamp(12345), Seq(1,2,3))) } test("query case class RDD with nulls") { diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala index 581fccf8ee613..be2b34de077c9 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala @@ -30,7 +30,7 @@ class ColumnStatsSuite extends FunSuite { testColumnStats(classOf[FloatColumnStats], FLOAT, Row(Float.MaxValue, Float.MinValue, 0)) testColumnStats(classOf[DoubleColumnStats], DOUBLE, Row(Double.MaxValue, Double.MinValue, 0)) testColumnStats(classOf[StringColumnStats], STRING, Row(null, null, 0)) - testColumnStats(classOf[DateColumnStats], DATE, Row(Int.MaxValue, Int.MinValue, 0)) + testColumnStats(classOf[DateColumnStats], DATE, Row(null, null, 0)) testColumnStats(classOf[TimestampColumnStats], TIMESTAMP, Row(null, null, 0)) def testColumnStats[T <: NativeType, U <: ColumnStats]( diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala index 9ce845912f1c7..87e608a8853dc 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.columnar import java.nio.ByteBuffer -import java.sql.Timestamp +import java.sql.{Date, Timestamp} import org.scalatest.FunSuite @@ -34,7 +34,7 @@ class ColumnTypeSuite extends FunSuite with Logging { test("defaultSize") { val checks = Map( INT -> 4, SHORT -> 2, LONG -> 8, BYTE -> 1, DOUBLE -> 8, FLOAT -> 4, BOOLEAN -> 1, - STRING -> 8, DATE -> 4, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) + STRING -> 8, DATE -> 8, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) checks.foreach { case (columnType, expectedSize) => assertResult(expectedSize, s"Wrong defaultSize for $columnType") { @@ -64,7 +64,7 @@ class ColumnTypeSuite extends FunSuite with Logging { checkActualSize(FLOAT, Float.MaxValue, 4) checkActualSize(BOOLEAN, true, 1) checkActualSize(STRING, "hello", 4 + "hello".getBytes("utf-8").length) - checkActualSize(DATE, 0, 4) + checkActualSize(DATE, new Date(0L), 8) checkActualSize(TIMESTAMP, new Timestamp(0L), 12) val binary = Array.fill[Byte](4)(0: Byte) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala index 60ed28cc97bf1..f941465fa3e35 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala @@ -17,11 +17,11 @@ package org.apache.spark.sql.columnar -import java.sql.Timestamp - import scala.collection.immutable.HashSet import scala.util.Random +import java.sql.{Date, Timestamp} + import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.GenericMutableRow import org.apache.spark.sql.types.{DataType, NativeType} @@ -50,7 +50,7 @@ object ColumnarTestUtils { case STRING => Random.nextString(Random.nextInt(32)) case BOOLEAN => Random.nextBoolean() case BINARY => randomBytes(Random.nextInt(32)) - case DATE => Random.nextInt() + case DATE => new Date(Random.nextLong()) case TIMESTAMP => val timestamp = new Timestamp(Random.nextLong()) timestamp.setNanos(Random.nextInt(999999999)) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala index 1396c6b7246d1..cb615388da0c7 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala @@ -67,15 +67,14 @@ class JsonSuite extends QueryTest { checkTypePromotion(Timestamp.valueOf(strTime), enforceCorrectType(strTime, TimestampType)) val strDate = "2014-10-15" - checkTypePromotion( - DateUtils.fromJavaDate(Date.valueOf(strDate)), enforceCorrectType(strDate, DateType)) + checkTypePromotion(Date.valueOf(strDate), enforceCorrectType(strDate, DateType)) val ISO8601Time1 = "1970-01-01T01:00:01.0Z" checkTypePromotion(new Timestamp(3601000), enforceCorrectType(ISO8601Time1, TimestampType)) - checkTypePromotion(DateUtils.millisToDays(3601000), enforceCorrectType(ISO8601Time1, DateType)) + checkTypePromotion(new Date(3601000), enforceCorrectType(ISO8601Time1, DateType)) val ISO8601Time2 = "1970-01-01T02:00:01-01:00" checkTypePromotion(new Timestamp(10801000), enforceCorrectType(ISO8601Time2, TimestampType)) - checkTypePromotion(DateUtils.millisToDays(10801000), enforceCorrectType(ISO8601Time2, DateType)) + checkTypePromotion(new Date(10801000), enforceCorrectType(ISO8601Time2, DateType)) } test("Get compatible type") { diff --git a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala index a6266f611c219..0d934620aca09 100644 --- a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala +++ b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala @@ -357,7 +357,6 @@ class HiveCompatibilitySuite extends HiveQueryFileTest with BeforeAndAfter { "database_drop", "database_location", "database_properties", - "date_1", "date_2", "date_3", "date_4", diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala index 724bd28d4b608..b746942cb1067 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.hive import java.io.{BufferedReader, InputStreamReader, PrintStream} -import java.sql.Timestamp +import java.sql.{Date, Timestamp} import scala.collection.JavaConversions._ import scala.language.implicitConversions @@ -409,7 +409,7 @@ private object HiveContext { toHiveStructString((key, kType)) + ":" + toHiveStructString((value, vType)) }.toSeq.sorted.mkString("{", ",", "}") case (null, _) => "NULL" - case (d: Int, DateType) => new DateWritable(d).toString + case (d: Date, DateType) => new DateWritable(d).toString case (t: Timestamp, TimestampType) => new TimestampWritable(t).toString case (bin: Array[Byte], BinaryType) => new String(bin, "UTF-8") case (decimal: java.math.BigDecimal, DecimalType()) => diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala index 4afa2e71d77cc..82dba99900df9 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala @@ -267,8 +267,7 @@ private[hive] trait HiveInspectors { val temp = new Array[Byte](writable.getLength) System.arraycopy(writable.getBytes, 0, temp, 0, temp.length) temp - case poi: WritableConstantDateObjectInspector => - DateUtils.fromJavaDate(poi.getWritableConstantValue.get()) + case poi: WritableConstantDateObjectInspector => poi.getWritableConstantValue.get() case mi: StandardConstantMapObjectInspector => // take the value from the map inspector object, rather than the input data mi.getWritableConstantValue.map { case (k, v) => @@ -305,8 +304,7 @@ private[hive] trait HiveInspectors { System.arraycopy(bw.getBytes(), 0, result, 0, bw.getLength()) result case x: DateObjectInspector if x.preferWritable() => - DateUtils.fromJavaDate(x.getPrimitiveWritableObject(data).get()) - case x: DateObjectInspector => DateUtils.fromJavaDate(x.getPrimitiveJavaObject(data)) + x.getPrimitiveWritableObject(data).get() // org.apache.hadoop.hive.serde2.io.TimestampWritable.set will reset current time object // if next timestamp is null, so Timestamp object is cloned case x: TimestampObjectInspector if x.preferWritable() => @@ -345,9 +343,6 @@ private[hive] trait HiveInspectors { case _: JavaHiveDecimalObjectInspector => (o: Any) => HiveShim.createDecimal(o.asInstanceOf[Decimal].toJavaBigDecimal) - case _: JavaDateObjectInspector => - (o: Any) => DateUtils.toJavaDate(o.asInstanceOf[Int]) - case soi: StandardStructObjectInspector => val wrappers = soi.getAllStructFieldRefs.map(ref => wrapperFor(ref.getFieldObjectInspector)) (o: Any) => { @@ -431,7 +426,7 @@ private[hive] trait HiveInspectors { case _: BinaryObjectInspector if x.preferWritable() => HiveShim.getBinaryWritable(a) case _: BinaryObjectInspector => a.asInstanceOf[Array[Byte]] case _: DateObjectInspector if x.preferWritable() => HiveShim.getDateWritable(a) - case _: DateObjectInspector => DateUtils.toJavaDate(a.asInstanceOf[Int]) + case _: DateObjectInspector => a.asInstanceOf[java.sql.Date] case _: TimestampObjectInspector if x.preferWritable() => HiveShim.getTimestampWritable(a) case _: TimestampObjectInspector => a.asInstanceOf[java.sql.Timestamp] } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala index effaa5a443512..c368715f7c6f5 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala @@ -34,7 +34,6 @@ import org.apache.spark.SerializableWritable import org.apache.spark.broadcast.Broadcast import org.apache.spark.rdd.{EmptyRDD, HadoopRDD, RDD, UnionRDD} import org.apache.spark.sql.catalyst.expressions._ -import org.apache.spark.sql.types.DateUtils /** * A trait for subclasses that handle table scans. @@ -307,7 +306,7 @@ private[hive] object HadoopTableReader extends HiveInspectors { row.update(ordinal, oi.getPrimitiveJavaObject(value).clone()) case oi: DateObjectInspector => (value: Any, row: MutableRow, ordinal: Int) => - row.update(ordinal, DateUtils.fromJavaDate(oi.getPrimitiveJavaObject(value))) + row.update(ordinal, oi.getPrimitiveJavaObject(value)) case oi: BinaryObjectInspector => (value: Any, row: MutableRow, ordinal: Int) => row.update(ordinal, oi.getPrimitiveJavaObject(value)) diff --git a/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d b/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d deleted file mode 100644 index 98da82fa89386..0000000000000 --- a/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d +++ /dev/null @@ -1 +0,0 @@ -1970-01-01 1970-01-01 1969-12-31 16:00:00 1969-12-31 16:00:00 1970-01-01 00:00:00 diff --git a/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e b/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e deleted file mode 100644 index 27ba77ddaf615..0000000000000 --- a/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e +++ /dev/null @@ -1 +0,0 @@ -true diff --git a/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 b/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 deleted file mode 100644 index 27ba77ddaf615..0000000000000 --- a/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 +++ /dev/null @@ -1 +0,0 @@ -true diff --git a/sql/hive/src/test/resources/golden/date_1-1-23edf29bf7376c70d5ecf12720f4b1eb b/sql/hive/src/test/resources/golden/date_1-0-23edf29bf7376c70d5ecf12720f4b1eb similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-1-23edf29bf7376c70d5ecf12720f4b1eb rename to sql/hive/src/test/resources/golden/date_1-0-23edf29bf7376c70d5ecf12720f4b1eb diff --git a/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada b/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada deleted file mode 100644 index 573541ac9702d..0000000000000 --- a/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada +++ /dev/null @@ -1 +0,0 @@ -0 diff --git a/sql/hive/src/test/resources/golden/date_1-17-23edf29bf7376c70d5ecf12720f4b1eb b/sql/hive/src/test/resources/golden/date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-17-23edf29bf7376c70d5ecf12720f4b1eb rename to sql/hive/src/test/resources/golden/date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b diff --git a/sql/hive/src/test/resources/golden/date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-12-480c5f024a28232b7857be327c992509 b/sql/hive/src/test/resources/golden/date_1-11-480c5f024a28232b7857be327c992509 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-12-480c5f024a28232b7857be327c992509 rename to sql/hive/src/test/resources/golden/date_1-11-480c5f024a28232b7857be327c992509 diff --git a/sql/hive/src/test/resources/golden/date_1-13-4c0ed7fcb75770d8790575b586bf14f4 b/sql/hive/src/test/resources/golden/date_1-12-4c0ed7fcb75770d8790575b586bf14f4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-13-4c0ed7fcb75770d8790575b586bf14f4 rename to sql/hive/src/test/resources/golden/date_1-12-4c0ed7fcb75770d8790575b586bf14f4 diff --git a/sql/hive/src/test/resources/golden/date_1-14-44fc74c1993062c0a9522199ff27fea b/sql/hive/src/test/resources/golden/date_1-13-44fc74c1993062c0a9522199ff27fea similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-14-44fc74c1993062c0a9522199ff27fea rename to sql/hive/src/test/resources/golden/date_1-13-44fc74c1993062c0a9522199ff27fea diff --git a/sql/hive/src/test/resources/golden/date_1-15-4855a66124b16d1d0d003235995ac06b b/sql/hive/src/test/resources/golden/date_1-14-4855a66124b16d1d0d003235995ac06b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-15-4855a66124b16d1d0d003235995ac06b rename to sql/hive/src/test/resources/golden/date_1-14-4855a66124b16d1d0d003235995ac06b diff --git a/sql/hive/src/test/resources/golden/date_1-16-8bc190dba0f641840b5e1e198a14c55b b/sql/hive/src/test/resources/golden/date_1-15-8bc190dba0f641840b5e1e198a14c55b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-16-8bc190dba0f641840b5e1e198a14c55b rename to sql/hive/src/test/resources/golden/date_1-15-8bc190dba0f641840b5e1e198a14c55b diff --git a/sql/hive/src/test/resources/golden/date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b b/sql/hive/src/test/resources/golden/date_1-16-23edf29bf7376c70d5ecf12720f4b1eb similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b rename to sql/hive/src/test/resources/golden/date_1-16-23edf29bf7376c70d5ecf12720f4b1eb diff --git a/sql/hive/src/test/resources/golden/date_1-3-26b5c291400dfde455b3c1b878b71d0 b/sql/hive/src/test/resources/golden/date_1-2-abdce0c0d14d3fc7441b7c134b02f99a similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-3-26b5c291400dfde455b3c1b878b71d0 rename to sql/hive/src/test/resources/golden/date_1-2-abdce0c0d14d3fc7441b7c134b02f99a diff --git a/sql/hive/src/test/resources/golden/date_1-10-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-3-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-10-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-3-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 b/sql/hive/src/test/resources/golden/date_1-5-5e70fc74158fbfca38134174360de12d similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 rename to sql/hive/src/test/resources/golden/date_1-5-5e70fc74158fbfca38134174360de12d diff --git a/sql/hive/src/test/resources/golden/date_1-4-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-6-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-4-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-6-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-9-8306558e0eabe936ac33dabaaa17fea4 b/sql/hive/src/test/resources/golden/date_1-8-1d5c58095cd52ea539d869f2ab1ab67d similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-9-8306558e0eabe936ac33dabaaa17fea4 rename to sql/hive/src/test/resources/golden/date_1-8-1d5c58095cd52ea539d869f2ab1ab67d diff --git a/sql/hive/src/test/resources/golden/date_1-7-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-9-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-7-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-9-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala index 09bbd5c867e4e..2d3ff680125ad 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala @@ -18,6 +18,7 @@ package org.apache.spark.sql.hive import java.util +import java.sql.Date import java.util.{Locale, TimeZone} import org.apache.hadoop.hive.ql.udf.UDAFPercentile @@ -75,7 +76,7 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { Literal(0.asInstanceOf[Float]) :: Literal(0.asInstanceOf[Double]) :: Literal("0") :: - Literal(new java.sql.Date(114, 8, 23)) :: + Literal(new Date(2014, 9, 23)) :: Literal(Decimal(BigDecimal(123.123))) :: Literal(new java.sql.Timestamp(123123)) :: Literal(Array[Byte](1,2,3)) :: @@ -142,6 +143,7 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { case (r1: Array[Byte], r2: Array[Byte]) if r1 != null && r2 != null && r1.length == r2.length => r1.zip(r2).map { case (b1, b2) => assert(b1 === b2) } + case (r1: Date, r2: Date) => assert(r1.compareTo(r2) === 0) case (r1, r2) => assert(r1 === r2) } } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala index 4f67d1def65fc..4c53b10ba96e9 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala @@ -253,30 +253,8 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { createQueryTest("Cast Timestamp to Timestamp in UDF", """ - | SELECT DATEDIFF(CAST(value AS timestamp), CAST('2002-03-21 00:00:00' AS timestamp)) - | FROM src LIMIT 1 - """.stripMargin) - - createQueryTest("Date comparison test 1", - """ - | SELECT - | CAST(CAST('1970-01-01 22:00:00' AS timestamp) AS date) == - | CAST(CAST('1970-01-01 23:00:00' AS timestamp) AS date) - | FROM src LIMIT 1 - """.stripMargin) - - createQueryTest("Date comparison test 2", - "SELECT CAST(CAST(0 AS timestamp) AS date) > CAST(0 AS timestamp) FROM src LIMIT 1") - - createQueryTest("Date cast", - """ - | SELECT - | CAST(CAST(0 AS timestamp) AS date), - | CAST(CAST(CAST(0 AS timestamp) AS date) AS string), - | CAST(0 AS timestamp), - | CAST(CAST(0 AS timestamp) AS string), - | CAST(CAST(CAST('1970-01-01 23:00:00' AS timestamp) AS date) AS timestamp) - | FROM src LIMIT 1 + | SELECT DATEDIFF(CAST(value AS timestamp), CAST('2002-03-21 00:00:00' AS timestamp)) + | FROM src LIMIT 1 """.stripMargin) createQueryTest("Simple Average", diff --git a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala index b5a0754ff61f9..254919e8f6fdc 100644 --- a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala +++ b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala @@ -160,7 +160,7 @@ private[hive] object HiveShim { if (value == null) null else new hadoopIo.BytesWritable(value.asInstanceOf[Array[Byte]]) def getDateWritable(value: Any): hiveIo.DateWritable = - if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[Int]) + if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[java.sql.Date]) def getTimestampWritable(value: Any): hiveIo.TimestampWritable = if (value == null) { diff --git a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala index e4c1809c8bb21..45ca59ae56a38 100644 --- a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala +++ b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala @@ -263,7 +263,7 @@ private[hive] object HiveShim { } def getDateWritable(value: Any): hiveIo.DateWritable = - if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[Int]) + if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[java.sql.Date]) def getTimestampWritable(value: Any): hiveIo.TimestampWritable = if (value == null) { From 554403fd913685da879cf6a280c58a9fad19448a Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Mon, 2 Feb 2015 19:01:47 -0800 Subject: [PATCH 23/52] [SQL] Improve DataFrame API error reporting 1. Throw UnsupportedOperationException if a Column is not computable. 2. Perform eager analysis on DataFrame so we can catch errors when they happen (not when an action is run). Author: Reynold Xin Author: Davies Liu Closes #4296 from rxin/col-computability and squashes the following commits: 6527b86 [Reynold Xin] Merge pull request #8 from davies/col-computability fd92bc7 [Reynold Xin] Merge branch 'master' into col-computability f79034c [Davies Liu] fix python tests 5afe1ff [Reynold Xin] Fix scala test. 17f6bae [Reynold Xin] Various fixes. b932e86 [Reynold Xin] Added eager analysis for error reporting. e6f00b8 [Reynold Xin] [SQL][API] ComputableColumn vs IncomputableColumn --- python/pyspark/sql.py | 75 ++-- python/pyspark/tests.py | 6 +- .../apache/spark/sql/types/dataTypes.scala | 3 +- .../scala/org/apache/spark/sql/Column.scala | 241 ++++++++----- .../apache/spark/sql/ComputableColumn.scala | 33 ++ .../org/apache/spark/sql/DataFrame.scala | 292 ++++----------- .../org/apache/spark/sql/DataFrameImpl.scala | 331 ++++++++++++++++++ .../main/scala/org/apache/spark/sql/Dsl.scala | 21 +- .../apache/spark/sql/GroupedDataFrame.scala | 11 +- .../apache/spark/sql/IncomputableColumn.scala | 160 +++++++++ .../org/apache/spark/sql/SQLContext.scala | 18 +- .../apache/spark/sql/execution/commands.scala | 2 +- .../org/apache/spark/sql/sources/ddl.scala | 2 +- .../spark/sql/test/TestSQLContext.scala | 2 +- .../spark/sql/ColumnExpressionSuite.scala | 39 +++ .../org/apache/spark/sql/DataFrameSuite.scala | 13 + .../org/apache/spark/sql/SQLQuerySuite.scala | 6 +- .../sql/parquet/ParquetFilterSuite.scala | 6 +- .../apache/spark/sql/hive/HiveContext.scala | 3 +- .../spark/sql/hive/HiveStrategies.scala | 13 +- 20 files changed, 896 insertions(+), 381 deletions(-) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/ComputableColumn.scala create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala diff --git a/python/pyspark/sql.py b/python/pyspark/sql.py index 3f2d7ac82585f..32bff0c7e8c55 100644 --- a/python/pyspark/sql.py +++ b/python/pyspark/sql.py @@ -2124,6 +2124,10 @@ def head(self, n=None): return rs[0] if rs else None return self.take(n) + def first(self): + """ Return the first row. """ + return self.head() + def tail(self): raise NotImplemented @@ -2159,7 +2163,7 @@ def select(self, *cols): else: cols = [c._jc for c in cols] jcols = ListConverter().convert(cols, self._sc._gateway._gateway_client) - jdf = self._jdf.select(self._jdf.toColumnArray(jcols)) + jdf = self._jdf.select(self.sql_ctx._sc._jvm.Dsl.toColumns(jcols)) return DataFrame(jdf, self.sql_ctx) def filter(self, condition): @@ -2189,7 +2193,7 @@ def groupBy(self, *cols): else: cols = [c._jc for c in cols] jcols = ListConverter().convert(cols, self._sc._gateway._gateway_client) - jdf = self._jdf.groupBy(self._jdf.toColumnArray(jcols)) + jdf = self._jdf.groupBy(self.sql_ctx._sc._jvm.Dsl.toColumns(jcols)) return GroupedDataFrame(jdf, self.sql_ctx) def agg(self, *exprs): @@ -2278,14 +2282,17 @@ def agg(self, *exprs): :param exprs: list or aggregate columns or a map from column name to agregate methods. """ + assert exprs, "exprs should not be empty" if len(exprs) == 1 and isinstance(exprs[0], dict): jmap = MapConverter().convert(exprs[0], self.sql_ctx._sc._gateway._gateway_client) jdf = self._jdf.agg(jmap) else: # Columns - assert all(isinstance(c, Column) for c in exprs), "all exprs should be Columns" - jdf = self._jdf.agg(*exprs) + assert all(isinstance(c, Column) for c in exprs), "all exprs should be Column" + jcols = ListConverter().convert([c._jc for c in exprs[1:]], + self.sql_ctx._sc._gateway._gateway_client) + jdf = self._jdf.agg(exprs[0]._jc, self.sql_ctx._sc._jvm.Dsl.toColumns(jcols)) return DataFrame(jdf, self.sql_ctx) @dfapi @@ -2347,7 +2354,7 @@ def _create_column_from_literal(literal): def _create_column_from_name(name): sc = SparkContext._active_spark_context - return sc._jvm.Column(name) + return sc._jvm.IncomputableColumn(name) def _scalaMethod(name): @@ -2371,7 +2378,7 @@ def _(self): return _ -def _bin_op(name, pass_literal_through=False): +def _bin_op(name, pass_literal_through=True): """ Create a method for given binary operator Keyword arguments: @@ -2465,10 +2472,10 @@ def __init__(self, jc, jdf=None, sql_ctx=None): # __getattr__ = _bin_op("getField") # string methods - rlike = _bin_op("rlike", pass_literal_through=True) - like = _bin_op("like", pass_literal_through=True) - startswith = _bin_op("startsWith", pass_literal_through=True) - endswith = _bin_op("endsWith", pass_literal_through=True) + rlike = _bin_op("rlike") + like = _bin_op("like") + startswith = _bin_op("startsWith") + endswith = _bin_op("endsWith") upper = _unary_op("upper") lower = _unary_op("lower") @@ -2476,7 +2483,6 @@ def substr(self, startPos, pos): if type(startPos) != type(pos): raise TypeError("Can not mix the type") if isinstance(startPos, (int, long)): - jc = self._jc.substr(startPos, pos) elif isinstance(startPos, Column): jc = self._jc.substr(startPos._jc, pos._jc) @@ -2507,16 +2513,21 @@ def cast(self, dataType): return Column(self._jc.cast(jdt), self._jdf, self.sql_ctx) +def _to_java_column(col): + if isinstance(col, Column): + jcol = col._jc + else: + jcol = _create_column_from_name(col) + return jcol + + def _aggregate_func(name): """ Create a function for aggregator by name""" def _(col): sc = SparkContext._active_spark_context - if isinstance(col, Column): - jcol = col._jc - else: - jcol = _create_column_from_name(col) - jc = getattr(sc._jvm.org.apache.spark.sql.Dsl, name)(jcol) + jc = getattr(sc._jvm.Dsl, name)(_to_java_column(col)) return Column(jc) + return staticmethod(_) @@ -2524,13 +2535,31 @@ class Aggregator(object): """ A collections of builtin aggregators """ - max = _aggregate_func("max") - min = _aggregate_func("min") - avg = mean = _aggregate_func("mean") - sum = _aggregate_func("sum") - first = _aggregate_func("first") - last = _aggregate_func("last") - count = _aggregate_func("count") + AGGS = [ + 'lit', 'col', 'column', 'upper', 'lower', 'sqrt', 'abs', + 'min', 'max', 'first', 'last', 'count', 'avg', 'mean', 'sum', 'sumDistinct', + ] + for _name in AGGS: + locals()[_name] = _aggregate_func(_name) + del _name + + @staticmethod + def countDistinct(col, *cols): + sc = SparkContext._active_spark_context + jcols = ListConverter().convert([_to_java_column(c) for c in cols], + sc._gateway._gateway_client) + jc = sc._jvm.Dsl.countDistinct(_to_java_column(col), + sc._jvm.Dsl.toColumns(jcols)) + return Column(jc) + + @staticmethod + def approxCountDistinct(col, rsd=None): + sc = SparkContext._active_spark_context + if rsd is None: + jc = sc._jvm.Dsl.approxCountDistinct(_to_java_column(col)) + else: + jc = sc._jvm.Dsl.approxCountDistinct(_to_java_column(col), rsd) + return Column(jc) def _test(): diff --git a/python/pyspark/tests.py b/python/pyspark/tests.py index bec1961f26393..fef6c92875a1c 100644 --- a/python/pyspark/tests.py +++ b/python/pyspark/tests.py @@ -1029,9 +1029,11 @@ def test_aggregator(self): g = df.groupBy() self.assertEqual([99, 100], sorted(g.agg({'key': 'max', 'value': 'count'}).collect()[0])) self.assertEqual([Row(**{"AVG(key#0)": 49.5})], g.mean().collect()) - # TODO(davies): fix aggregators + from pyspark.sql import Aggregator as Agg - # self.assertEqual((0, '100'), tuple(g.agg(Agg.first(df.key), Agg.last(df.value)).first())) + self.assertEqual((0, u'99'), tuple(g.agg(Agg.first(df.key), Agg.last(df.value)).first())) + self.assertTrue(95 < g.agg(Agg.approxCountDistinct(df.key)).first()[0]) + self.assertEqual(100, g.agg(Agg.countDistinct(df.value)).first()[0]) def test_help_command(self): # Regression test for SPARK-5464 diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala index 6ab99aa38877f..defdcb2b706f5 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala @@ -822,7 +822,8 @@ case class StructType(fields: Array[StructField]) extends DataType with Seq[Stru * have a name matching the given name, `null` will be returned. */ def apply(name: String): StructField = { - nameToField.getOrElse(name, throw new IllegalArgumentException(s"Field $name does not exist.")) + nameToField.getOrElse(name, + throw new IllegalArgumentException(s"""Field "$name" does not exist.""")) } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala index 174c403059510..6f48d7c3fe1b6 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala @@ -17,23 +17,26 @@ package org.apache.spark.sql +import scala.annotation.tailrec import scala.language.implicitConversions import org.apache.spark.sql.Dsl.lit -import org.apache.spark.sql.catalyst.analysis.{UnresolvedStar, UnresolvedAttribute} import org.apache.spark.sql.catalyst.expressions._ -import org.apache.spark.sql.catalyst.plans.logical.{Project, LogicalPlan} +import org.apache.spark.sql.catalyst.plans.logical.{Subquery, Project, LogicalPlan} import org.apache.spark.sql.types._ -object Column { - /** - * Creates a [[Column]] based on the given column name. Same as [[Dsl.col]]. - */ - def apply(colName: String): Column = new Column(colName) +private[sql] object Column { + + def apply(colName: String): Column = new IncomputableColumn(colName) + + def apply(expr: Expression): Column = new IncomputableColumn(expr) + + def apply(sqlContext: SQLContext, plan: LogicalPlan, expr: Expression): Column = { + new ComputableColumn(sqlContext, plan, expr) + } - /** For internal pattern matching. */ - private[sql] def unapply(col: Column): Option[Expression] = Some(col.expr) + def unapply(col: Column): Option[Expression] = Some(col.expr) } @@ -53,44 +56,42 @@ object Column { * */ // TODO: Improve documentation. -class Column( - sqlContext: Option[SQLContext], - plan: Option[LogicalPlan], - protected[sql] val expr: Expression) - extends DataFrame(sqlContext, plan) with ExpressionApi { +trait Column extends DataFrame with ExpressionApi { - /** Turns a Catalyst expression into a `Column`. */ - protected[sql] def this(expr: Expression) = this(None, None, expr) + protected[sql] def expr: Expression /** - * Creates a new `Column` expression based on a column or attribute name. - * The resolution of this is the same as SQL. For example: - * - * - "colName" becomes an expression selecting the column named "colName". - * - "*" becomes an expression selecting all columns. - * - "df.*" becomes an expression selecting all columns in data frame "df". + * Returns true iff the [[Column]] is computable. */ - def this(name: String) = this(name match { - case "*" => UnresolvedStar(None) - case _ if name.endsWith(".*") => UnresolvedStar(Some(name.substring(0, name.length - 2))) - case _ => UnresolvedAttribute(name) - }) + def isComputable: Boolean - override def isComputable: Boolean = sqlContext.isDefined && plan.isDefined + private def constructColumn(other: Column)(newExpr: Expression): Column = { + // Removes all the top level projection and subquery so we can get to the underlying plan. + @tailrec def stripProject(p: LogicalPlan): LogicalPlan = p match { + case Project(_, child) => stripProject(child) + case Subquery(_, child) => stripProject(child) + case _ => p + } - /** - * An implicit conversion function internal to this class. This function creates a new Column - * based on an expression. If the expression itself is not named, it aliases the expression - * by calling it "col". - */ - private[this] implicit def toColumn(expr: Expression): Column = { - val projectedPlan = plan.map { p => - Project(Seq(expr match { + def computableCol(baseCol: ComputableColumn, expr: Expression) = { + val plan = Project(Seq(expr match { case named: NamedExpression => named case unnamed: Expression => Alias(unnamed, "col")() - }), p) + }), baseCol.plan) + Column(baseCol.sqlContext, plan, expr) + } + + (this, other) match { + case (left: ComputableColumn, right: ComputableColumn) => + if (stripProject(left.plan).sameResult(stripProject(right.plan))) { + computableCol(right, newExpr) + } else { + Column(newExpr) + } + case (left: ComputableColumn, _) => computableCol(left, newExpr) + case (_, right: ComputableColumn) => computableCol(right, newExpr) + case (_, _) => Column(newExpr) } - new Column(sqlContext, projectedPlan, expr) } /** @@ -100,7 +101,7 @@ class Column( * df.select( -df("amount") ) * }}} */ - override def unary_- : Column = UnaryMinus(expr) + override def unary_- : Column = constructColumn(null) { UnaryMinus(expr) } /** * Bitwise NOT. @@ -109,7 +110,7 @@ class Column( * df.select( ~df("flags") ) * }}} */ - override def unary_~ : Column = BitwiseNot(expr) + override def unary_~ : Column = constructColumn(null) { BitwiseNot(expr) } /** * Inversion of boolean expression, i.e. NOT. @@ -118,7 +119,7 @@ class Column( * df.select( !df("isActive") ) * }} */ - override def unary_! : Column = Not(expr) + override def unary_! : Column = constructColumn(null) { Not(expr) } /** @@ -129,7 +130,9 @@ class Column( * df.select( df("colA".equalTo(df("colB")) ) * }}} */ - override def === (other: Column): Column = EqualTo(expr, other.expr) + override def === (other: Column): Column = constructColumn(other) { + EqualTo(expr, other.expr) + } /** * Equality test with a literal value. @@ -169,7 +172,9 @@ class Column( * df.select( !(df("colA") === df("colB")) ) * }}} */ - override def !== (other: Column): Column = Not(EqualTo(expr, other.expr)) + override def !== (other: Column): Column = constructColumn(other) { + Not(EqualTo(expr, other.expr)) + } /** * Inequality test with a literal value. @@ -188,7 +193,9 @@ class Column( * people.select( people("age") > Literal(21) ) * }}} */ - override def > (other: Column): Column = GreaterThan(expr, other.expr) + override def > (other: Column): Column = constructColumn(other) { + GreaterThan(expr, other.expr) + } /** * Greater than a literal value. @@ -206,7 +213,9 @@ class Column( * people.select( people("age") < Literal(21) ) * }}} */ - override def < (other: Column): Column = LessThan(expr, other.expr) + override def < (other: Column): Column = constructColumn(other) { + LessThan(expr, other.expr) + } /** * Less than a literal value. @@ -224,7 +233,9 @@ class Column( * people.select( people("age") <= Literal(21) ) * }}} */ - override def <= (other: Column): Column = LessThanOrEqual(expr, other.expr) + override def <= (other: Column): Column = constructColumn(other) { + LessThanOrEqual(expr, other.expr) + } /** * Less than or equal to a literal value. @@ -242,7 +253,9 @@ class Column( * people.select( people("age") >= Literal(21) ) * }}} */ - override def >= (other: Column): Column = GreaterThanOrEqual(expr, other.expr) + override def >= (other: Column): Column = constructColumn(other) { + GreaterThanOrEqual(expr, other.expr) + } /** * Greater than or equal to a literal value. @@ -256,9 +269,11 @@ class Column( /** * Equality test with an expression that is safe for null values. */ - override def <=> (other: Column): Column = other match { - case null => EqualNullSafe(expr, lit(null).expr) - case _ => EqualNullSafe(expr, other.expr) + override def <=> (other: Column): Column = constructColumn(other) { + other match { + case null => EqualNullSafe(expr, lit(null).expr) + case _ => EqualNullSafe(expr, other.expr) + } } /** @@ -269,12 +284,12 @@ class Column( /** * True if the current expression is null. */ - override def isNull: Column = IsNull(expr) + override def isNull: Column = constructColumn(null) { IsNull(expr) } /** * True if the current expression is NOT null. */ - override def isNotNull: Column = IsNotNull(expr) + override def isNotNull: Column = constructColumn(null) { IsNotNull(expr) } /** * Boolean OR with an expression. @@ -283,7 +298,9 @@ class Column( * people.select( people("inSchool") || people("isEmployed") ) * }}} */ - override def || (other: Column): Column = Or(expr, other.expr) + override def || (other: Column): Column = constructColumn(other) { + Or(expr, other.expr) + } /** * Boolean OR with a literal value. @@ -301,7 +318,9 @@ class Column( * people.select( people("inSchool") && people("isEmployed") ) * }}} */ - override def && (other: Column): Column = And(expr, other.expr) + override def && (other: Column): Column = constructColumn(other) { + And(expr, other.expr) + } /** * Boolean AND with a literal value. @@ -315,7 +334,9 @@ class Column( /** * Bitwise AND with an expression. */ - override def & (other: Column): Column = BitwiseAnd(expr, other.expr) + override def & (other: Column): Column = constructColumn(other) { + BitwiseAnd(expr, other.expr) + } /** * Bitwise AND with a literal value. @@ -325,7 +346,9 @@ class Column( /** * Bitwise OR with an expression. */ - override def | (other: Column): Column = BitwiseOr(expr, other.expr) + override def | (other: Column): Column = constructColumn(other) { + BitwiseOr(expr, other.expr) + } /** * Bitwise OR with a literal value. @@ -335,7 +358,9 @@ class Column( /** * Bitwise XOR with an expression. */ - override def ^ (other: Column): Column = BitwiseXor(expr, other.expr) + override def ^ (other: Column): Column = constructColumn(other) { + BitwiseXor(expr, other.expr) + } /** * Bitwise XOR with a literal value. @@ -349,7 +374,9 @@ class Column( * people.select( people("height") + people("weight") ) * }}} */ - override def + (other: Column): Column = Add(expr, other.expr) + override def + (other: Column): Column = constructColumn(other) { + Add(expr, other.expr) + } /** * Sum of this expression and another expression. @@ -367,7 +394,9 @@ class Column( * people.select( people("height") - people("weight") ) * }}} */ - override def - (other: Column): Column = Subtract(expr, other.expr) + override def - (other: Column): Column = constructColumn(other) { + Subtract(expr, other.expr) + } /** * Subtraction. Subtract a literal value from this expression. @@ -385,7 +414,9 @@ class Column( * people.select( people("height") * people("weight") ) * }}} */ - override def * (other: Column): Column = Multiply(expr, other.expr) + override def * (other: Column): Column = constructColumn(other) { + Multiply(expr, other.expr) + } /** * Multiplication this expression and a literal value. @@ -403,7 +434,9 @@ class Column( * people.select( people("height") / people("weight") ) * }}} */ - override def / (other: Column): Column = Divide(expr, other.expr) + override def / (other: Column): Column = constructColumn(other) { + Divide(expr, other.expr) + } /** * Division this expression by a literal value. @@ -417,7 +450,9 @@ class Column( /** * Modulo (a.k.a. remainder) expression. */ - override def % (other: Column): Column = Remainder(expr, other.expr) + override def % (other: Column): Column = constructColumn(other) { + Remainder(expr, other.expr) + } /** * Modulo (a.k.a. remainder) expression. @@ -430,29 +465,40 @@ class Column( * by the evaluated values of the arguments. */ @scala.annotation.varargs - override def in(list: Column*): Column = In(expr, list.map(_.expr)) + override def in(list: Column*): Column = { + new IncomputableColumn(In(expr, list.map(_.expr))) + } - override def like(literal: String): Column = Like(expr, lit(literal).expr) + override def like(literal: String): Column = constructColumn(null) { + Like(expr, lit(literal).expr) + } - override def rlike(literal: String): Column = RLike(expr, lit(literal).expr) + override def rlike(literal: String): Column = constructColumn(null) { + RLike(expr, lit(literal).expr) + } /** * An expression that gets an item at position `ordinal` out of an array. */ - override def getItem(ordinal: Int): Column = GetItem(expr, Literal(ordinal)) + override def getItem(ordinal: Int): Column = constructColumn(null) { + GetItem(expr, Literal(ordinal)) + } /** * An expression that gets a field by name in a [[StructField]]. */ - override def getField(fieldName: String): Column = GetField(expr, fieldName) + override def getField(fieldName: String): Column = constructColumn(null) { + GetField(expr, fieldName) + } /** * An expression that returns a substring. * @param startPos expression for the starting position. * @param len expression for the length of the substring. */ - override def substr(startPos: Column, len: Column): Column = - Substring(expr, startPos.expr, len.expr) + override def substr(startPos: Column, len: Column): Column = { + new IncomputableColumn(Substring(expr, startPos.expr, len.expr)) + } /** * An expression that returns a substring. @@ -461,16 +507,21 @@ class Column( */ override def substr(startPos: Int, len: Int): Column = this.substr(lit(startPos), lit(len)) - override def contains(other: Column): Column = Contains(expr, other.expr) + override def contains(other: Column): Column = constructColumn(other) { + Contains(expr, other.expr) + } override def contains(literal: Any): Column = this.contains(lit(literal)) - - override def startsWith(other: Column): Column = StartsWith(expr, other.expr) + override def startsWith(other: Column): Column = constructColumn(other) { + StartsWith(expr, other.expr) + } override def startsWith(literal: String): Column = this.startsWith(lit(literal)) - override def endsWith(other: Column): Column = EndsWith(expr, other.expr) + override def endsWith(other: Column): Column = constructColumn(other) { + EndsWith(expr, other.expr) + } override def endsWith(literal: String): Column = this.endsWith(lit(literal)) @@ -481,7 +532,7 @@ class Column( * df.select($"colA".as("colB")) * }}} */ - override def as(alias: String): Column = Alias(expr, alias)() + override def as(alias: String): Column = constructColumn(null) { Alias(expr, alias)() } /** * Casts the column to a different data type. @@ -494,7 +545,7 @@ class Column( * df.select(df("colA").cast("int")) * }}} */ - override def cast(to: DataType): Column = Cast(expr, to) + override def cast(to: DataType): Column = constructColumn(null) { Cast(expr, to) } /** * Casts the column to a different data type, using the canonical string representation @@ -505,28 +556,30 @@ class Column( * df.select(df("colA").cast("int")) * }}} */ - override def cast(to: String): Column = Cast(expr, to.toLowerCase match { - case "string" => StringType - case "boolean" => BooleanType - case "byte" => ByteType - case "short" => ShortType - case "int" => IntegerType - case "long" => LongType - case "float" => FloatType - case "double" => DoubleType - case "decimal" => DecimalType.Unlimited - case "date" => DateType - case "timestamp" => TimestampType - case _ => throw new RuntimeException(s"""Unsupported cast type: "$to"""") - }) - - override def desc: Column = SortOrder(expr, Descending) - - override def asc: Column = SortOrder(expr, Ascending) + override def cast(to: String): Column = constructColumn(null) { + Cast(expr, to.toLowerCase match { + case "string" => StringType + case "boolean" => BooleanType + case "byte" => ByteType + case "short" => ShortType + case "int" => IntegerType + case "long" => LongType + case "float" => FloatType + case "double" => DoubleType + case "decimal" => DecimalType.Unlimited + case "date" => DateType + case "timestamp" => TimestampType + case _ => throw new RuntimeException(s"""Unsupported cast type: "$to"""") + }) + } + + override def desc: Column = constructColumn(null) { SortOrder(expr, Descending) } + + override def asc: Column = constructColumn(null) { SortOrder(expr, Ascending) } } -class ColumnName(name: String) extends Column(name) { +class ColumnName(name: String) extends IncomputableColumn(name) { /** Creates a new AttributeReference of type boolean */ def boolean: StructField = StructField(name, BooleanType) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/ComputableColumn.scala b/sql/core/src/main/scala/org/apache/spark/sql/ComputableColumn.scala new file mode 100644 index 0000000000000..ac479b26a7c6a --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/ComputableColumn.scala @@ -0,0 +1,33 @@ +/* +* Licensed to the Apache Software Foundation (ASF) under one or more +* contributor license agreements. See the NOTICE file distributed with +* this work for additional information regarding copyright ownership. +* The ASF licenses this file to You under the Apache License, Version 2.0 +* (the "License"); you may not use this file except in compliance with +* the License. You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +package org.apache.spark.sql + +import scala.language.implicitConversions + +import org.apache.spark.sql.catalyst.expressions.Expression +import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan + + +private[sql] class ComputableColumn protected[sql]( + sqlContext: SQLContext, + protected[sql] val plan: LogicalPlan, + protected[sql] val expr: Expression) + extends DataFrameImpl(sqlContext, plan) with Column { + + override def isComputable: Boolean = true +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 5d42d4428d09e..385e1ec74f5f7 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -19,26 +19,21 @@ package org.apache.spark.sql import java.util.{List => JList} -import scala.language.implicitConversions import scala.reflect.ClassTag -import scala.collection.JavaConversions._ -import com.fasterxml.jackson.core.JsonFactory - -import org.apache.spark.annotation.Experimental +import org.apache.spark.annotation.{DeveloperApi, Experimental} import org.apache.spark.api.java.JavaRDD -import org.apache.spark.api.python.SerDeUtil import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel -import org.apache.spark.sql.catalyst.ScalaReflection -import org.apache.spark.sql.catalyst.analysis.{ResolvedStar, UnresolvedRelation} -import org.apache.spark.sql.catalyst.expressions._ -import org.apache.spark.sql.catalyst.plans.{JoinType, Inner} import org.apache.spark.sql.catalyst.plans.logical._ -import org.apache.spark.sql.execution.{LogicalRDD, EvaluatePython} -import org.apache.spark.sql.json.JsonRDD -import org.apache.spark.sql.types.{NumericType, StructType} -import org.apache.spark.util.Utils +import org.apache.spark.sql.types.StructType + + +private[sql] object DataFrame { + def apply(sqlContext: SQLContext, logicalPlan: LogicalPlan): DataFrame = { + new DataFrameImpl(sqlContext, logicalPlan) + } +} /** @@ -78,50 +73,14 @@ import org.apache.spark.util.Utils * }}} */ // TODO: Improve documentation. -class DataFrame protected[sql]( - val sqlContext: SQLContext, - private val baseLogicalPlan: LogicalPlan, - operatorsEnabled: Boolean) - extends DataFrameSpecificApi with RDDApi[Row] { - - protected[sql] def this(sqlContext: Option[SQLContext], plan: Option[LogicalPlan]) = - this(sqlContext.orNull, plan.orNull, sqlContext.isDefined && plan.isDefined) - - protected[sql] def this(sqlContext: SQLContext, plan: LogicalPlan) = this(sqlContext, plan, true) - - @transient protected[sql] lazy val queryExecution = sqlContext.executePlan(baseLogicalPlan) - - @transient protected[sql] val logicalPlan: LogicalPlan = baseLogicalPlan match { - // For various commands (like DDL) and queries with side effects, we force query optimization to - // happen right away to let these side effects take place eagerly. - case _: Command | _: InsertIntoTable | _: CreateTableAsSelect[_] |_: WriteToFile => - LogicalRDD(queryExecution.analyzed.output, queryExecution.toRdd)(sqlContext) - case _ => - baseLogicalPlan - } +trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { - /** - * An implicit conversion function internal to this class for us to avoid doing - * "new DataFrame(...)" everywhere. - */ - private implicit def logicalPlanToDataFrame(logicalPlan: LogicalPlan): DataFrame = { - new DataFrame(sqlContext, logicalPlan, true) - } + val sqlContext: SQLContext - /** Returns the list of numeric columns, useful for doing aggregation. */ - protected[sql] def numericColumns: Seq[Expression] = { - schema.fields.filter(_.dataType.isInstanceOf[NumericType]).map { n => - queryExecution.analyzed.resolve(n.name, sqlContext.analyzer.resolver).get - } - } + @DeveloperApi + def queryExecution: SQLContext#QueryExecution - /** Resolves a column name into a Catalyst [[NamedExpression]]. */ - protected[sql] def resolve(colName: String): NamedExpression = { - queryExecution.analyzed.resolve(colName, sqlContext.analyzer.resolver).getOrElse { - throw new RuntimeException( - s"""Cannot resolve column name "$colName" among (${schema.fieldNames.mkString(", ")})""") - } - } + protected[sql] def logicalPlan: LogicalPlan /** Left here for compatibility reasons. */ @deprecated("1.3.0", "use toDataFrame") @@ -142,32 +101,19 @@ class DataFrame protected[sql]( * }}} */ @scala.annotation.varargs - def toDataFrame(colName: String, colNames: String*): DataFrame = { - val newNames = colName +: colNames - require(schema.size == newNames.size, - "The number of columns doesn't match.\n" + - "Old column names: " + schema.fields.map(_.name).mkString(", ") + "\n" + - "New column names: " + newNames.mkString(", ")) - - val newCols = schema.fieldNames.zip(newNames).map { case (oldName, newName) => - apply(oldName).as(newName) - } - select(newCols :_*) - } + def toDataFrame(colName: String, colNames: String*): DataFrame /** Returns the schema of this [[DataFrame]]. */ - override def schema: StructType = queryExecution.analyzed.schema + override def schema: StructType /** Returns all column names and their data types as an array. */ - override def dtypes: Array[(String, String)] = schema.fields.map { field => - (field.name, field.dataType.toString) - } + override def dtypes: Array[(String, String)] /** Returns all column names as an array. */ override def columns: Array[String] = schema.fields.map(_.name) /** Prints the schema to the console in a nice tree format. */ - override def printSchema(): Unit = println(schema.treeString) + override def printSchema(): Unit /** * Cartesian join with another [[DataFrame]]. @@ -176,9 +122,7 @@ class DataFrame protected[sql]( * * @param right Right side of the join operation. */ - override def join(right: DataFrame): DataFrame = { - Join(logicalPlan, right.logicalPlan, joinType = Inner, None) - } + override def join(right: DataFrame): DataFrame /** * Inner join with another [[DataFrame]], using the given join expression. @@ -189,9 +133,7 @@ class DataFrame protected[sql]( * df1.join(df2).where($"df1Key" === $"df2Key") * }}} */ - override def join(right: DataFrame, joinExprs: Column): DataFrame = { - Join(logicalPlan, right.logicalPlan, Inner, Some(joinExprs.expr)) - } + override def join(right: DataFrame, joinExprs: Column): DataFrame /** * Join with another [[DataFrame]], usin g the given join expression. The following performs @@ -205,9 +147,7 @@ class DataFrame protected[sql]( * @param joinExprs Join expression. * @param joinType One of: `inner`, `outer`, `left_outer`, `right_outer`, `semijoin`. */ - override def join(right: DataFrame, joinExprs: Column, joinType: String): DataFrame = { - Join(logicalPlan, right.logicalPlan, JoinType(joinType), Some(joinExprs.expr)) - } + override def join(right: DataFrame, joinExprs: Column, joinType: String): DataFrame /** * Returns a new [[DataFrame]] sorted by the specified column, all in ascending order. @@ -219,9 +159,7 @@ class DataFrame protected[sql]( * }}} */ @scala.annotation.varargs - override def sort(sortCol: String, sortCols: String*): DataFrame = { - orderBy(apply(sortCol), sortCols.map(apply) :_*) - } + override def sort(sortCol: String, sortCols: String*): DataFrame /** * Returns a new [[DataFrame]] sorted by the given expressions. For example: @@ -230,46 +168,26 @@ class DataFrame protected[sql]( * }}} */ @scala.annotation.varargs - override def sort(sortExpr: Column, sortExprs: Column*): DataFrame = { - val sortOrder: Seq[SortOrder] = (sortExpr +: sortExprs).map { col => - col.expr match { - case expr: SortOrder => - expr - case expr: Expression => - SortOrder(expr, Ascending) - } - } - Sort(sortOrder, global = true, logicalPlan) - } + override def sort(sortExpr: Column, sortExprs: Column*): DataFrame /** * Returns a new [[DataFrame]] sorted by the given expressions. * This is an alias of the `sort` function. */ @scala.annotation.varargs - override def orderBy(sortCol: String, sortCols: String*): DataFrame = { - sort(sortCol, sortCols :_*) - } + override def orderBy(sortCol: String, sortCols: String*): DataFrame /** * Returns a new [[DataFrame]] sorted by the given expressions. * This is an alias of the `sort` function. */ @scala.annotation.varargs - override def orderBy(sortExpr: Column, sortExprs: Column*): DataFrame = { - sort(sortExpr, sortExprs :_*) - } + override def orderBy(sortExpr: Column, sortExprs: Column*): DataFrame /** * Selects column based on the column name and return it as a [[Column]]. */ - override def apply(colName: String): Column = colName match { - case "*" => - new Column(ResolvedStar(schema.fieldNames.map(resolve))) - case _ => - val expr = resolve(colName) - new Column(Some(sqlContext), Some(Project(Seq(expr), logicalPlan)), expr) - } + override def apply(colName: String): Column /** * Selects a set of expressions, wrapped in a Product. @@ -279,18 +197,12 @@ class DataFrame protected[sql]( * df.select($"colA", $"colB" + 1) * }}} */ - override def apply(projection: Product): DataFrame = { - require(projection.productArity >= 1) - select(projection.productIterator.map { - case c: Column => c - case o: Any => new Column(Some(sqlContext), None, Literal(o)) - }.toSeq :_*) - } + override def apply(projection: Product): DataFrame /** * Returns a new [[DataFrame]] with an alias set. */ - override def as(name: String): DataFrame = Subquery(name, logicalPlan) + override def as(name: String): DataFrame /** * Selects a set of expressions. @@ -299,15 +211,7 @@ class DataFrame protected[sql]( * }}} */ @scala.annotation.varargs - override def select(cols: Column*): DataFrame = { - val exprs = cols.zipWithIndex.map { - case (Column(expr: NamedExpression), _) => - expr - case (Column(expr: Expression), _) => - Alias(expr, expr.toString)() - } - Project(exprs.toSeq, logicalPlan) - } + override def select(cols: Column*): DataFrame /** * Selects a set of columns. This is a variant of `select` that can only select @@ -320,9 +224,7 @@ class DataFrame protected[sql]( * }}} */ @scala.annotation.varargs - override def select(col: String, cols: String*): DataFrame = { - select((col +: cols).map(new Column(_)) :_*) - } + override def select(col: String, cols: String*): DataFrame /** * Filters rows using the given condition. @@ -333,9 +235,7 @@ class DataFrame protected[sql]( * peopleDf($"age" > 15) * }}} */ - override def filter(condition: Column): DataFrame = { - Filter(condition.expr, logicalPlan) - } + override def filter(condition: Column): DataFrame /** * Filters rows using the given condition. This is an alias for `filter`. @@ -346,7 +246,7 @@ class DataFrame protected[sql]( * peopleDf($"age" > 15) * }}} */ - override def where(condition: Column): DataFrame = filter(condition) + override def where(condition: Column): DataFrame /** * Filters rows using the given condition. This is a shorthand meant for Scala. @@ -357,7 +257,7 @@ class DataFrame protected[sql]( * peopleDf($"age" > 15) * }}} */ - override def apply(condition: Column): DataFrame = filter(condition) + override def apply(condition: Column): DataFrame /** * Groups the [[DataFrame]] using the specified columns, so we can run aggregation on them. @@ -375,9 +275,7 @@ class DataFrame protected[sql]( * }}} */ @scala.annotation.varargs - override def groupBy(cols: Column*): GroupedDataFrame = { - new GroupedDataFrame(this, cols.map(_.expr)) - } + override def groupBy(cols: Column*): GroupedDataFrame /** * Groups the [[DataFrame]] using the specified columns, so we can run aggregation on them. @@ -398,10 +296,7 @@ class DataFrame protected[sql]( * }}} */ @scala.annotation.varargs - override def groupBy(col1: String, cols: String*): GroupedDataFrame = { - val colNames: Seq[String] = col1 +: cols - new GroupedDataFrame(this, colNames.map(colName => resolve(colName))) - } + override def groupBy(col1: String, cols: String*): GroupedDataFrame /** * Aggregates on the entire [[DataFrame]] without groups. @@ -411,7 +306,7 @@ class DataFrame protected[sql]( * df.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) * }} */ - override def agg(exprs: Map[String, String]): DataFrame = groupBy().agg(exprs) + override def agg(exprs: Map[String, String]): DataFrame /** * Aggregates on the entire [[DataFrame]] without groups. @@ -421,7 +316,7 @@ class DataFrame protected[sql]( * df.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) * }} */ - override def agg(exprs: java.util.Map[String, String]): DataFrame = agg(exprs.toMap) + override def agg(exprs: java.util.Map[String, String]): DataFrame /** * Aggregates on the entire [[DataFrame]] without groups. @@ -432,31 +327,31 @@ class DataFrame protected[sql]( * }} */ @scala.annotation.varargs - override def agg(expr: Column, exprs: Column*): DataFrame = groupBy().agg(expr, exprs :_*) + override def agg(expr: Column, exprs: Column*): DataFrame /** * Returns a new [[DataFrame]] by taking the first `n` rows. The difference between this function * and `head` is that `head` returns an array while `limit` returns a new [[DataFrame]]. */ - override def limit(n: Int): DataFrame = Limit(Literal(n), logicalPlan) + override def limit(n: Int): DataFrame /** * Returns a new [[DataFrame]] containing union of rows in this frame and another frame. * This is equivalent to `UNION ALL` in SQL. */ - override def unionAll(other: DataFrame): DataFrame = Union(logicalPlan, other.logicalPlan) + override def unionAll(other: DataFrame): DataFrame /** * Returns a new [[DataFrame]] containing rows only in both this frame and another frame. * This is equivalent to `INTERSECT` in SQL. */ - override def intersect(other: DataFrame): DataFrame = Intersect(logicalPlan, other.logicalPlan) + override def intersect(other: DataFrame): DataFrame /** * Returns a new [[DataFrame]] containing rows in this frame but not in another frame. * This is equivalent to `EXCEPT` in SQL. */ - override def except(other: DataFrame): DataFrame = Except(logicalPlan, other.logicalPlan) + override def except(other: DataFrame): DataFrame /** * Returns a new [[DataFrame]] by sampling a fraction of rows. @@ -465,9 +360,7 @@ class DataFrame protected[sql]( * @param fraction Fraction of rows to generate. * @param seed Seed for sampling. */ - override def sample(withReplacement: Boolean, fraction: Double, seed: Long): DataFrame = { - Sample(fraction, withReplacement, seed, logicalPlan) - } + override def sample(withReplacement: Boolean, fraction: Double, seed: Long): DataFrame /** * Returns a new [[DataFrame]] by sampling a fraction of rows, using a random seed. @@ -475,105 +368,85 @@ class DataFrame protected[sql]( * @param withReplacement Sample with replacement or not. * @param fraction Fraction of rows to generate. */ - override def sample(withReplacement: Boolean, fraction: Double): DataFrame = { - sample(withReplacement, fraction, Utils.random.nextLong) - } + override def sample(withReplacement: Boolean, fraction: Double): DataFrame ///////////////////////////////////////////////////////////////////////////// /** * Returns a new [[DataFrame]] by adding a column. */ - override def addColumn(colName: String, col: Column): DataFrame = { - select(Column("*"), col.as(colName)) - } + override def addColumn(colName: String, col: Column): DataFrame /** * Returns the first `n` rows. */ - override def head(n: Int): Array[Row] = limit(n).collect() + override def head(n: Int): Array[Row] /** * Returns the first row. */ - override def head(): Row = head(1).head + override def head(): Row /** * Returns the first row. Alias for head(). */ - override def first(): Row = head() + override def first(): Row /** * Returns a new RDD by applying a function to all rows of this DataFrame. */ - override def map[R: ClassTag](f: Row => R): RDD[R] = { - rdd.map(f) - } + override def map[R: ClassTag](f: Row => R): RDD[R] /** * Returns a new RDD by first applying a function to all rows of this [[DataFrame]], * and then flattening the results. */ - override def flatMap[R: ClassTag](f: Row => TraversableOnce[R]): RDD[R] = rdd.flatMap(f) + override def flatMap[R: ClassTag](f: Row => TraversableOnce[R]): RDD[R] /** * Returns a new RDD by applying a function to each partition of this DataFrame. */ - override def mapPartitions[R: ClassTag](f: Iterator[Row] => Iterator[R]): RDD[R] = { - rdd.mapPartitions(f) - } - + override def mapPartitions[R: ClassTag](f: Iterator[Row] => Iterator[R]): RDD[R] /** * Applies a function `f` to all rows. */ - override def foreach(f: Row => Unit): Unit = rdd.foreach(f) + override def foreach(f: Row => Unit): Unit /** * Applies a function f to each partition of this [[DataFrame]]. */ - override def foreachPartition(f: Iterator[Row] => Unit): Unit = rdd.foreachPartition(f) + override def foreachPartition(f: Iterator[Row] => Unit): Unit /** * Returns the first `n` rows in the [[DataFrame]]. */ - override def take(n: Int): Array[Row] = head(n) + override def take(n: Int): Array[Row] /** * Returns an array that contains all of [[Row]]s in this [[DataFrame]]. */ - override def collect(): Array[Row] = queryExecution.executedPlan.executeCollect() + override def collect(): Array[Row] /** * Returns a Java list that contains all of [[Row]]s in this [[DataFrame]]. */ - override def collectAsList(): java.util.List[Row] = java.util.Arrays.asList(rdd.collect() :_*) + override def collectAsList(): java.util.List[Row] /** * Returns the number of rows in the [[DataFrame]]. */ - override def count(): Long = groupBy().count().rdd.collect().head.getLong(0) + override def count(): Long /** * Returns a new [[DataFrame]] that has exactly `numPartitions` partitions. */ - override def repartition(numPartitions: Int): DataFrame = { - sqlContext.applySchema(rdd.repartition(numPartitions), schema) - } + override def repartition(numPartitions: Int): DataFrame - override def persist(): this.type = { - sqlContext.cacheManager.cacheQuery(this) - this - } + override def persist(): this.type - override def persist(newLevel: StorageLevel): this.type = { - sqlContext.cacheManager.cacheQuery(this, None, newLevel) - this - } + override def persist(newLevel: StorageLevel): this.type - override def unpersist(blocking: Boolean): this.type = { - sqlContext.cacheManager.tryUncacheQuery(this, blocking) - this - } + override def unpersist(blocking: Boolean): this.type ///////////////////////////////////////////////////////////////////////////// // I/O @@ -582,10 +455,7 @@ class DataFrame protected[sql]( /** * Returns the content of the [[DataFrame]] as an [[RDD]] of [[Row]]s. */ - override def rdd: RDD[Row] = { - val schema = this.schema - queryExecution.executedPlan.execute().map(ScalaReflection.convertRowToScala(_, schema)) - } + override def rdd: RDD[Row] /** * Registers this RDD as a temporary table using the given name. The lifetime of this temporary @@ -593,18 +463,14 @@ class DataFrame protected[sql]( * * @group schema */ - override def registerTempTable(tableName: String): Unit = { - sqlContext.registerRDDAsTable(this, tableName) - } + override def registerTempTable(tableName: String): Unit /** * Saves the contents of this [[DataFrame]] as a parquet file, preserving the schema. * Files that are written out using this method can be read back in as a [[DataFrame]] * using the `parquetFile` function in [[SQLContext]]. */ - override def saveAsParquetFile(path: String): Unit = { - sqlContext.executePlan(WriteToFile(path, logicalPlan)).toRdd - } + override def saveAsParquetFile(path: String): Unit /** * :: Experimental :: @@ -617,48 +483,26 @@ class DataFrame protected[sql]( * be the target of an `insertInto`. */ @Experimental - override def saveAsTable(tableName: String): Unit = { - sqlContext.executePlan( - CreateTableAsSelect(None, tableName, logicalPlan, allowExisting = false)).toRdd - } + override def saveAsTable(tableName: String): Unit /** * :: Experimental :: * Adds the rows from this RDD to the specified table, optionally overwriting the existing data. */ @Experimental - override def insertInto(tableName: String, overwrite: Boolean): Unit = { - sqlContext.executePlan(InsertIntoTable(UnresolvedRelation(Seq(tableName)), - Map.empty, logicalPlan, overwrite)).toRdd - } + override def insertInto(tableName: String, overwrite: Boolean): Unit /** * Returns the content of the [[DataFrame]] as a RDD of JSON strings. */ - override def toJSON: RDD[String] = { - val rowSchema = this.schema - this.mapPartitions { iter => - val jsonFactory = new JsonFactory() - iter.map(JsonRDD.rowToJSON(rowSchema, jsonFactory)) - } - } + override def toJSON: RDD[String] //////////////////////////////////////////////////////////////////////////// // for Python API //////////////////////////////////////////////////////////////////////////// - /** - * A helpful function for Py4j, convert a list of Column to an array - */ - protected[sql] def toColumnArray(cols: JList[Column]): Array[Column] = { - cols.toList.toArray - } /** * Converts a JavaRDD to a PythonRDD. */ - protected[sql] def javaToPython: JavaRDD[Array[Byte]] = { - val fieldTypes = schema.fields.map(_.dataType) - val jrdd = rdd.map(EvaluatePython.rowToArray(_, fieldTypes)).toJavaRDD() - SerDeUtil.javaToPython(jrdd) - } + protected[sql] def javaToPython: JavaRDD[Array[Byte]] } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala new file mode 100644 index 0000000000000..f8fcc25569482 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala @@ -0,0 +1,331 @@ +/* +* Licensed to the Apache Software Foundation (ASF) under one or more +* contributor license agreements. See the NOTICE file distributed with +* this work for additional information regarding copyright ownership. +* The ASF licenses this file to You under the Apache License, Version 2.0 +* (the "License"); you may not use this file except in compliance with +* the License. You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +package org.apache.spark.sql + +import java.util.{List => JList} + +import scala.language.implicitConversions +import scala.reflect.ClassTag +import scala.collection.JavaConversions._ + +import com.fasterxml.jackson.core.JsonFactory + +import org.apache.spark.api.java.JavaRDD +import org.apache.spark.api.python.SerDeUtil +import org.apache.spark.rdd.RDD +import org.apache.spark.storage.StorageLevel +import org.apache.spark.sql.catalyst.ScalaReflection +import org.apache.spark.sql.catalyst.analysis.{ResolvedStar, UnresolvedRelation} +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.plans.{JoinType, Inner} +import org.apache.spark.sql.catalyst.plans.logical._ +import org.apache.spark.sql.execution.{LogicalRDD, EvaluatePython} +import org.apache.spark.sql.json.JsonRDD +import org.apache.spark.sql.types.{NumericType, StructType} +import org.apache.spark.util.Utils + + +/** + * See [[DataFrame]] for documentation. + */ +private[sql] class DataFrameImpl protected[sql]( + override val sqlContext: SQLContext, + val queryExecution: SQLContext#QueryExecution) + extends DataFrame { + + def this(sqlContext: SQLContext, logicalPlan: LogicalPlan) = { + this(sqlContext, { + val qe = sqlContext.executePlan(logicalPlan) + qe.analyzed // This should force analysis and throw errors if there are any + qe + }) + } + + @transient protected[sql] override val logicalPlan: LogicalPlan = queryExecution.logical match { + // For various commands (like DDL) and queries with side effects, we force query optimization to + // happen right away to let these side effects take place eagerly. + case _: Command | _: InsertIntoTable | _: CreateTableAsSelect[_] |_: WriteToFile => + LogicalRDD(queryExecution.analyzed.output, queryExecution.toRdd)(sqlContext) + case _ => + queryExecution.logical + } + + /** + * An implicit conversion function internal to this class for us to avoid doing + * "new DataFrameImpl(...)" everywhere. + */ + @inline private implicit def logicalPlanToDataFrame(logicalPlan: LogicalPlan): DataFrame = { + new DataFrameImpl(sqlContext, logicalPlan) + } + + protected[sql] def resolve(colName: String): NamedExpression = { + queryExecution.analyzed.resolve(colName, sqlContext.analyzer.resolver).getOrElse { + throw new RuntimeException( + s"""Cannot resolve column name "$colName" among (${schema.fieldNames.mkString(", ")})""") + } + } + + protected[sql] def numericColumns: Seq[Expression] = { + schema.fields.filter(_.dataType.isInstanceOf[NumericType]).map { n => + queryExecution.analyzed.resolve(n.name, sqlContext.analyzer.resolver).get + } + } + + override def toDataFrame(colName: String, colNames: String*): DataFrame = { + val newNames = colName +: colNames + require(schema.size == newNames.size, + "The number of columns doesn't match.\n" + + "Old column names: " + schema.fields.map(_.name).mkString(", ") + "\n" + + "New column names: " + newNames.mkString(", ")) + + val newCols = schema.fieldNames.zip(newNames).map { case (oldName, newName) => + apply(oldName).as(newName) + } + select(newCols :_*) + } + + override def schema: StructType = queryExecution.analyzed.schema + + override def dtypes: Array[(String, String)] = schema.fields.map { field => + (field.name, field.dataType.toString) + } + + override def columns: Array[String] = schema.fields.map(_.name) + + override def printSchema(): Unit = println(schema.treeString) + + override def join(right: DataFrame): DataFrame = { + Join(logicalPlan, right.logicalPlan, joinType = Inner, None) + } + + override def join(right: DataFrame, joinExprs: Column): DataFrame = { + Join(logicalPlan, right.logicalPlan, Inner, Some(joinExprs.expr)) + } + + override def join(right: DataFrame, joinExprs: Column, joinType: String): DataFrame = { + Join(logicalPlan, right.logicalPlan, JoinType(joinType), Some(joinExprs.expr)) + } + + override def sort(sortCol: String, sortCols: String*): DataFrame = { + orderBy(apply(sortCol), sortCols.map(apply) :_*) + } + + override def sort(sortExpr: Column, sortExprs: Column*): DataFrame = { + val sortOrder: Seq[SortOrder] = (sortExpr +: sortExprs).map { col => + col.expr match { + case expr: SortOrder => + expr + case expr: Expression => + SortOrder(expr, Ascending) + } + } + Sort(sortOrder, global = true, logicalPlan) + } + + override def orderBy(sortCol: String, sortCols: String*): DataFrame = { + sort(sortCol, sortCols :_*) + } + + override def orderBy(sortExpr: Column, sortExprs: Column*): DataFrame = { + sort(sortExpr, sortExprs :_*) + } + + override def apply(colName: String): Column = colName match { + case "*" => + Column(ResolvedStar(schema.fieldNames.map(resolve))) + case _ => + val expr = resolve(colName) + Column(sqlContext, Project(Seq(expr), logicalPlan), expr) + } + + override def apply(projection: Product): DataFrame = { + require(projection.productArity >= 1) + select(projection.productIterator.map { + case c: Column => c + case o: Any => Column(Literal(o)) + }.toSeq :_*) + } + + override def as(name: String): DataFrame = Subquery(name, logicalPlan) + + override def select(cols: Column*): DataFrame = { + val exprs = cols.zipWithIndex.map { + case (Column(expr: NamedExpression), _) => + expr + case (Column(expr: Expression), _) => + Alias(expr, expr.toString)() + } + Project(exprs.toSeq, logicalPlan) + } + + override def select(col: String, cols: String*): DataFrame = { + select((col +: cols).map(Column(_)) :_*) + } + + override def filter(condition: Column): DataFrame = { + Filter(condition.expr, logicalPlan) + } + + override def where(condition: Column): DataFrame = { + filter(condition) + } + + override def apply(condition: Column): DataFrame = { + filter(condition) + } + + override def groupBy(cols: Column*): GroupedDataFrame = { + new GroupedDataFrame(this, cols.map(_.expr)) + } + + override def groupBy(col1: String, cols: String*): GroupedDataFrame = { + val colNames: Seq[String] = col1 +: cols + new GroupedDataFrame(this, colNames.map(colName => resolve(colName))) + } + + override def agg(exprs: Map[String, String]): DataFrame = { + groupBy().agg(exprs) + } + + override def agg(exprs: java.util.Map[String, String]): DataFrame = { + agg(exprs.toMap) + } + + override def agg(expr: Column, exprs: Column*): DataFrame = { + groupBy().agg(expr, exprs :_*) + } + + override def limit(n: Int): DataFrame = { + Limit(Literal(n), logicalPlan) + } + + override def unionAll(other: DataFrame): DataFrame = { + Union(logicalPlan, other.logicalPlan) + } + + override def intersect(other: DataFrame): DataFrame = { + Intersect(logicalPlan, other.logicalPlan) + } + + override def except(other: DataFrame): DataFrame = { + Except(logicalPlan, other.logicalPlan) + } + + override def sample(withReplacement: Boolean, fraction: Double, seed: Long): DataFrame = { + Sample(fraction, withReplacement, seed, logicalPlan) + } + + override def sample(withReplacement: Boolean, fraction: Double): DataFrame = { + sample(withReplacement, fraction, Utils.random.nextLong) + } + + ///////////////////////////////////////////////////////////////////////////// + + override def addColumn(colName: String, col: Column): DataFrame = { + select(Column("*"), col.as(colName)) + } + + override def head(n: Int): Array[Row] = limit(n).collect() + + override def head(): Row = head(1).head + + override def first(): Row = head() + + override def map[R: ClassTag](f: Row => R): RDD[R] = rdd.map(f) + + override def flatMap[R: ClassTag](f: Row => TraversableOnce[R]): RDD[R] = rdd.flatMap(f) + + override def mapPartitions[R: ClassTag](f: Iterator[Row] => Iterator[R]): RDD[R] = { + rdd.mapPartitions(f) + } + + override def foreach(f: Row => Unit): Unit = rdd.foreach(f) + + override def foreachPartition(f: Iterator[Row] => Unit): Unit = rdd.foreachPartition(f) + + override def take(n: Int): Array[Row] = head(n) + + override def collect(): Array[Row] = queryExecution.executedPlan.executeCollect() + + override def collectAsList(): java.util.List[Row] = java.util.Arrays.asList(rdd.collect() :_*) + + override def count(): Long = groupBy().count().rdd.collect().head.getLong(0) + + override def repartition(numPartitions: Int): DataFrame = { + sqlContext.applySchema(rdd.repartition(numPartitions), schema) + } + + override def persist(): this.type = { + sqlContext.cacheManager.cacheQuery(this) + this + } + + override def persist(newLevel: StorageLevel): this.type = { + sqlContext.cacheManager.cacheQuery(this, None, newLevel) + this + } + + override def unpersist(blocking: Boolean): this.type = { + sqlContext.cacheManager.tryUncacheQuery(this, blocking) + this + } + + ///////////////////////////////////////////////////////////////////////////// + // I/O + ///////////////////////////////////////////////////////////////////////////// + + override def rdd: RDD[Row] = { + val schema = this.schema + queryExecution.executedPlan.execute().map(ScalaReflection.convertRowToScala(_, schema)) + } + + override def registerTempTable(tableName: String): Unit = { + sqlContext.registerRDDAsTable(this, tableName) + } + + override def saveAsParquetFile(path: String): Unit = { + sqlContext.executePlan(WriteToFile(path, logicalPlan)).toRdd + } + + override def saveAsTable(tableName: String): Unit = { + sqlContext.executePlan( + CreateTableAsSelect(None, tableName, logicalPlan, allowExisting = false)).toRdd + } + + override def insertInto(tableName: String, overwrite: Boolean): Unit = { + sqlContext.executePlan(InsertIntoTable(UnresolvedRelation(Seq(tableName)), + Map.empty, logicalPlan, overwrite)).toRdd + } + + override def toJSON: RDD[String] = { + val rowSchema = this.schema + this.mapPartitions { iter => + val jsonFactory = new JsonFactory() + iter.map(JsonRDD.rowToJSON(rowSchema, jsonFactory)) + } + } + + //////////////////////////////////////////////////////////////////////////// + // for Python API + //////////////////////////////////////////////////////////////////////////// + protected[sql] override def javaToPython: JavaRDD[Array[Byte]] = { + val fieldTypes = schema.fields.map(_.dataType) + val jrdd = rdd.map(EvaluatePython.rowToArray(_, fieldTypes)).toJavaRDD() + SerDeUtil.javaToPython(jrdd) + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Dsl.scala b/sql/core/src/main/scala/org/apache/spark/sql/Dsl.scala index 3499956023d11..b4279a32ffa21 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Dsl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Dsl.scala @@ -17,8 +17,11 @@ package org.apache.spark.sql +import java.util.{List => JList} + import scala.language.implicitConversions import scala.reflect.runtime.universe.{TypeTag, typeTag} +import scala.collection.JavaConversions._ import org.apache.spark.sql.catalyst.ScalaReflection import org.apache.spark.sql.catalyst.expressions._ @@ -55,17 +58,17 @@ object Dsl { } } - private[this] implicit def toColumn(expr: Expression): Column = new Column(expr) + private[this] implicit def toColumn(expr: Expression): Column = Column(expr) /** * Returns a [[Column]] based on the given column name. */ - def col(colName: String): Column = new Column(colName) + def col(colName: String): Column = Column(colName) /** * Returns a [[Column]] based on the given column name. Alias of [[col]]. */ - def column(colName: String): Column = new Column(colName) + def column(colName: String): Column = Column(colName) /** * Creates a [[Column]] of literal value. @@ -94,7 +97,7 @@ object Dsl { case _ => throw new RuntimeException("Unsupported literal type " + literal.getClass + " " + literal) } - new Column(literalExpr) + Column(literalExpr) } def sum(e: Column): Column = Sum(e.expr) @@ -105,8 +108,7 @@ object Dsl { def countDistinct(expr: Column, exprs: Column*): Column = CountDistinct((expr +: exprs).map(_.expr)) - def approxCountDistinct(e: Column): Column = - ApproxCountDistinct(e.expr) + def approxCountDistinct(e: Column): Column = ApproxCountDistinct(e.expr) def approxCountDistinct(e: Column, rsd: Double): Column = ApproxCountDistinct(e.expr, rsd) @@ -121,6 +123,13 @@ object Dsl { def sqrt(e: Column): Column = Sqrt(e.expr) def abs(e: Column): Column = Abs(e.expr) + /** + * This is a private API for Python + * TODO: move this to a private package + */ + def toColumns(cols: JList[Column]): Seq[Column] = { + cols.toList.toSeq + } // scalastyle:off diff --git a/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala index 1c948cbbfe58f..d3acd41bbf3eb 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala @@ -17,6 +17,8 @@ package org.apache.spark.sql +import java.util.{List => JList} + import scala.language.implicitConversions import scala.collection.JavaConversions._ @@ -28,7 +30,7 @@ import org.apache.spark.sql.catalyst.plans.logical.Aggregate /** * A set of methods for aggregations on a [[DataFrame]], created by [[DataFrame.groupBy]]. */ -class GroupedDataFrame protected[sql](df: DataFrame, groupingExprs: Seq[Expression]) +class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expression]) extends GroupedDataFrameApi { private[this] implicit def toDataFrame(aggExprs: Seq[NamedExpression]): DataFrame = { @@ -36,8 +38,8 @@ class GroupedDataFrame protected[sql](df: DataFrame, groupingExprs: Seq[Expressi case expr: NamedExpression => expr case expr: Expression => Alias(expr, expr.toString)() } - new DataFrame(df.sqlContext, - Aggregate(groupingExprs, namedGroupingExprs ++ aggExprs, df.logicalPlan)) + DataFrame( + df.sqlContext, Aggregate(groupingExprs, namedGroupingExprs ++ aggExprs, df.logicalPlan)) } private[this] def aggregateNumericColumns(f: Expression => Expression): Seq[NamedExpression] = { @@ -112,8 +114,7 @@ class GroupedDataFrame protected[sql](df: DataFrame, groupingExprs: Seq[Expressi case expr: NamedExpression => expr case expr: Expression => Alias(expr, expr.toString)() } - - new DataFrame(df.sqlContext, Aggregate(groupingExprs, aggExprs, df.logicalPlan)) + DataFrame(df.sqlContext, Aggregate(groupingExprs, aggExprs, df.logicalPlan)) } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala b/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala new file mode 100644 index 0000000000000..2f8c695d5654b --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala @@ -0,0 +1,160 @@ +/* +* Licensed to the Apache Software Foundation (ASF) under one or more +* contributor license agreements. See the NOTICE file distributed with +* this work for additional information regarding copyright ownership. +* The ASF licenses this file to You under the Apache License, Version 2.0 +* (the "License"); you may not use this file except in compliance with +* the License. You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +package org.apache.spark.sql + +import scala.reflect.ClassTag + +import org.apache.spark.api.java.JavaRDD +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.catalyst.analysis.{UnresolvedAttribute, UnresolvedStar} +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan +import org.apache.spark.storage.StorageLevel +import org.apache.spark.sql.types.StructType + + +private[sql] class IncomputableColumn(protected[sql] val expr: Expression) extends Column { + + def this(name: String) = this(name match { + case "*" => UnresolvedStar(None) + case _ if name.endsWith(".*") => UnresolvedStar(Some(name.substring(0, name.length - 2))) + case _ => UnresolvedAttribute(name) + }) + + private def err[T](): T = { + throw new UnsupportedOperationException("Cannot run this method on an UncomputableColumn") + } + + override def isComputable: Boolean = false + + override val sqlContext: SQLContext = null + + override def queryExecution = err() + + protected[sql] override def logicalPlan: LogicalPlan = err() + + override def toDataFrame(colName: String, colNames: String*): DataFrame = err() + + override def schema: StructType = err() + + override def dtypes: Array[(String, String)] = err() + + override def columns: Array[String] = err() + + override def printSchema(): Unit = err() + + override def join(right: DataFrame): DataFrame = err() + + override def join(right: DataFrame, joinExprs: Column): DataFrame = err() + + override def join(right: DataFrame, joinExprs: Column, joinType: String): DataFrame = err() + + override def sort(sortCol: String, sortCols: String*): DataFrame = err() + + override def sort(sortExpr: Column, sortExprs: Column*): DataFrame = err() + + override def orderBy(sortCol: String, sortCols: String*): DataFrame = err() + + override def orderBy(sortExpr: Column, sortExprs: Column*): DataFrame = err() + + override def apply(colName: String): Column = err() + + override def apply(projection: Product): DataFrame = err() + + override def select(cols: Column*): DataFrame = err() + + override def select(col: String, cols: String*): DataFrame = err() + + override def filter(condition: Column): DataFrame = err() + + override def where(condition: Column): DataFrame = err() + + override def apply(condition: Column): DataFrame = err() + + override def groupBy(cols: Column*): GroupedDataFrame = err() + + override def groupBy(col1: String, cols: String*): GroupedDataFrame = err() + + override def agg(exprs: Map[String, String]): DataFrame = err() + + override def agg(exprs: java.util.Map[String, String]): DataFrame = err() + + override def agg(expr: Column, exprs: Column*): DataFrame = err() + + override def limit(n: Int): DataFrame = err() + + override def unionAll(other: DataFrame): DataFrame = err() + + override def intersect(other: DataFrame): DataFrame = err() + + override def except(other: DataFrame): DataFrame = err() + + override def sample(withReplacement: Boolean, fraction: Double, seed: Long): DataFrame = err() + + override def sample(withReplacement: Boolean, fraction: Double): DataFrame = err() + + ///////////////////////////////////////////////////////////////////////////// + + override def addColumn(colName: String, col: Column): DataFrame = err() + + override def head(n: Int): Array[Row] = err() + + override def head(): Row = err() + + override def first(): Row = err() + + override def map[R: ClassTag](f: Row => R): RDD[R] = err() + + override def flatMap[R: ClassTag](f: Row => TraversableOnce[R]): RDD[R] = err() + + override def mapPartitions[R: ClassTag](f: Iterator[Row] => Iterator[R]): RDD[R] = err() + + override def foreach(f: Row => Unit): Unit = err() + + override def foreachPartition(f: Iterator[Row] => Unit): Unit = err() + + override def take(n: Int): Array[Row] = err() + + override def collect(): Array[Row] = err() + + override def collectAsList(): java.util.List[Row] = err() + + override def count(): Long = err() + + override def repartition(numPartitions: Int): DataFrame = err() + + override def persist(): this.type = err() + + override def persist(newLevel: StorageLevel): this.type = err() + + override def unpersist(blocking: Boolean): this.type = err() + + override def rdd: RDD[Row] = err() + + override def registerTempTable(tableName: String): Unit = err() + + override def saveAsParquetFile(path: String): Unit = err() + + override def saveAsTable(tableName: String): Unit = err() + + override def insertInto(tableName: String, overwrite: Boolean): Unit = err() + + override def toJSON: RDD[String] = err() + + protected[sql] override def javaToPython: JavaRDD[Array[Byte]] = err() +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index 84933dd944837..d0bbb5f7a34f1 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -171,14 +171,14 @@ class SQLContext(@transient val sparkContext: SparkContext) val schema = ScalaReflection.schemaFor[A].dataType.asInstanceOf[StructType] val attributeSeq = schema.toAttributes val rowRDD = RDDConversions.productToRowRdd(rdd, schema) - new DataFrame(this, LogicalRDD(attributeSeq, rowRDD)(self)) + DataFrame(this, LogicalRDD(attributeSeq, rowRDD)(self)) } /** * Convert a [[BaseRelation]] created for external data sources into a [[DataFrame]]. */ def baseRelationToDataFrame(baseRelation: BaseRelation): DataFrame = { - new DataFrame(this, LogicalRelation(baseRelation)) + DataFrame(this, LogicalRelation(baseRelation)) } /** @@ -216,7 +216,7 @@ class SQLContext(@transient val sparkContext: SparkContext) // TODO: use MutableProjection when rowRDD is another DataFrame and the applied // schema differs from the existing schema on any field data type. val logicalPlan = LogicalRDD(schema.toAttributes, rowRDD)(self) - new DataFrame(this, logicalPlan) + DataFrame(this, logicalPlan) } /** @@ -243,7 +243,7 @@ class SQLContext(@transient val sparkContext: SparkContext) ) : Row } } - new DataFrame(this, LogicalRDD(attributeSeq, rowRdd)(this)) + DataFrame(this, LogicalRDD(attributeSeq, rowRdd)(this)) } /** @@ -262,7 +262,7 @@ class SQLContext(@transient val sparkContext: SparkContext) * @group userf */ def parquetFile(path: String): DataFrame = - new DataFrame(this, parquet.ParquetRelation(path, Some(sparkContext.hadoopConfiguration), this)) + DataFrame(this, parquet.ParquetRelation(path, Some(sparkContext.hadoopConfiguration), this)) /** * Loads a JSON file (one object per line), returning the result as a [[DataFrame]]. @@ -365,7 +365,7 @@ class SQLContext(@transient val sparkContext: SparkContext) */ def sql(sqlText: String): DataFrame = { if (conf.dialect == "sql") { - new DataFrame(this, parseSql(sqlText)) + DataFrame(this, parseSql(sqlText)) } else { sys.error(s"Unsupported SQL dialect: ${conf.dialect}") } @@ -373,7 +373,7 @@ class SQLContext(@transient val sparkContext: SparkContext) /** Returns the specified table as a [[DataFrame]]. */ def table(tableName: String): DataFrame = - new DataFrame(this, catalog.lookupRelation(Seq(tableName))) + DataFrame(this, catalog.lookupRelation(Seq(tableName))) protected[sql] class SparkPlanner extends SparkStrategies { val sparkContext: SparkContext = self.sparkContext @@ -462,7 +462,7 @@ class SQLContext(@transient val sparkContext: SparkContext) * access to the intermediate phases of query execution for developers. */ @DeveloperApi - protected class QueryExecution(val logical: LogicalPlan) { + protected[sql] class QueryExecution(val logical: LogicalPlan) { lazy val analyzed: LogicalPlan = ExtractPythonUdfs(analyzer(logical)) lazy val withCachedData: LogicalPlan = cacheManager.useCachedData(analyzed) @@ -556,7 +556,7 @@ class SQLContext(@transient val sparkContext: SparkContext) iter.map { m => new GenericRow(m): Row} } - new DataFrame(this, LogicalRDD(schema.toAttributes, rowRdd)(self)) + DataFrame(this, LogicalRDD(schema.toAttributes, rowRdd)(self)) } /** diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/commands.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/commands.scala index 6fba76c52171b..e1c9a2be7d20d 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/commands.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/commands.scala @@ -138,7 +138,7 @@ case class CacheTableCommand( override def run(sqlContext: SQLContext) = { plan.foreach { logicalPlan => - sqlContext.registerRDDAsTable(new DataFrame(sqlContext, logicalPlan), tableName) + sqlContext.registerRDDAsTable(DataFrame(sqlContext, logicalPlan), tableName) } sqlContext.cacheTable(tableName) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala index b7c721f8c0691..b1bbe0f89af73 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala @@ -231,7 +231,7 @@ private [sql] case class CreateTempTableUsing( def run(sqlContext: SQLContext) = { val resolved = ResolvedDataSource(sqlContext, userSpecifiedSchema, provider, options) sqlContext.registerRDDAsTable( - new DataFrame(sqlContext, LogicalRelation(resolved.relation)), tableName) + DataFrame(sqlContext, LogicalRelation(resolved.relation)), tableName) Seq.empty } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/test/TestSQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/test/TestSQLContext.scala index 906455dd40c0d..4e1ec38bd0158 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/test/TestSQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/test/TestSQLContext.scala @@ -41,7 +41,7 @@ object TestSQLContext * construct [[DataFrame]] directly out of local data without relying on implicits. */ protected[sql] implicit def logicalPlanToSparkQuery(plan: LogicalPlan): DataFrame = { - new DataFrame(this, plan) + DataFrame(this, plan) } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/ColumnExpressionSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/ColumnExpressionSuite.scala index 2d464c2b53d79..fa4cdecbcb340 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/ColumnExpressionSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/ColumnExpressionSuite.scala @@ -27,6 +27,45 @@ class ColumnExpressionSuite extends QueryTest { // TODO: Add test cases for bitwise operations. + test("computability check") { + def shouldBeComputable(c: Column): Unit = assert(c.isComputable === true) + + def shouldNotBeComputable(c: Column): Unit = { + assert(c.isComputable === false) + intercept[UnsupportedOperationException] { c.head() } + } + + shouldBeComputable(testData2("a")) + shouldBeComputable(testData2("b")) + + shouldBeComputable(testData2("a") + testData2("b")) + shouldBeComputable(testData2("a") + testData2("b") + 1) + + shouldBeComputable(-testData2("a")) + shouldBeComputable(!testData2("a")) + + shouldBeComputable(testData2.select(($"a" + 1).as("c"))("c") + testData2("b")) + shouldBeComputable( + testData2.select(($"a" + 1).as("c"))("c") + testData2.select(($"b" / 2).as("d"))("d")) + shouldBeComputable( + testData2.select(($"a" + 1).as("c")).select(($"c" + 2).as("d"))("d") + testData2("b")) + + // Literals and unresolved columns should not be computable. + shouldNotBeComputable(col("1")) + shouldNotBeComputable(col("1") + 2) + shouldNotBeComputable(lit(100)) + shouldNotBeComputable(lit(100) + 10) + shouldNotBeComputable(-col("1")) + shouldNotBeComputable(!col("1")) + + // Getting data from different frames should not be computable. + shouldNotBeComputable(testData2("a") + testData("key")) + shouldNotBeComputable(testData2("a") + 1 + testData("key")) + + // Aggregate functions alone should not be computable. + shouldNotBeComputable(sum(testData2("a"))) + } + test("star") { checkAnswer(testData.select($"*"), testData.collect().toSeq) } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala index df343adc793bd..f6b65a81ce05e 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala @@ -28,6 +28,19 @@ import scala.language.postfixOps class DataFrameSuite extends QueryTest { import org.apache.spark.sql.TestData._ + test("analysis error should be eagerly reported") { + intercept[Exception] { testData.select('nonExistentName) } + intercept[Exception] { + testData.groupBy('key).agg(Map("nonExistentName" -> "sum")) + } + intercept[Exception] { + testData.groupBy("nonExistentName").agg(Map("key" -> "sum")) + } + intercept[Exception] { + testData.groupBy($"abcd").agg(Map("key" -> "sum")) + } + } + test("table scan") { checkAnswer( testData, diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index d82c34316cefa..e18ba287e8683 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -807,13 +807,11 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { test("throw errors for non-aggregate attributes with aggregation") { def checkAggregation(query: String, isInvalidQuery: Boolean = true) { - val logicalPlan = sql(query).queryExecution.logical - if (isInvalidQuery) { val e = intercept[TreeNodeException[LogicalPlan]](sql(query).queryExecution.analyzed) assert( e.getMessage.startsWith("Expression not in GROUP BY"), - "Non-aggregate attribute(s) not detected\n" + logicalPlan) + "Non-aggregate attribute(s) not detected\n") } else { // Should not throw sql(query).queryExecution.analyzed @@ -821,7 +819,7 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { } checkAggregation("SELECT key, COUNT(*) FROM testData") - checkAggregation("SELECT COUNT(key), COUNT(*) FROM testData", false) + checkAggregation("SELECT COUNT(key), COUNT(*) FROM testData", isInvalidQuery = false) checkAggregation("SELECT value, COUNT(*) FROM testData GROUP BY key") checkAggregation("SELECT COUNT(value), SUM(key) FROM testData GROUP BY key", false) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetFilterSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetFilterSuite.scala index e78145f4dda5a..ff91a0eb42049 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetFilterSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetFilterSuite.scala @@ -24,7 +24,7 @@ import org.apache.spark.sql.catalyst.dsl.expressions._ import org.apache.spark.sql.catalyst.expressions.{Attribute, Cast, Literal, Predicate, Row} import org.apache.spark.sql.types._ import org.apache.spark.sql.test.TestSQLContext -import org.apache.spark.sql.{DataFrame, QueryTest, SQLConf} +import org.apache.spark.sql.{Column, DataFrame, QueryTest, SQLConf} /** * A test suite that tests Parquet filter2 API based filter pushdown optimization. @@ -51,8 +51,8 @@ class ParquetFilterSuite extends QueryTest with ParquetTest { withSQLConf(SQLConf.PARQUET_FILTER_PUSHDOWN_ENABLED -> "true") { val query = rdd - .select(output.map(e => new org.apache.spark.sql.Column(e)): _*) - .where(new org.apache.spark.sql.Column(predicate)) + .select(output.map(e => Column(e)): _*) + .where(Column(predicate)) val maybeAnalyzedPredicate = query.queryExecution.executedPlan.collect { case plan: ParquetTableScan => plan.columnPruningPred diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala index b746942cb1067..5efc3b1e30774 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala @@ -72,7 +72,8 @@ class HiveContext(sc: SparkContext) extends SQLContext(sc) { if (conf.dialect == "sql") { super.sql(substituted) } else if (conf.dialect == "hiveql") { - new DataFrame(this, ddlParser(sqlText, false).getOrElse(HiveQl.parseSql(substituted))) + DataFrame(this, + ddlParser(sqlText, exceptionOnError = false).getOrElse(HiveQl.parseSql(substituted))) } else { sys.error(s"Unsupported SQL dialect: ${conf.dialect}. Try 'sql' or 'hiveql'") } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala index 83244ce1e372a..fa997288a2848 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala @@ -17,10 +17,12 @@ package org.apache.spark.sql.hive +import org.apache.spark.sql.catalyst.expressions.Row + import scala.collection.JavaConversions._ import org.apache.spark.annotation.Experimental -import org.apache.spark.sql.{Column, DataFrame, SQLContext, Strategy} +import org.apache.spark.sql._ import org.apache.spark.sql.catalyst.analysis.UnresolvedAttribute import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.catalyst.expressions.codegen.GeneratePredicate @@ -29,7 +31,6 @@ import org.apache.spark.sql.catalyst.plans._ import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.{DescribeCommand => RunnableDescribeCommand} import org.apache.spark.sql.execution._ -import org.apache.spark.sql.hive import org.apache.spark.sql.hive.execution._ import org.apache.spark.sql.parquet.ParquetRelation import org.apache.spark.sql.sources.CreateTableUsing @@ -56,14 +57,14 @@ private[hive] trait HiveStrategies { @Experimental object ParquetConversion extends Strategy { implicit class LogicalPlanHacks(s: DataFrame) { - def lowerCase = new DataFrame(s.sqlContext, s.logicalPlan) + def lowerCase = DataFrame(s.sqlContext, s.logicalPlan) def addPartitioningAttributes(attrs: Seq[Attribute]) = { // Don't add the partitioning key if its already present in the data. if (attrs.map(_.name).toSet.subsetOf(s.logicalPlan.output.map(_.name).toSet)) { s } else { - new DataFrame( + DataFrame( s.sqlContext, s.logicalPlan transform { case p: ParquetRelation => p.copy(partitioningAttributes = attrs) @@ -96,13 +97,13 @@ private[hive] trait HiveStrategies { // We are going to throw the predicates and projection back at the whole optimization // sequence so lets unresolve all the attributes, allowing them to be rebound to the // matching parquet attributes. - val unresolvedOtherPredicates = new Column(otherPredicates.map(_ transform { + val unresolvedOtherPredicates = Column(otherPredicates.map(_ transform { case a: AttributeReference => UnresolvedAttribute(a.name) }).reduceOption(And).getOrElse(Literal(true))) val unresolvedProjection: Seq[Column] = projectList.map(_ transform { case a: AttributeReference => UnresolvedAttribute(a.name) - }).map(new Column(_)) + }).map(Column(_)) try { if (relation.hiveQlTable.isPartitioned) { From 0561c4544967fb853419f32e014fac9b8879b0db Mon Sep 17 00:00:00 2001 From: Davies Liu Date: Mon, 2 Feb 2015 19:16:27 -0800 Subject: [PATCH 24/52] [SPARK-5154] [PySpark] [Streaming] Kafka streaming support in Python This PR brings the Python API for Spark Streaming Kafka data source. ``` class KafkaUtils(__builtin__.object) | Static methods defined here: | | createStream(ssc, zkQuorum, groupId, topics, storageLevel=StorageLevel(True, True, False, False, 2), keyDecoder=, valueDecoder=) | Create an input stream that pulls messages from a Kafka Broker. | | :param ssc: StreamingContext object | :param zkQuorum: Zookeeper quorum (hostname:port,hostname:port,..). | :param groupId: The group id for this consumer. | :param topics: Dict of (topic_name -> numPartitions) to consume. | Each partition is consumed in its own thread. | :param storageLevel: RDD storage level. | :param keyDecoder: A function used to decode key | :param valueDecoder: A function used to decode value | :return: A DStream object ``` run the example: ``` bin/spark-submit --driver-class-path external/kafka-assembly/target/scala-*/spark-streaming-kafka-assembly-*.jar examples/src/main/python/streaming/kafka_wordcount.py localhost:2181 test ``` Author: Davies Liu Author: Tathagata Das Closes #3715 from davies/kafka and squashes the following commits: d93bfe0 [Davies Liu] Update make-distribution.sh 4280d04 [Davies Liu] address comments e6d0427 [Davies Liu] Merge branch 'master' of github.com:apache/spark into kafka f257071 [Davies Liu] add tests for null in RDD 23b039a [Davies Liu] address comments 9af51c4 [Davies Liu] Merge branch 'kafka' of github.com:davies/spark into kafka a74da87 [Davies Liu] address comments dc1eed0 [Davies Liu] Update kafka_wordcount.py 31e2317 [Davies Liu] Update kafka_wordcount.py 370ba61 [Davies Liu] Update kafka.py 97386b3 [Davies Liu] address comment 2c567a5 [Davies Liu] update logging and comment 33730d1 [Davies Liu] Merge branch 'master' of github.com:apache/spark into kafka adeeb38 [Davies Liu] Merge pull request #3 from tdas/kafka-python-api aea8953 [Tathagata Das] Kafka-assembly for Python API eea16a7 [Davies Liu] refactor f6ce899 [Davies Liu] add example and fix bugs 98c8d17 [Davies Liu] fix python style 5697a01 [Davies Liu] bypass decoder in scala 048dbe6 [Davies Liu] fix python style 75d485e [Davies Liu] add mqtt 07923c4 [Davies Liu] support kafka in Python --- .../apache/spark/api/python/PythonRDD.scala | 66 ++++------- .../apache/spark/api/python/PythonUtils.scala | 5 + .../spark/api/python/PythonRDDSuite.scala | 23 +++- .../main/python/streaming/kafka_wordcount.py | 54 +++++++++ external/kafka-assembly/pom.xml | 106 ++++++++++++++++++ pom.xml | 1 + project/SparkBuild.scala | 14 ++- python/pyspark/serializers.py | 9 +- python/pyspark/streaming/kafka.py | 83 ++++++++++++++ python/pyspark/tests.py | 10 +- 10 files changed, 313 insertions(+), 58 deletions(-) create mode 100644 examples/src/main/python/streaming/kafka_wordcount.py create mode 100644 external/kafka-assembly/pom.xml create mode 100644 python/pyspark/streaming/kafka.py diff --git a/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala b/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala index 119e0459c5d1b..b89effc16d36d 100644 --- a/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala +++ b/core/src/main/scala/org/apache/spark/api/python/PythonRDD.scala @@ -316,6 +316,7 @@ private object SpecialLengths { val PYTHON_EXCEPTION_THROWN = -2 val TIMING_DATA = -3 val END_OF_STREAM = -4 + val NULL = -5 } private[spark] object PythonRDD extends Logging { @@ -374,54 +375,25 @@ private[spark] object PythonRDD extends Logging { } def writeIteratorToStream[T](iter: Iterator[T], dataOut: DataOutputStream) { - // The right way to implement this would be to use TypeTags to get the full - // type of T. Since I don't want to introduce breaking changes throughout the - // entire Spark API, I have to use this hacky approach: - if (iter.hasNext) { - val first = iter.next() - val newIter = Seq(first).iterator ++ iter - first match { - case arr: Array[Byte] => - newIter.asInstanceOf[Iterator[Array[Byte]]].foreach { bytes => - dataOut.writeInt(bytes.length) - dataOut.write(bytes) - } - case string: String => - newIter.asInstanceOf[Iterator[String]].foreach { str => - writeUTF(str, dataOut) - } - case stream: PortableDataStream => - newIter.asInstanceOf[Iterator[PortableDataStream]].foreach { stream => - val bytes = stream.toArray() - dataOut.writeInt(bytes.length) - dataOut.write(bytes) - } - case (key: String, stream: PortableDataStream) => - newIter.asInstanceOf[Iterator[(String, PortableDataStream)]].foreach { - case (key, stream) => - writeUTF(key, dataOut) - val bytes = stream.toArray() - dataOut.writeInt(bytes.length) - dataOut.write(bytes) - } - case (key: String, value: String) => - newIter.asInstanceOf[Iterator[(String, String)]].foreach { - case (key, value) => - writeUTF(key, dataOut) - writeUTF(value, dataOut) - } - case (key: Array[Byte], value: Array[Byte]) => - newIter.asInstanceOf[Iterator[(Array[Byte], Array[Byte])]].foreach { - case (key, value) => - dataOut.writeInt(key.length) - dataOut.write(key) - dataOut.writeInt(value.length) - dataOut.write(value) - } - case other => - throw new SparkException("Unexpected element type " + first.getClass) - } + + def write(obj: Any): Unit = obj match { + case null => + dataOut.writeInt(SpecialLengths.NULL) + case arr: Array[Byte] => + dataOut.writeInt(arr.length) + dataOut.write(arr) + case str: String => + writeUTF(str, dataOut) + case stream: PortableDataStream => + write(stream.toArray()) + case (key, value) => + write(key) + write(value) + case other => + throw new SparkException("Unexpected element type " + other.getClass) } + + iter.foreach(write) } /** diff --git a/core/src/main/scala/org/apache/spark/api/python/PythonUtils.scala b/core/src/main/scala/org/apache/spark/api/python/PythonUtils.scala index be5ebfa9219d3..b7cfc8bd9c542 100644 --- a/core/src/main/scala/org/apache/spark/api/python/PythonUtils.scala +++ b/core/src/main/scala/org/apache/spark/api/python/PythonUtils.scala @@ -22,6 +22,7 @@ import java.io.{File, InputStream, IOException, OutputStream} import scala.collection.mutable.ArrayBuffer import org.apache.spark.SparkContext +import org.apache.spark.api.java.{JavaSparkContext, JavaRDD} private[spark] object PythonUtils { /** Get the PYTHONPATH for PySpark, either from SPARK_HOME, if it is set, or from our JAR */ @@ -39,4 +40,8 @@ private[spark] object PythonUtils { def mergePythonPaths(paths: String*): String = { paths.filter(_ != "").mkString(File.pathSeparator) } + + def generateRDDWithNull(sc: JavaSparkContext): JavaRDD[String] = { + sc.parallelize(List("a", null, "b")) + } } diff --git a/core/src/test/scala/org/apache/spark/api/python/PythonRDDSuite.scala b/core/src/test/scala/org/apache/spark/api/python/PythonRDDSuite.scala index 7b866f08a0e9f..c63d834f9048b 100644 --- a/core/src/test/scala/org/apache/spark/api/python/PythonRDDSuite.scala +++ b/core/src/test/scala/org/apache/spark/api/python/PythonRDDSuite.scala @@ -23,11 +23,22 @@ import org.scalatest.FunSuite class PythonRDDSuite extends FunSuite { - test("Writing large strings to the worker") { - val input: List[String] = List("a"*100000) - val buffer = new DataOutputStream(new ByteArrayOutputStream) - PythonRDD.writeIteratorToStream(input.iterator, buffer) - } + test("Writing large strings to the worker") { + val input: List[String] = List("a"*100000) + val buffer = new DataOutputStream(new ByteArrayOutputStream) + PythonRDD.writeIteratorToStream(input.iterator, buffer) + } + test("Handle nulls gracefully") { + val buffer = new DataOutputStream(new ByteArrayOutputStream) + // Should not have NPE when write an Iterator with null in it + // The correctness will be tested in Python + PythonRDD.writeIteratorToStream(Iterator("a", null), buffer) + PythonRDD.writeIteratorToStream(Iterator(null, "a"), buffer) + PythonRDD.writeIteratorToStream(Iterator("a".getBytes, null), buffer) + PythonRDD.writeIteratorToStream(Iterator(null, "a".getBytes), buffer) + PythonRDD.writeIteratorToStream(Iterator((null, null), ("a", null), (null, "b")), buffer) + PythonRDD.writeIteratorToStream( + Iterator((null, null), ("a".getBytes, null), (null, "b".getBytes)), buffer) + } } - diff --git a/examples/src/main/python/streaming/kafka_wordcount.py b/examples/src/main/python/streaming/kafka_wordcount.py new file mode 100644 index 0000000000000..ed398a82b8bb0 --- /dev/null +++ b/examples/src/main/python/streaming/kafka_wordcount.py @@ -0,0 +1,54 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +""" + Counts words in UTF8 encoded, '\n' delimited text received from the network every second. + Usage: network_wordcount.py + + To run this on your local machine, you need to setup Kafka and create a producer first, see + http://kafka.apache.org/documentation.html#quickstart + + and then run the example + `$ bin/spark-submit --driver-class-path external/kafka-assembly/target/scala-*/\ + spark-streaming-kafka-assembly-*.jar examples/src/main/python/streaming/kafka_wordcount.py \ + localhost:2181 test` +""" + +import sys + +from pyspark import SparkContext +from pyspark.streaming import StreamingContext +from pyspark.streaming.kafka import KafkaUtils + +if __name__ == "__main__": + if len(sys.argv) != 3: + print >> sys.stderr, "Usage: kafka_wordcount.py " + exit(-1) + + sc = SparkContext(appName="PythonStreamingKafkaWordCount") + ssc = StreamingContext(sc, 1) + + zkQuorum, topic = sys.argv[1:] + kvs = KafkaUtils.createStream(ssc, zkQuorum, "spark-streaming-consumer", {topic: 1}) + lines = kvs.map(lambda x: x[1]) + counts = lines.flatMap(lambda line: line.split(" ")) \ + .map(lambda word: (word, 1)) \ + .reduceByKey(lambda a, b: a+b) + counts.pprint() + + ssc.start() + ssc.awaitTermination() diff --git a/external/kafka-assembly/pom.xml b/external/kafka-assembly/pom.xml new file mode 100644 index 0000000000000..503fc129dc4f2 --- /dev/null +++ b/external/kafka-assembly/pom.xml @@ -0,0 +1,106 @@ + + + + + 4.0.0 + + org.apache.spark + spark-parent + 1.3.0-SNAPSHOT + ../../pom.xml + + + org.apache.spark + spark-streaming-kafka-assembly_2.10 + jar + Spark Project External Kafka Assembly + http://spark.apache.org/ + + + streaming-kafka-assembly + scala-${scala.binary.version} + spark-streaming-kafka-assembly-${project.version}.jar + ${project.build.directory}/${spark.jar.dir}/${spark.jar.basename} + + + + + org.apache.spark + spark-streaming-kafka_${scala.binary.version} + ${project.version} + + + org.apache.spark + spark-streaming_${scala.binary.version} + ${project.version} + provided + + + + + target/scala-${scala.binary.version}/classes + target/scala-${scala.binary.version}/test-classes + + + org.apache.maven.plugins + maven-shade-plugin + + false + ${spark.jar} + + + *:* + + + + + *:* + + META-INF/*.SF + META-INF/*.DSA + META-INF/*.RSA + + + + + + + package + + shade + + + + + + reference.conf + + + log4j.properties + + + + + + + + + + + + diff --git a/pom.xml b/pom.xml index d4112b03d9ee4..08d1cc33e4701 100644 --- a/pom.xml +++ b/pom.xml @@ -1629,6 +1629,7 @@ external/kafka + external/kafka-assembly diff --git a/project/SparkBuild.scala b/project/SparkBuild.scala index ded4b5443a904..fbc8983b953b7 100644 --- a/project/SparkBuild.scala +++ b/project/SparkBuild.scala @@ -44,8 +44,9 @@ object BuildCommons { sparkKinesisAsl) = Seq("yarn", "yarn-stable", "java8-tests", "ganglia-lgpl", "kinesis-asl").map(ProjectRef(buildLocation, _)) - val assemblyProjects@Seq(assembly, examples, networkYarn) = - Seq("assembly", "examples", "network-yarn").map(ProjectRef(buildLocation, _)) + val assemblyProjects@Seq(assembly, examples, networkYarn, streamingKafkaAssembly) = + Seq("assembly", "examples", "network-yarn", "streaming-kafka-assembly") + .map(ProjectRef(buildLocation, _)) val tools = ProjectRef(buildLocation, "tools") // Root project. @@ -300,7 +301,14 @@ object Assembly { sys.props.get("hadoop.version") .getOrElse(SbtPomKeys.effectivePom.value.getProperties.get("hadoop.version").asInstanceOf[String]) }, - jarName in assembly := s"${moduleName.value}-${version.value}-hadoop${hadoopVersion.value}.jar", + jarName in assembly <<= (version, moduleName, hadoopVersion) map { (v, mName, hv) => + if (mName.contains("streaming-kafka-assembly")) { + // This must match the same name used in maven (see external/kafka-assembly/pom.xml) + s"${mName}-${v}.jar" + } else { + s"${mName}-${v}-hadoop${hv}.jar" + } + }, mergeStrategy in assembly := { case PathList("org", "datanucleus", xs @ _*) => MergeStrategy.discard case m if m.toLowerCase.endsWith("manifest.mf") => MergeStrategy.discard diff --git a/python/pyspark/serializers.py b/python/pyspark/serializers.py index b8bda835174b2..0ffb41d02f6f6 100644 --- a/python/pyspark/serializers.py +++ b/python/pyspark/serializers.py @@ -70,6 +70,7 @@ class SpecialLengths(object): PYTHON_EXCEPTION_THROWN = -2 TIMING_DATA = -3 END_OF_STREAM = -4 + NULL = -5 class Serializer(object): @@ -133,6 +134,8 @@ def load_stream(self, stream): def _write_with_length(self, obj, stream): serialized = self.dumps(obj) + if serialized is None: + raise ValueError("serialized value should not be None") if len(serialized) > (1 << 31): raise ValueError("can not serialize object larger than 2G") write_int(len(serialized), stream) @@ -145,8 +148,10 @@ def _read_with_length(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError + elif length == SpecialLengths.NULL: + return None obj = stream.read(length) - if obj == "": + if len(obj) < length: raise EOFError return self.loads(obj) @@ -484,6 +489,8 @@ def loads(self, stream): length = read_int(stream) if length == SpecialLengths.END_OF_DATA_SECTION: raise EOFError + elif length == SpecialLengths.NULL: + return None s = stream.read(length) return s.decode("utf-8") if self.use_unicode else s diff --git a/python/pyspark/streaming/kafka.py b/python/pyspark/streaming/kafka.py new file mode 100644 index 0000000000000..19ad71f99d4d5 --- /dev/null +++ b/python/pyspark/streaming/kafka.py @@ -0,0 +1,83 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +from py4j.java_collections import MapConverter +from py4j.java_gateway import java_import, Py4JError + +from pyspark.storagelevel import StorageLevel +from pyspark.serializers import PairDeserializer, NoOpSerializer +from pyspark.streaming import DStream + +__all__ = ['KafkaUtils', 'utf8_decoder'] + + +def utf8_decoder(s): + """ Decode the unicode as UTF-8 """ + return s and s.decode('utf-8') + + +class KafkaUtils(object): + + @staticmethod + def createStream(ssc, zkQuorum, groupId, topics, kafkaParams={}, + storageLevel=StorageLevel.MEMORY_AND_DISK_SER_2, + keyDecoder=utf8_decoder, valueDecoder=utf8_decoder): + """ + Create an input stream that pulls messages from a Kafka Broker. + + :param ssc: StreamingContext object + :param zkQuorum: Zookeeper quorum (hostname:port,hostname:port,..). + :param groupId: The group id for this consumer. + :param topics: Dict of (topic_name -> numPartitions) to consume. + Each partition is consumed in its own thread. + :param kafkaParams: Additional params for Kafka + :param storageLevel: RDD storage level. + :param keyDecoder: A function used to decode key (default is utf8_decoder) + :param valueDecoder: A function used to decode value (default is utf8_decoder) + :return: A DStream object + """ + java_import(ssc._jvm, "org.apache.spark.streaming.kafka.KafkaUtils") + + kafkaParams.update({ + "zookeeper.connect": zkQuorum, + "group.id": groupId, + "zookeeper.connection.timeout.ms": "10000", + }) + if not isinstance(topics, dict): + raise TypeError("topics should be dict") + jtopics = MapConverter().convert(topics, ssc.sparkContext._gateway._gateway_client) + jparam = MapConverter().convert(kafkaParams, ssc.sparkContext._gateway._gateway_client) + jlevel = ssc._sc._getJavaStorageLevel(storageLevel) + + def getClassByName(name): + return ssc._jvm.org.apache.spark.util.Utils.classForName(name) + + try: + array = getClassByName("[B") + decoder = getClassByName("kafka.serializer.DefaultDecoder") + jstream = ssc._jvm.KafkaUtils.createStream(ssc._jssc, array, array, decoder, decoder, + jparam, jtopics, jlevel) + except Py4JError, e: + # TODO: use --jar once it also work on driver + if not e.message or 'call a package' in e.message: + print "No kafka package, please put the assembly jar into classpath:" + print " $ bin/spark-submit --driver-class-path external/kafka-assembly/target/" + \ + "scala-*/spark-streaming-kafka-assembly-*.jar" + raise e + ser = PairDeserializer(NoOpSerializer(), NoOpSerializer()) + stream = DStream(jstream, ssc, ser) + return stream.map(lambda (k, v): (keyDecoder(k), valueDecoder(v))) diff --git a/python/pyspark/tests.py b/python/pyspark/tests.py index fef6c92875a1c..c7d0622d65f25 100644 --- a/python/pyspark/tests.py +++ b/python/pyspark/tests.py @@ -47,9 +47,10 @@ from pyspark.conf import SparkConf from pyspark.context import SparkContext +from pyspark.rdd import RDD from pyspark.files import SparkFiles from pyspark.serializers import read_int, BatchedSerializer, MarshalSerializer, PickleSerializer, \ - CloudPickleSerializer, CompressedSerializer + CloudPickleSerializer, CompressedSerializer, UTF8Deserializer, NoOpSerializer from pyspark.shuffle import Aggregator, InMemoryMerger, ExternalMerger, ExternalSorter from pyspark.sql import SQLContext, IntegerType, Row, ArrayType, StructType, StructField, \ UserDefinedType, DoubleType @@ -716,6 +717,13 @@ def test_sample(self): wr_s21 = rdd.sample(True, 0.4, 21).collect() self.assertNotEqual(set(wr_s11), set(wr_s21)) + def test_null_in_rdd(self): + jrdd = self.sc._jvm.PythonUtils.generateRDDWithNull(self.sc._jsc) + rdd = RDD(jrdd, self.sc, UTF8Deserializer()) + self.assertEqual([u"a", None, u"b"], rdd.collect()) + rdd = RDD(jrdd, self.sc, NoOpSerializer()) + self.assertEqual(["a", None, "b"], rdd.collect()) + def test_multiple_python_java_RDD_conversions(self): # Regression test for SPARK-5361 data = [ From 1bcd46574e442e20f55709d70573f271ce44e5b9 Mon Sep 17 00:00:00 2001 From: Liang-Chi Hsieh Date: Mon, 2 Feb 2015 19:34:25 -0800 Subject: [PATCH 25/52] [SPARK-5512][Mllib] Run the PIC algorithm with initial vector suggected by the PIC paper As suggested by the paper of Power Iteration Clustering, it is useful to set the initial vector v0 as the degree vector d. This pr tries to add a running method for that. Author: Liang-Chi Hsieh Closes #4301 from viirya/pic_degreevector and squashes the following commits: 7db28fb [Liang-Chi Hsieh] Refactor it to address comments. 19cf94e [Liang-Chi Hsieh] Add an option to select initialization method. ec88567 [Liang-Chi Hsieh] Run the PIC algorithm with degree vector d as suggected by the PIC paper. --- .../clustering/PowerIterationClustering.scala | 41 +++++++++++++++++-- .../PowerIterationClusteringSuite.scala | 10 +++++ 2 files changed, 47 insertions(+), 4 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/PowerIterationClustering.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/PowerIterationClustering.scala index fcb9a3643cc48..9b5c155b0a805 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/PowerIterationClustering.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/PowerIterationClustering.scala @@ -43,15 +43,19 @@ class PowerIterationClusteringModel( * * @param k Number of clusters. * @param maxIterations Maximum number of iterations of the PIC algorithm. + * @param initMode Initialization mode. */ class PowerIterationClustering private[clustering] ( private var k: Int, - private var maxIterations: Int) extends Serializable { + private var maxIterations: Int, + private var initMode: String) extends Serializable { import org.apache.spark.mllib.clustering.PowerIterationClustering._ - /** Constructs a PIC instance with default parameters: {k: 2, maxIterations: 100}. */ - def this() = this(k = 2, maxIterations = 100) + /** Constructs a PIC instance with default parameters: {k: 2, maxIterations: 100, + * initMode: "random"}. + */ + def this() = this(k = 2, maxIterations = 100, initMode = "random") /** * Set the number of clusters. @@ -69,6 +73,18 @@ class PowerIterationClustering private[clustering] ( this } + /** + * Set the initialization mode. This can be either "random" to use a random vector + * as vertex properties, or "degree" to use normalized sum similarities. Default: random. + */ + def setInitializationMode(mode: String): this.type = { + this.initMode = mode match { + case "random" | "degree" => mode + case _ => throw new IllegalArgumentException("Invalid initialization mode: " + mode) + } + this + } + /** * Run the PIC algorithm. * @@ -82,7 +98,10 @@ class PowerIterationClustering private[clustering] ( */ def run(similarities: RDD[(Long, Long, Double)]): PowerIterationClusteringModel = { val w = normalize(similarities) - val w0 = randomInit(w) + val w0 = initMode match { + case "random" => randomInit(w) + case "degree" => initDegreeVector(w) + } pic(w0) } @@ -148,6 +167,20 @@ private[clustering] object PowerIterationClustering extends Logging { GraphImpl.fromExistingRDDs(VertexRDD(v0), g.edges) } + /** + * Generates the degree vector as the vertex properties (v0) to start power iteration. + * It is not exactly the node degrees but just the normalized sum similarities. Call it + * as degree vector because it is used in the PIC paper. + * + * @param g a graph representing the normalized affinity matrix (W) + * @return a graph with edges representing W and vertices representing the degree vector + */ + def initDegreeVector(g: Graph[Double, Double]): Graph[Double, Double] = { + val sum = g.vertices.values.sum() + val v0 = g.vertices.mapValues(_ / sum) + GraphImpl.fromExistingRDDs(VertexRDD(v0), g.edges) + } + /** * Runs power iteration. * @param g input graph with edges representing the normalized affinity matrix (W) and vertices diff --git a/mllib/src/test/scala/org/apache/spark/mllib/clustering/PowerIterationClusteringSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/clustering/PowerIterationClusteringSuite.scala index 2bae465d392aa..03ecd9ca730be 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/clustering/PowerIterationClusteringSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/clustering/PowerIterationClusteringSuite.scala @@ -55,6 +55,16 @@ class PowerIterationClusteringSuite extends FunSuite with MLlibTestSparkContext predictions(c) += i } assert(predictions.toSet == Set((0 to 3).toSet, (4 to 15).toSet)) + + val model2 = new PowerIterationClustering() + .setK(2) + .setInitializationMode("degree") + .run(sc.parallelize(similarities, 2)) + val predictions2 = Array.fill(2)(mutable.Set.empty[Long]) + model2.assignments.collect().foreach { case (i, c) => + predictions2(c) += i + } + assert(predictions2.toSet == Set((0 to 3).toSet, (4 to 15).toSet)) } test("normalize and powerIter") { From 8f471a66db0571a76a21c0d93312197fee16174a Mon Sep 17 00:00:00 2001 From: Tor Myklebust Date: Mon, 2 Feb 2015 19:50:14 -0800 Subject: [PATCH 26/52] [SPARK-5472][SQL] A JDBC data source for Spark SQL. This pull request contains a Spark SQL data source that can pull data from, and can put data into, a JDBC database. I have tested both read and write support with H2, MySQL, and Postgres. It would surprise me if both read and write support worked flawlessly out-of-the-box for any other database; different databases have different names for different JDBC data types and different meanings for SQL types with the same name. However, this code is designed (see `DriverQuirks.scala`) to make it *relatively* painless to add support for another database by augmenting the type mapping contained in this PR. Author: Tor Myklebust Closes #4261 from tmyklebu/master and squashes the following commits: cf167ce [Tor Myklebust] Work around other Java tests ruining TestSQLContext. 67893bf [Tor Myklebust] Move the jdbcRDD methods into SQLContext itself. 585f95b [Tor Myklebust] Dependencies go into the project's pom.xml. 829d5ba [Tor Myklebust] Merge branch 'master' of https://github.com/apache/spark 41647ef [Tor Myklebust] Hide a couple things that don't need to be public. 7318aea [Tor Myklebust] Fix scalastyle warnings. a09eeac [Tor Myklebust] JDBC data source for Spark SQL. 176bb98 [Tor Myklebust] Add test deps for JDBC support. --- sql/core/pom.xml | 24 + .../org/apache/spark/sql/jdbc/JDBCUtils.java | 59 +++ .../org/apache/spark/sql/SQLContext.scala | 49 +- .../apache/spark/sql/jdbc/DriverQuirks.scala | 99 +++++ .../org/apache/spark/sql/jdbc/JDBCRDD.scala | 417 ++++++++++++++++++ .../apache/spark/sql/jdbc/JDBCRelation.scala | 133 ++++++ .../spark/sql/jdbc/JavaJDBCTrampoline.scala | 30 ++ .../org/apache/spark/sql/jdbc/jdbc.scala | 235 ++++++++++ .../apache/spark/sql/jdbc/JavaJDBCTest.java | 102 +++++ .../apache/spark/sql/jdbc/DockerHacks.scala | 51 +++ .../org/apache/spark/sql/jdbc/JDBCSuite.scala | 248 +++++++++++ .../spark/sql/jdbc/JDBCWriteSuite.scala | 107 +++++ .../spark/sql/jdbc/MySQLIntegration.scala | 235 ++++++++++ .../spark/sql/jdbc/PostgresIntegration.scala | 149 +++++++ 14 files changed, 1937 insertions(+), 1 deletion(-) create mode 100644 sql/core/src/main/java/org/apache/spark/sql/jdbc/JDBCUtils.java create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/jdbc/DriverQuirks.scala create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRDD.scala create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRelation.scala create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/jdbc/JavaJDBCTrampoline.scala create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/jdbc/jdbc.scala create mode 100644 sql/core/src/test/java/org/apache/spark/sql/jdbc/JavaJDBCTest.java create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/jdbc/DockerHacks.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCSuite.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCWriteSuite.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/jdbc/MySQLIntegration.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/jdbc/PostgresIntegration.scala diff --git a/sql/core/pom.xml b/sql/core/pom.xml index 3e9ef07df9db6..1a0c77d282307 100644 --- a/sql/core/pom.xml +++ b/sql/core/pom.xml @@ -76,6 +76,30 @@ scalacheck_${scala.binary.version} test + + com.h2database + h2 + 1.4.183 + test + + + mysql + mysql-connector-java + 5.1.34 + test + + + org.postgresql + postgresql + 9.3-1102-jdbc41 + test + + + com.spotify + docker-client + 2.7.5 + test + target/scala-${scala.binary.version}/classes diff --git a/sql/core/src/main/java/org/apache/spark/sql/jdbc/JDBCUtils.java b/sql/core/src/main/java/org/apache/spark/sql/jdbc/JDBCUtils.java new file mode 100644 index 0000000000000..aa441b2096f18 --- /dev/null +++ b/sql/core/src/main/java/org/apache/spark/sql/jdbc/JDBCUtils.java @@ -0,0 +1,59 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc; + +import org.apache.spark.Partition; +import org.apache.spark.sql.SQLContext; +import org.apache.spark.sql.DataFrame; + +public class JDBCUtils { + /** + * Construct a DataFrame representing the JDBC table at the database + * specified by url with table name table. + */ + public static DataFrame jdbcRDD(SQLContext sql, String url, String table) { + Partition[] parts = new Partition[1]; + parts[0] = new JDBCPartition(null, 0); + return sql.baseRelationToDataFrame( + new JDBCRelation(url, table, parts, sql)); + } + + /** + * Construct a DataFrame representing the JDBC table at the database + * specified by url with table name table partitioned by parts. + * Here, parts is an array of expressions suitable for insertion into a WHERE + * clause; each one defines one partition. + */ + public static DataFrame jdbcRDD(SQLContext sql, String url, String table, String[] parts) { + Partition[] partitions = new Partition[parts.length]; + for (int i = 0; i < parts.length; i++) + partitions[i] = new JDBCPartition(parts[i], i); + return sql.baseRelationToDataFrame( + new JDBCRelation(url, table, partitions, sql)); + } + + private static JavaJDBCTrampoline trampoline = new JavaJDBCTrampoline(); + + public static void createJDBCTable(DataFrame rdd, String url, String table, boolean allowExisting) { + trampoline.createJDBCTable(rdd, url, table, allowExisting); + } + + public static void insertIntoJDBC(DataFrame rdd, String url, String table, boolean overwrite) { + trampoline.insertIntoJDBC(rdd, url, table, overwrite); + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index d0bbb5f7a34f1..f4692b3ff59d3 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -24,7 +24,7 @@ import scala.collection.immutable import scala.language.implicitConversions import scala.reflect.runtime.universe.TypeTag -import org.apache.spark.SparkContext +import org.apache.spark.{SparkContext, Partition} import org.apache.spark.annotation.{AlphaComponent, DeveloperApi, Experimental} import org.apache.spark.api.java.{JavaSparkContext, JavaRDD} import org.apache.spark.rdd.RDD @@ -36,6 +36,7 @@ import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.catalyst.rules.RuleExecutor import org.apache.spark.sql.execution._ import org.apache.spark.sql.json._ +import org.apache.spark.sql.jdbc.{JDBCPartition, JDBCPartitioningInfo, JDBCRelation} import org.apache.spark.sql.sources.{LogicalRelation, BaseRelation, DDLParser, DataSourceStrategy} import org.apache.spark.sql.types._ import org.apache.spark.util.Utils @@ -334,6 +335,52 @@ class SQLContext(@transient val sparkContext: SparkContext) applySchema(rowRDD, appliedSchema) } + /** + * :: Experimental :: + * Construct an RDD representing the database table accessible via JDBC URL + * url named table. + */ + @Experimental + def jdbcRDD(url: String, table: String): DataFrame = { + jdbcRDD(url, table, null.asInstanceOf[JDBCPartitioningInfo]) + } + + /** + * :: Experimental :: + * Construct an RDD representing the database table accessible via JDBC URL + * url named table. The PartitioningInfo parameter + * gives the name of a column of integral type, a number of partitions, and + * advisory minimum and maximum values for the column. The RDD is + * partitioned according to said column. + */ + @Experimental + def jdbcRDD(url: String, table: String, partitioning: JDBCPartitioningInfo): + DataFrame = { + val parts = JDBCRelation.columnPartition(partitioning) + jdbcRDD(url, table, parts) + } + + /** + * :: Experimental :: + * Construct an RDD representing the database table accessible via JDBC URL + * url named table. The theParts parameter gives a list expressions + * suitable for inclusion in WHERE clauses; each one defines one partition + * of the RDD. + */ + @Experimental + def jdbcRDD(url: String, table: String, theParts: Array[String]): + DataFrame = { + val parts: Array[Partition] = theParts.zipWithIndex.map( + x => JDBCPartition(x._1, x._2).asInstanceOf[Partition]) + jdbcRDD(url, table, parts) + } + + private def jdbcRDD(url: String, table: String, parts: Array[Partition]): + DataFrame = { + val relation = JDBCRelation(url, table, parts)(this) + baseRelationToDataFrame(relation) + } + /** * Registers the given RDD as a temporary table in the catalog. Temporary tables exist only * during the lifetime of this instance of SQLContext. diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/DriverQuirks.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/DriverQuirks.scala new file mode 100644 index 0000000000000..1704be7fcbd30 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/DriverQuirks.scala @@ -0,0 +1,99 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import org.apache.spark.sql.types._ + +import java.sql.Types + + +/** + * Encapsulates workarounds for the extensions, quirks, and bugs in various + * databases. Lots of databases define types that aren't explicitly supported + * by the JDBC spec. Some JDBC drivers also report inaccurate + * information---for instance, BIT(n>1) being reported as a BIT type is quite + * common, even though BIT in JDBC is meant for single-bit values. Also, there + * does not appear to be a standard name for an unbounded string or binary + * type; we use BLOB and CLOB by default but override with database-specific + * alternatives when these are absent or do not behave correctly. + * + * Currently, the only thing DriverQuirks does is handle type mapping. + * `getCatalystType` is used when reading from a JDBC table and `getJDBCType` + * is used when writing to a JDBC table. If `getCatalystType` returns `null`, + * the default type handling is used for the given JDBC type. Similarly, + * if `getJDBCType` returns `(null, None)`, the default type handling is used + * for the given Catalyst type. + */ +private[sql] abstract class DriverQuirks { + def getCatalystType(sqlType: Int, typeName: String, size: Int, md: MetadataBuilder): DataType + def getJDBCType(dt: DataType): (String, Option[Int]) +} + +private[sql] object DriverQuirks { + /** + * Fetch the DriverQuirks class corresponding to a given database url. + */ + def get(url: String): DriverQuirks = { + if (url.substring(0, 10).equals("jdbc:mysql")) { + new MySQLQuirks() + } else if (url.substring(0, 15).equals("jdbc:postgresql")) { + new PostgresQuirks() + } else { + new NoQuirks() + } + } +} + +private[sql] class NoQuirks extends DriverQuirks { + def getCatalystType(sqlType: Int, typeName: String, size: Int, md: MetadataBuilder): DataType = + null + def getJDBCType(dt: DataType): (String, Option[Int]) = (null, None) +} + +private[sql] class PostgresQuirks extends DriverQuirks { + def getCatalystType(sqlType: Int, typeName: String, size: Int, md: MetadataBuilder): DataType = { + if (sqlType == Types.BIT && typeName.equals("bit") && size != 1) { + BinaryType + } else if (sqlType == Types.OTHER && typeName.equals("cidr")) { + StringType + } else if (sqlType == Types.OTHER && typeName.equals("inet")) { + StringType + } else null + } + + def getJDBCType(dt: DataType): (String, Option[Int]) = dt match { + case StringType => ("TEXT", Some(java.sql.Types.CHAR)) + case BinaryType => ("BYTEA", Some(java.sql.Types.BINARY)) + case BooleanType => ("BOOLEAN", Some(java.sql.Types.BOOLEAN)) + case _ => (null, None) + } +} + +private[sql] class MySQLQuirks extends DriverQuirks { + def getCatalystType(sqlType: Int, typeName: String, size: Int, md: MetadataBuilder): DataType = { + if (sqlType == Types.VARBINARY && typeName.equals("BIT") && size != 1) { + // This could instead be a BinaryType if we'd rather return bit-vectors of up to 64 bits as + // byte arrays instead of longs. + md.putLong("binarylong", 1) + LongType + } else if (sqlType == Types.BIT && typeName.equals("TINYINT")) { + BooleanType + } else null + } + def getJDBCType(dt: DataType): (String, Option[Int]) = (null, None) +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRDD.scala new file mode 100644 index 0000000000000..a2f94675fb5a3 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRDD.scala @@ -0,0 +1,417 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import java.sql.{Connection, DatabaseMetaData, DriverManager, ResultSet, ResultSetMetaData, SQLException} +import scala.collection.mutable.ArrayBuffer + +import org.apache.spark.{Logging, Partition, SparkContext, TaskContext} +import org.apache.spark.rdd.RDD +import org.apache.spark.util.NextIterator +import org.apache.spark.sql.catalyst.analysis.HiveTypeCoercion +import org.apache.spark.sql.catalyst.expressions.{Row, SpecificMutableRow} +import org.apache.spark.sql.types._ +import org.apache.spark.sql.sources._ + +private[sql] object JDBCRDD extends Logging { + /** + * Maps a JDBC type to a Catalyst type. This function is called only when + * the DriverQuirks class corresponding to your database driver returns null. + * + * @param sqlType - A field of java.sql.Types + * @return The Catalyst type corresponding to sqlType. + */ + private def getCatalystType(sqlType: Int): DataType = { + val answer = sqlType match { + case java.sql.Types.ARRAY => null + case java.sql.Types.BIGINT => LongType + case java.sql.Types.BINARY => BinaryType + case java.sql.Types.BIT => BooleanType // Per JDBC; Quirks handles quirky drivers. + case java.sql.Types.BLOB => BinaryType + case java.sql.Types.BOOLEAN => BooleanType + case java.sql.Types.CHAR => StringType + case java.sql.Types.CLOB => StringType + case java.sql.Types.DATALINK => null + case java.sql.Types.DATE => DateType + case java.sql.Types.DECIMAL => DecimalType.Unlimited + case java.sql.Types.DISTINCT => null + case java.sql.Types.DOUBLE => DoubleType + case java.sql.Types.FLOAT => FloatType + case java.sql.Types.INTEGER => IntegerType + case java.sql.Types.JAVA_OBJECT => null + case java.sql.Types.LONGNVARCHAR => StringType + case java.sql.Types.LONGVARBINARY => BinaryType + case java.sql.Types.LONGVARCHAR => StringType + case java.sql.Types.NCHAR => StringType + case java.sql.Types.NCLOB => StringType + case java.sql.Types.NULL => null + case java.sql.Types.NUMERIC => DecimalType.Unlimited + case java.sql.Types.OTHER => null + case java.sql.Types.REAL => DoubleType + case java.sql.Types.REF => StringType + case java.sql.Types.ROWID => LongType + case java.sql.Types.SMALLINT => IntegerType + case java.sql.Types.SQLXML => StringType + case java.sql.Types.STRUCT => StringType + case java.sql.Types.TIME => TimestampType + case java.sql.Types.TIMESTAMP => TimestampType + case java.sql.Types.TINYINT => IntegerType + case java.sql.Types.VARBINARY => BinaryType + case java.sql.Types.VARCHAR => StringType + case _ => null + } + + if (answer == null) throw new SQLException("Unsupported type " + sqlType) + answer + } + + /** + * Takes a (schema, table) specification and returns the table's Catalyst + * schema. + * + * @param url - The JDBC url to fetch information from. + * @param table - The table name of the desired table. This may also be a + * SQL query wrapped in parentheses. + * + * @return A StructType giving the table's Catalyst schema. + * @throws SQLException if the table specification is garbage. + * @throws SQLException if the table contains an unsupported type. + */ + def resolveTable(url: String, table: String): StructType = { + val quirks = DriverQuirks.get(url) + val conn: Connection = DriverManager.getConnection(url) + try { + val rs = conn.prepareStatement(s"SELECT * FROM $table WHERE 1=0").executeQuery() + try { + val rsmd = rs.getMetaData + val ncols = rsmd.getColumnCount + var fields = new Array[StructField](ncols); + var i = 0 + while (i < ncols) { + val columnName = rsmd.getColumnName(i + 1) + val dataType = rsmd.getColumnType(i + 1) + val typeName = rsmd.getColumnTypeName(i + 1) + val fieldSize = rsmd.getPrecision(i + 1) + val nullable = rsmd.isNullable(i + 1) != ResultSetMetaData.columnNoNulls + val metadata = new MetadataBuilder().putString("name", columnName) + var columnType = quirks.getCatalystType(dataType, typeName, fieldSize, metadata) + if (columnType == null) columnType = getCatalystType(dataType) + fields(i) = StructField(columnName, columnType, nullable, metadata.build()) + i = i + 1 + } + return new StructType(fields) + } finally { + rs.close() + } + } finally { + conn.close() + } + + throw new RuntimeException("This line is unreachable.") + } + + /** + * Prune all but the specified columns from the specified Catalyst schema. + * + * @param schema - The Catalyst schema of the master table + * @param columns - The list of desired columns + * + * @return A Catalyst schema corresponding to columns in the given order. + */ + private def pruneSchema(schema: StructType, columns: Array[String]): StructType = { + val fieldMap = Map(schema.fields map { x => x.metadata.getString("name") -> x }: _*) + new StructType(columns map { name => fieldMap(name) }) + } + + /** + * Given a driver string and an url, return a function that loads the + * specified driver string then returns a connection to the JDBC url. + * getConnector is run on the driver code, while the function it returns + * is run on the executor. + * + * @param driver - The class name of the JDBC driver for the given url. + * @param url - The JDBC url to connect to. + * + * @return A function that loads the driver and connects to the url. + */ + def getConnector(driver: String, url: String): () => Connection = { + () => { + try { + if (driver != null) Class.forName(driver) + } catch { + case e: ClassNotFoundException => { + logWarning(s"Couldn't find class $driver", e); + } + } + DriverManager.getConnection(url) + } + } + /** + * Build and return JDBCRDD from the given information. + * + * @param sc - Your SparkContext. + * @param schema - The Catalyst schema of the underlying database table. + * @param driver - The class name of the JDBC driver for the given url. + * @param url - The JDBC url to connect to. + * @param fqTable - The fully-qualified table name (or paren'd SQL query) to use. + * @param requiredColumns - The names of the columns to SELECT. + * @param filters - The filters to include in all WHERE clauses. + * @param parts - An array of JDBCPartitions specifying partition ids and + * per-partition WHERE clauses. + * + * @return An RDD representing "SELECT requiredColumns FROM fqTable". + */ + def scanTable(sc: SparkContext, + schema: StructType, + driver: String, + url: String, + fqTable: String, + requiredColumns: Array[String], + filters: Array[Filter], + parts: Array[Partition]): RDD[Row] = { + val prunedSchema = pruneSchema(schema, requiredColumns) + + return new JDBCRDD(sc, + getConnector(driver, url), + prunedSchema, + fqTable, + requiredColumns, + filters, + parts) + } +} + +/** + * An RDD representing a table in a database accessed via JDBC. Both the + * driver code and the workers must be able to access the database; the driver + * needs to fetch the schema while the workers need to fetch the data. + */ +private[sql] class JDBCRDD( + sc: SparkContext, + getConnection: () => Connection, + schema: StructType, + fqTable: String, + columns: Array[String], + filters: Array[Filter], + partitions: Array[Partition]) + extends RDD[Row](sc, Nil) { + + /** + * Retrieve the list of partitions corresponding to this RDD. + */ + override def getPartitions: Array[Partition] = partitions + + /** + * `columns`, but as a String suitable for injection into a SQL query. + */ + private val columnList: String = { + val sb = new StringBuilder() + columns.foreach(x => sb.append(",").append(x)) + if (sb.length == 0) "1" else sb.substring(1) + } + + /** + * Turns a single Filter into a String representing a SQL expression. + * Returns null for an unhandled filter. + */ + private def compileFilter(f: Filter): String = f match { + case EqualTo(attr, value) => s"$attr = $value" + case LessThan(attr, value) => s"$attr < $value" + case GreaterThan(attr, value) => s"$attr > $value" + case LessThanOrEqual(attr, value) => s"$attr <= $value" + case GreaterThanOrEqual(attr, value) => s"$attr >= $value" + case _ => null + } + + /** + * `filters`, but as a WHERE clause suitable for injection into a SQL query. + */ + private val filterWhereClause: String = { + val filterStrings = filters map compileFilter filter (_ != null) + if (filterStrings.size > 0) { + val sb = new StringBuilder("WHERE ") + filterStrings.foreach(x => sb.append(x).append(" AND ")) + sb.substring(0, sb.length - 5) + } else "" + } + + /** + * A WHERE clause representing both `filters`, if any, and the current partition. + */ + private def getWhereClause(part: JDBCPartition): String = { + if (part.whereClause != null && filterWhereClause.length > 0) { + filterWhereClause + " AND " + part.whereClause + } else if (part.whereClause != null) { + "WHERE " + part.whereClause + } else { + filterWhereClause + } + } + + // Each JDBC-to-Catalyst conversion corresponds to a tag defined here so that + // we don't have to potentially poke around in the Metadata once for every + // row. + // Is there a better way to do this? I'd rather be using a type that + // contains only the tags I define. + abstract class JDBCConversion + case object BooleanConversion extends JDBCConversion + case object DateConversion extends JDBCConversion + case object DecimalConversion extends JDBCConversion + case object DoubleConversion extends JDBCConversion + case object FloatConversion extends JDBCConversion + case object IntegerConversion extends JDBCConversion + case object LongConversion extends JDBCConversion + case object BinaryLongConversion extends JDBCConversion + case object StringConversion extends JDBCConversion + case object TimestampConversion extends JDBCConversion + case object BinaryConversion extends JDBCConversion + + /** + * Maps a StructType to a type tag list. + */ + def getConversions(schema: StructType): Array[JDBCConversion] = { + schema.fields.map(sf => sf.dataType match { + case BooleanType => BooleanConversion + case DateType => DateConversion + case DecimalType.Unlimited => DecimalConversion + case DoubleType => DoubleConversion + case FloatType => FloatConversion + case IntegerType => IntegerConversion + case LongType => + if (sf.metadata.contains("binarylong")) BinaryLongConversion else LongConversion + case StringType => StringConversion + case TimestampType => TimestampConversion + case BinaryType => BinaryConversion + case _ => throw new IllegalArgumentException(s"Unsupported field $sf") + }).toArray + } + + + /** + * Runs the SQL query against the JDBC driver. + */ + override def compute(thePart: Partition, context: TaskContext) = new Iterator[Row] { + var closed = false + var finished = false + var gotNext = false + var nextValue: Row = null + + context.addTaskCompletionListener{ context => close() } + val part = thePart.asInstanceOf[JDBCPartition] + val conn = getConnection() + + // H2's JDBC driver does not support the setSchema() method. We pass a + // fully-qualified table name in the SELECT statement. I don't know how to + // talk about a table in a completely portable way. + + val myWhereClause = getWhereClause(part) + + val sqlText = s"SELECT $columnList FROM $fqTable $myWhereClause" + val stmt = conn.prepareStatement(sqlText, + ResultSet.TYPE_FORWARD_ONLY, ResultSet.CONCUR_READ_ONLY) + val rs = stmt.executeQuery() + + val conversions = getConversions(schema) + val mutableRow = new SpecificMutableRow(schema.fields.map(x => x.dataType)) + + def getNext(): Row = { + if (rs.next()) { + var i = 0 + while (i < conversions.length) { + val pos = i + 1 + conversions(i) match { + case BooleanConversion => mutableRow.setBoolean(i, rs.getBoolean(pos)) + case DateConversion => mutableRow.update(i, rs.getDate(pos)) + case DecimalConversion => mutableRow.update(i, rs.getBigDecimal(pos)) + case DoubleConversion => mutableRow.setDouble(i, rs.getDouble(pos)) + case FloatConversion => mutableRow.setFloat(i, rs.getFloat(pos)) + case IntegerConversion => mutableRow.setInt(i, rs.getInt(pos)) + case LongConversion => mutableRow.setLong(i, rs.getLong(pos)) + case StringConversion => mutableRow.setString(i, rs.getString(pos)) + case TimestampConversion => mutableRow.update(i, rs.getTimestamp(pos)) + case BinaryConversion => mutableRow.update(i, rs.getBytes(pos)) + case BinaryLongConversion => { + val bytes = rs.getBytes(pos) + var ans = 0L + var j = 0 + while (j < bytes.size) { + ans = 256*ans + (255 & bytes(j)) + j = j + 1; + } + mutableRow.setLong(i, ans) + } + } + if (rs.wasNull) mutableRow.setNullAt(i) + i = i + 1 + } + mutableRow + } else { + finished = true + null.asInstanceOf[Row] + } + } + + def close() { + if (closed) return + try { + if (null != rs && ! rs.isClosed()) { + rs.close() + } + } catch { + case e: Exception => logWarning("Exception closing resultset", e) + } + try { + if (null != stmt && ! stmt.isClosed()) { + stmt.close() + } + } catch { + case e: Exception => logWarning("Exception closing statement", e) + } + try { + if (null != conn && ! conn.isClosed()) { + conn.close() + } + logInfo("closed connection") + } catch { + case e: Exception => logWarning("Exception closing connection", e) + } + } + + override def hasNext: Boolean = { + if (!finished) { + if (!gotNext) { + nextValue = getNext() + if (finished) { + close() + } + gotNext = true + } + } + !finished + } + + override def next(): Row = { + if (!hasNext) { + throw new NoSuchElementException("End of stream") + } + gotNext = false + nextValue + } + + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRelation.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRelation.scala new file mode 100644 index 0000000000000..e09125e406ba2 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JDBCRelation.scala @@ -0,0 +1,133 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import scala.collection.mutable.ArrayBuffer +import java.sql.DriverManager + +import org.apache.spark.Partition +import org.apache.spark.sql.SQLContext +import org.apache.spark.sql.sources._ + +/** + * Data corresponding to one partition of a JDBCRDD. + */ +private[sql] case class JDBCPartition(whereClause: String, idx: Int) extends Partition { + override def index: Int = idx +} + +/** + * Instructions on how to partition the table among workers. + */ +private[sql] case class JDBCPartitioningInfo( + column: String, + lowerBound: Long, + upperBound: Long, + numPartitions: Int) + +private[sql] object JDBCRelation { + /** + * Given a partitioning schematic (a column of integral type, a number of + * partitions, and upper and lower bounds on the column's value), generate + * WHERE clauses for each partition so that each row in the table appears + * exactly once. The parameters minValue and maxValue are advisory in that + * incorrect values may cause the partitioning to be poor, but no data + * will fail to be represented. + * + * @param column - Column name. Must refer to a column of integral type. + * @param numPartitions - Number of partitions + * @param minValue - Smallest value of column. Advisory. + * @param maxValue - Largest value of column. Advisory. + */ + def columnPartition(partitioning: JDBCPartitioningInfo): Array[Partition] = { + if (partitioning == null) return Array[Partition](JDBCPartition(null, 0)) + + val numPartitions = partitioning.numPartitions + val column = partitioning.column + if (numPartitions == 1) return Array[Partition](JDBCPartition(null, 0)) + // Overflow and silliness can happen if you subtract then divide. + // Here we get a little roundoff, but that's (hopefully) OK. + val stride: Long = (partitioning.upperBound / numPartitions + - partitioning.lowerBound / numPartitions) + var i: Int = 0 + var currentValue: Long = partitioning.lowerBound + var ans = new ArrayBuffer[Partition]() + while (i < numPartitions) { + val lowerBound = (if (i != 0) s"$column >= $currentValue" else null) + currentValue += stride + val upperBound = (if (i != numPartitions - 1) s"$column < $currentValue" else null) + val whereClause = (if (upperBound == null) lowerBound + else if (lowerBound == null) upperBound + else s"$lowerBound AND $upperBound") + ans += JDBCPartition(whereClause, i) + i = i + 1 + } + ans.toArray + } +} + +private[sql] class DefaultSource extends RelationProvider { + /** Returns a new base relation with the given parameters. */ + override def createRelation( + sqlContext: SQLContext, + parameters: Map[String, String]): BaseRelation = { + val url = parameters.getOrElse("url", sys.error("Option 'url' not specified")) + val driver = parameters.getOrElse("driver", null) + val table = parameters.getOrElse("dbtable", sys.error("Option 'dbtable' not specified")) + val partitionColumn = parameters.getOrElse("partitionColumn", null) + val lowerBound = parameters.getOrElse("lowerBound", null) + val upperBound = parameters.getOrElse("upperBound", null) + val numPartitions = parameters.getOrElse("numPartitions", null) + + if (driver != null) Class.forName(driver) + + if ( partitionColumn != null + && (lowerBound == null || upperBound == null || numPartitions == null)) { + sys.error("Partitioning incompletely specified") + } + + val partitionInfo = if (partitionColumn == null) { + null + } else { + JDBCPartitioningInfo(partitionColumn, + lowerBound.toLong, upperBound.toLong, + numPartitions.toInt) + } + val parts = JDBCRelation.columnPartition(partitionInfo) + JDBCRelation(url, table, parts)(sqlContext) + } +} + +private[sql] case class JDBCRelation(url: String, + table: String, + parts: Array[Partition])( + @transient val sqlContext: SQLContext) + extends PrunedFilteredScan { + + override val schema = JDBCRDD.resolveTable(url, table) + + override def buildScan(requiredColumns: Array[String], filters: Array[Filter]) = { + val driver: String = DriverManager.getDriver(url).getClass.getCanonicalName + JDBCRDD.scanTable(sqlContext.sparkContext, + schema, + driver, url, + table, + requiredColumns, filters, + parts) + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JavaJDBCTrampoline.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JavaJDBCTrampoline.scala new file mode 100644 index 0000000000000..86bb67ec74256 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/JavaJDBCTrampoline.scala @@ -0,0 +1,30 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import org.apache.spark.sql.DataFrame + +private[jdbc] class JavaJDBCTrampoline { + def createJDBCTable(rdd: DataFrame, url: String, table: String, allowExisting: Boolean) { + rdd.createJDBCTable(url, table, allowExisting); + } + + def insertIntoJDBC(rdd: DataFrame, url: String, table: String, overwrite: Boolean) { + rdd.insertIntoJDBC(url, table, overwrite); + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/jdbc/jdbc.scala b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/jdbc.scala new file mode 100644 index 0000000000000..34a83f0a5dad8 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/jdbc/jdbc.scala @@ -0,0 +1,235 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql + +import java.sql.{Connection, DriverManager, PreparedStatement} +import org.apache.spark.{Logging, Partition} +import org.apache.spark.sql._ +import org.apache.spark.sql.sources.LogicalRelation + +import org.apache.spark.sql.jdbc.{JDBCPartitioningInfo, JDBCRelation, JDBCPartition} +import org.apache.spark.sql.types._ + +package object jdbc { + object JDBCWriteDetails extends Logging { + /** + * Returns a PreparedStatement that inserts a row into table via conn. + */ + private def insertStatement(conn: Connection, table: String, rddSchema: StructType): + PreparedStatement = { + val sql = new StringBuilder(s"INSERT INTO $table VALUES (") + var fieldsLeft = rddSchema.fields.length + while (fieldsLeft > 0) { + sql.append("?") + if (fieldsLeft > 1) sql.append(", ") else sql.append(")") + fieldsLeft = fieldsLeft - 1 + } + conn.prepareStatement(sql.toString) + } + + /** + * Saves a partition of a DataFrame to the JDBC database. This is done in + * a single database transaction in order to avoid repeatedly inserting + * data as much as possible. + * + * It is still theoretically possible for rows in a DataFrame to be + * inserted into the database more than once if a stage somehow fails after + * the commit occurs but before the stage can return successfully. + * + * This is not a closure inside saveTable() because apparently cosmetic + * implementation changes elsewhere might easily render such a closure + * non-Serializable. Instead, we explicitly close over all variables that + * are used. + */ + private[jdbc] def savePartition(url: String, table: String, iterator: Iterator[Row], + rddSchema: StructType, nullTypes: Array[Int]): Iterator[Byte] = { + val conn = DriverManager.getConnection(url) + var committed = false + try { + conn.setAutoCommit(false) // Everything in the same db transaction. + val stmt = insertStatement(conn, table, rddSchema) + try { + while (iterator.hasNext) { + val row = iterator.next() + val numFields = rddSchema.fields.length + var i = 0 + while (i < numFields) { + if (row.isNullAt(i)) { + stmt.setNull(i + 1, nullTypes(i)) + } else { + rddSchema.fields(i).dataType match { + case IntegerType => stmt.setInt(i + 1, row.getInt(i)) + case LongType => stmt.setLong(i + 1, row.getLong(i)) + case DoubleType => stmt.setDouble(i + 1, row.getDouble(i)) + case FloatType => stmt.setFloat(i + 1, row.getFloat(i)) + case ShortType => stmt.setInt(i + 1, row.getShort(i)) + case ByteType => stmt.setInt(i + 1, row.getByte(i)) + case BooleanType => stmt.setBoolean(i + 1, row.getBoolean(i)) + case StringType => stmt.setString(i + 1, row.getString(i)) + case BinaryType => stmt.setBytes(i + 1, row.getAs[Array[Byte]](i)) + case TimestampType => stmt.setTimestamp(i + 1, row.getAs[java.sql.Timestamp](i)) + case DateType => stmt.setDate(i + 1, row.getAs[java.sql.Date](i)) + case DecimalType.Unlimited => stmt.setBigDecimal(i + 1, + row.getAs[java.math.BigDecimal](i)) + case _ => throw new IllegalArgumentException( + s"Can't translate non-null value for field $i") + } + } + i = i + 1 + } + stmt.executeUpdate() + } + } finally { + stmt.close() + } + conn.commit() + committed = true + } finally { + if (!committed) { + // The stage must fail. We got here through an exception path, so + // let the exception through unless rollback() or close() want to + // tell the user about another problem. + conn.rollback() + conn.close() + } else { + // The stage must succeed. We cannot propagate any exception close() might throw. + try { + conn.close() + } catch { + case e: Exception => logWarning("Transaction succeeded, but closing failed", e) + } + } + } + Array[Byte]().iterator + } + } + + /** + * Make it so that you can call createJDBCTable and insertIntoJDBC on a DataFrame. + */ + implicit class JDBCDataFrame(rdd: DataFrame) { + /** + * Compute the schema string for this RDD. + */ + private def schemaString(url: String): String = { + val sb = new StringBuilder() + val quirks = DriverQuirks.get(url) + rdd.schema.fields foreach { field => { + val name = field.name + var typ: String = quirks.getJDBCType(field.dataType)._1 + if (typ == null) typ = field.dataType match { + case IntegerType => "INTEGER" + case LongType => "BIGINT" + case DoubleType => "DOUBLE PRECISION" + case FloatType => "REAL" + case ShortType => "INTEGER" + case ByteType => "BYTE" + case BooleanType => "BIT(1)" + case StringType => "TEXT" + case BinaryType => "BLOB" + case TimestampType => "TIMESTAMP" + case DateType => "DATE" + case DecimalType.Unlimited => "DECIMAL(40,20)" + case _ => throw new IllegalArgumentException(s"Don't know how to save $field to JDBC") + } + val nullable = if (field.nullable) "" else "NOT NULL" + sb.append(s", $name $typ $nullable") + }} + if (sb.length < 2) "" else sb.substring(2) + } + + /** + * Saves the RDD to the database in a single transaction. + */ + private def saveTable(url: String, table: String) { + val quirks = DriverQuirks.get(url) + var nullTypes: Array[Int] = rdd.schema.fields.map(field => { + var nullType: Option[Int] = quirks.getJDBCType(field.dataType)._2 + if (nullType.isEmpty) { + field.dataType match { + case IntegerType => java.sql.Types.INTEGER + case LongType => java.sql.Types.BIGINT + case DoubleType => java.sql.Types.DOUBLE + case FloatType => java.sql.Types.REAL + case ShortType => java.sql.Types.INTEGER + case ByteType => java.sql.Types.INTEGER + case BooleanType => java.sql.Types.BIT + case StringType => java.sql.Types.CLOB + case BinaryType => java.sql.Types.BLOB + case TimestampType => java.sql.Types.TIMESTAMP + case DateType => java.sql.Types.DATE + case DecimalType.Unlimited => java.sql.Types.DECIMAL + case _ => throw new IllegalArgumentException( + s"Can't translate null value for field $field") + } + } else nullType.get + }).toArray + + val rddSchema = rdd.schema + rdd.mapPartitions(iterator => JDBCWriteDetails.savePartition( + url, table, iterator, rddSchema, nullTypes)).collect() + } + + /** + * Save this RDD to a JDBC database at `url` under the table name `table`. + * This will run a `CREATE TABLE` and a bunch of `INSERT INTO` statements. + * If you pass `true` for `allowExisting`, it will drop any table with the + * given name; if you pass `false`, it will throw if the table already + * exists. + */ + def createJDBCTable(url: String, table: String, allowExisting: Boolean) { + val conn = DriverManager.getConnection(url) + try { + if (allowExisting) { + val sql = s"DROP TABLE IF EXISTS $table" + conn.prepareStatement(sql).executeUpdate() + } + val schema = schemaString(url) + val sql = s"CREATE TABLE $table ($schema)" + conn.prepareStatement(sql).executeUpdate() + } finally { + conn.close() + } + saveTable(url, table) + } + + /** + * Save this RDD to a JDBC database at `url` under the table name `table`. + * Assumes the table already exists and has a compatible schema. If you + * pass `true` for `overwrite`, it will `TRUNCATE` the table before + * performing the `INSERT`s. + * + * The table must already exist on the database. It must have a schema + * that is compatible with the schema of this RDD; inserting the rows of + * the RDD in order via the simple statement + * `INSERT INTO table VALUES (?, ?, ..., ?)` should not fail. + */ + def insertIntoJDBC(url: String, table: String, overwrite: Boolean) { + if (overwrite) { + val conn = DriverManager.getConnection(url) + try { + val sql = s"TRUNCATE TABLE $table" + conn.prepareStatement(sql).executeUpdate() + } finally { + conn.close() + } + } + saveTable(url, table) + } + } // implicit class JDBCDataFrame +} // package object jdbc diff --git a/sql/core/src/test/java/org/apache/spark/sql/jdbc/JavaJDBCTest.java b/sql/core/src/test/java/org/apache/spark/sql/jdbc/JavaJDBCTest.java new file mode 100644 index 0000000000000..80bd74f5b5525 --- /dev/null +++ b/sql/core/src/test/java/org/apache/spark/sql/jdbc/JavaJDBCTest.java @@ -0,0 +1,102 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc; + +import org.junit.*; +import static org.junit.Assert.*; +import java.sql.Connection; +import java.sql.DriverManager; + +import org.apache.spark.SparkEnv; +import org.apache.spark.api.java.JavaSparkContext; +import org.apache.spark.sql.SQLContext; +import org.apache.spark.sql.DataFrame; +import org.apache.spark.sql.Row; +import org.apache.spark.sql.api.java.*; +import org.apache.spark.sql.test.TestSQLContext$; + +public class JavaJDBCTest { + static String url = "jdbc:h2:mem:testdb1"; + + static Connection conn = null; + + // This variable will always be null if TestSQLContext is intact when running + // these tests. Some Java tests do not play nicely with others, however; + // they create a SparkContext of their own at startup and stop it at exit. + // This renders TestSQLContext inoperable, meaning we have to do the same + // thing. If this variable is nonnull, that means we allocated a + // SparkContext of our own and that we need to stop it at teardown. + static JavaSparkContext localSparkContext = null; + + static SQLContext sql = TestSQLContext$.MODULE$; + + @Before + public void beforeTest() throws Exception { + if (SparkEnv.get() == null) { // A previous test destroyed TestSQLContext. + localSparkContext = new JavaSparkContext("local", "JavaAPISuite"); + sql = new SQLContext(localSparkContext); + } + Class.forName("org.h2.Driver"); + conn = DriverManager.getConnection(url); + conn.prepareStatement("create schema test").executeUpdate(); + conn.prepareStatement("create table test.people (name TEXT(32) NOT NULL, theid INTEGER NOT NULL)").executeUpdate(); + conn.prepareStatement("insert into test.people values ('fred', 1)").executeUpdate(); + conn.prepareStatement("insert into test.people values ('mary', 2)").executeUpdate(); + conn.prepareStatement("insert into test.people values ('joe', 3)").executeUpdate(); + conn.commit(); + } + + @After + public void afterTest() throws Exception { + if (localSparkContext != null) { + localSparkContext.stop(); + localSparkContext = null; + } + try { + conn.close(); + } finally { + conn = null; + } + } + + @Test + public void basicTest() throws Exception { + DataFrame rdd = JDBCUtils.jdbcRDD(sql, url, "TEST.PEOPLE"); + Row[] rows = rdd.collect(); + assertEquals(rows.length, 3); + } + + @Test + public void partitioningTest() throws Exception { + String[] parts = new String[2]; + parts[0] = "THEID < 2"; + parts[1] = "THEID = 2"; // Deliberately forget about one of them. + DataFrame rdd = JDBCUtils.jdbcRDD(sql, url, "TEST.PEOPLE", parts); + Row[] rows = rdd.collect(); + assertEquals(rows.length, 2); + } + + @Test + public void writeTest() throws Exception { + DataFrame rdd = JDBCUtils.jdbcRDD(sql, url, "TEST.PEOPLE"); + JDBCUtils.createJDBCTable(rdd, url, "TEST.PEOPLECOPY", false); + DataFrame rdd2 = JDBCUtils.jdbcRDD(sql, url, "TEST.PEOPLECOPY"); + Row[] rows = rdd2.collect(); + assertEquals(rows.length, 3); + } +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/jdbc/DockerHacks.scala b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/DockerHacks.scala new file mode 100644 index 0000000000000..f332cb389f339 --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/DockerHacks.scala @@ -0,0 +1,51 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import scala.collection.mutable.MutableList + +import com.spotify.docker.client._ + +/** + * A factory and morgue for DockerClient objects. In the DockerClient we use, + * calling close() closes the desired DockerClient but also renders all other + * DockerClients inoperable. This is inconvenient if we have more than one + * open, such as during tests. + */ +object DockerClientFactory { + var numClients: Int = 0 + val zombies = new MutableList[DockerClient]() + + def get(): DockerClient = { + this.synchronized { + numClients = numClients + 1 + DefaultDockerClient.fromEnv.build() + } + } + + def close(dc: DockerClient) { + this.synchronized { + numClients = numClients - 1 + zombies += dc + if (numClients == 0) { + zombies.foreach(_.close()) + zombies.clear() + } + } + } +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCSuite.scala new file mode 100644 index 0000000000000..d25c1390db15c --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCSuite.scala @@ -0,0 +1,248 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import java.math.BigDecimal +import org.apache.spark.sql.test._ +import org.scalatest.{FunSuite, BeforeAndAfter} +import java.sql.DriverManager +import TestSQLContext._ + +class JDBCSuite extends FunSuite with BeforeAndAfter { + val url = "jdbc:h2:mem:testdb0" + var conn: java.sql.Connection = null + + val testBytes = Array[Byte](99.toByte, 134.toByte, 135.toByte, 200.toByte, 205.toByte) + + before { + Class.forName("org.h2.Driver") + conn = DriverManager.getConnection(url) + conn.prepareStatement("create schema test").executeUpdate() + conn.prepareStatement("create table test.people (name TEXT(32) NOT NULL, theid INTEGER NOT NULL)").executeUpdate() + conn.prepareStatement("insert into test.people values ('fred', 1)").executeUpdate() + conn.prepareStatement("insert into test.people values ('mary', 2)").executeUpdate() + conn.prepareStatement("insert into test.people values ('joe', 3)").executeUpdate() + conn.commit() + + sql( + s""" + |CREATE TEMPORARY TABLE foobar + |USING org.apache.spark.sql.jdbc + |OPTIONS (url '$url', dbtable 'TEST.PEOPLE') + """.stripMargin.replaceAll("\n", " ")) + + sql( + s""" + |CREATE TEMPORARY TABLE parts + |USING org.apache.spark.sql.jdbc + |OPTIONS (url '$url', dbtable 'TEST.PEOPLE', + |partitionColumn 'THEID', lowerBound '1', upperBound '4', numPartitions '3') + """.stripMargin.replaceAll("\n", " ")) + + conn.prepareStatement("create table test.inttypes (a INT, b BOOLEAN, c TINYINT, " + + "d SMALLINT, e BIGINT)").executeUpdate() + conn.prepareStatement("insert into test.inttypes values (1, false, 3, 4, 1234567890123)" + ).executeUpdate() + conn.prepareStatement("insert into test.inttypes values (null, null, null, null, null)" + ).executeUpdate() + conn.commit() + sql( + s""" + |CREATE TEMPORARY TABLE inttypes + |USING org.apache.spark.sql.jdbc + |OPTIONS (url '$url', dbtable 'TEST.INTTYPES') + """.stripMargin.replaceAll("\n", " ")) + + conn.prepareStatement("create table test.strtypes (a BINARY(20), b VARCHAR(20), " + + "c VARCHAR_IGNORECASE(20), d CHAR(20), e BLOB, f CLOB)").executeUpdate() + var stmt = conn.prepareStatement("insert into test.strtypes values (?, ?, ?, ?, ?, ?)") + stmt.setBytes(1, testBytes) + stmt.setString(2, "Sensitive") + stmt.setString(3, "Insensitive") + stmt.setString(4, "Twenty-byte CHAR") + stmt.setBytes(5, testBytes) + stmt.setString(6, "I am a clob!") + stmt.executeUpdate() + sql( + s""" + |CREATE TEMPORARY TABLE strtypes + |USING org.apache.spark.sql.jdbc + |OPTIONS (url '$url', dbtable 'TEST.STRTYPES') + """.stripMargin.replaceAll("\n", " ")) + + conn.prepareStatement("create table test.timetypes (a TIME, b DATE, c TIMESTAMP)" + ).executeUpdate() + conn.prepareStatement("insert into test.timetypes values ('12:34:56', " + + "'1996-01-01', '2002-02-20 11:22:33.543543543')").executeUpdate() + conn.commit() + sql( + s""" + |CREATE TEMPORARY TABLE timetypes + |USING org.apache.spark.sql.jdbc + |OPTIONS (url '$url', dbtable 'TEST.TIMETYPES') + """.stripMargin.replaceAll("\n", " ")) + + + conn.prepareStatement("create table test.flttypes (a DOUBLE, b REAL, c DECIMAL(40, 20))" + ).executeUpdate() + conn.prepareStatement("insert into test.flttypes values (" + + "1.0000000000000002220446049250313080847263336181640625, " + + "1.00000011920928955078125, " + + "123456789012345.543215432154321)").executeUpdate() + conn.commit() + sql( + s""" + |CREATE TEMPORARY TABLE flttypes + |USING org.apache.spark.sql.jdbc + |OPTIONS (url '$url', dbtable 'TEST.FLTTYPES') + """.stripMargin.replaceAll("\n", " ")) + + // Untested: IDENTITY, OTHER, UUID, ARRAY, and GEOMETRY types. + } + + after { + conn.close() + } + + test("SELECT *") { + assert(sql("SELECT * FROM foobar").collect().size == 3) + } + + test("SELECT * WHERE (simple predicates)") { + assert(sql("SELECT * FROM foobar WHERE THEID < 1").collect().size == 0) + assert(sql("SELECT * FROM foobar WHERE THEID != 2").collect().size == 2) + assert(sql("SELECT * FROM foobar WHERE THEID = 1").collect().size == 1) + } + + test("SELECT first field") { + val names = sql("SELECT NAME FROM foobar").collect().map(x => x.getString(0)).sortWith(_ < _) + assert(names.size == 3) + assert(names(0).equals("fred")) + assert(names(1).equals("joe")) + assert(names(2).equals("mary")) + } + + test("SELECT second field") { + val ids = sql("SELECT THEID FROM foobar").collect().map(x => x.getInt(0)).sortWith(_ < _) + assert(ids.size == 3) + assert(ids(0) == 1) + assert(ids(1) == 2) + assert(ids(2) == 3) + } + + test("SELECT * partitioned") { + assert(sql("SELECT * FROM parts").collect().size == 3) + } + + test("SELECT WHERE (simple predicates) partitioned") { + assert(sql("SELECT * FROM parts WHERE THEID < 1").collect().size == 0) + assert(sql("SELECT * FROM parts WHERE THEID != 2").collect().size == 2) + assert(sql("SELECT THEID FROM parts WHERE THEID = 1").collect().size == 1) + } + + test("SELECT second field partitioned") { + val ids = sql("SELECT THEID FROM parts").collect().map(x => x.getInt(0)).sortWith(_ < _) + assert(ids.size == 3) + assert(ids(0) == 1) + assert(ids(1) == 2) + assert(ids(2) == 3) + } + + test("Basic API") { + assert(TestSQLContext.jdbcRDD(url, "TEST.PEOPLE").collect.size == 3) + } + + test("Partitioning via JDBCPartitioningInfo API") { + val parts = JDBCPartitioningInfo("THEID", 0, 4, 3) + assert(TestSQLContext.jdbcRDD(url, "TEST.PEOPLE", parts).collect.size == 3) + } + + test("Partitioning via list-of-where-clauses API") { + val parts = Array[String]("THEID < 2", "THEID >= 2") + assert(TestSQLContext.jdbcRDD(url, "TEST.PEOPLE", parts).collect.size == 3) + } + + test("H2 integral types") { + val rows = sql("SELECT * FROM inttypes WHERE A IS NOT NULL").collect() + assert(rows.size == 1) + assert(rows(0).getInt(0) == 1) + assert(rows(0).getBoolean(1) == false) + assert(rows(0).getInt(2) == 3) + assert(rows(0).getInt(3) == 4) + assert(rows(0).getLong(4) == 1234567890123L) + } + + test("H2 null entries") { + val rows = sql("SELECT * FROM inttypes WHERE A IS NULL").collect() + assert(rows.size == 1) + assert(rows(0).isNullAt(0)) + assert(rows(0).isNullAt(1)) + assert(rows(0).isNullAt(2)) + assert(rows(0).isNullAt(3)) + assert(rows(0).isNullAt(4)) + } + + test("H2 string types") { + val rows = sql("SELECT * FROM strtypes").collect() + assert(rows(0).getAs[Array[Byte]](0).sameElements(testBytes)) + assert(rows(0).getString(1).equals("Sensitive")) + assert(rows(0).getString(2).equals("Insensitive")) + assert(rows(0).getString(3).equals("Twenty-byte CHAR")) + assert(rows(0).getAs[Array[Byte]](4).sameElements(testBytes)) + assert(rows(0).getString(5).equals("I am a clob!")) + } + + test("H2 time types") { + val rows = sql("SELECT * FROM timetypes").collect() + assert(rows(0).getAs[java.sql.Timestamp](0).getHours == 12) + assert(rows(0).getAs[java.sql.Timestamp](0).getMinutes == 34) + assert(rows(0).getAs[java.sql.Timestamp](0).getSeconds == 56) + assert(rows(0).getAs[java.sql.Date](1).getYear == 96) + assert(rows(0).getAs[java.sql.Date](1).getMonth == 0) + assert(rows(0).getAs[java.sql.Date](1).getDate == 1) + assert(rows(0).getAs[java.sql.Timestamp](2).getYear == 102) + assert(rows(0).getAs[java.sql.Timestamp](2).getMonth == 1) + assert(rows(0).getAs[java.sql.Timestamp](2).getDate == 20) + assert(rows(0).getAs[java.sql.Timestamp](2).getHours == 11) + assert(rows(0).getAs[java.sql.Timestamp](2).getMinutes == 22) + assert(rows(0).getAs[java.sql.Timestamp](2).getSeconds == 33) + assert(rows(0).getAs[java.sql.Timestamp](2).getNanos == 543543543) + } + + test("H2 floating-point types") { + val rows = sql("SELECT * FROM flttypes").collect() + assert(rows(0).getDouble(0) == 1.00000000000000022) // Yes, I meant ==. + assert(rows(0).getDouble(1) == 1.00000011920928955) // Yes, I meant ==. + assert(rows(0).getAs[BigDecimal](2) + .equals(new BigDecimal("123456789012345.54321543215432100000"))) + } + + + test("SQL query as table name") { + sql( + s""" + |CREATE TEMPORARY TABLE hack + |USING org.apache.spark.sql.jdbc + |OPTIONS (url '$url', dbtable '(SELECT B, B*B FROM TEST.FLTTYPES)') + """.stripMargin.replaceAll("\n", " ")) + val rows = sql("SELECT * FROM hack").collect() + assert(rows(0).getDouble(0) == 1.00000011920928955) // Yes, I meant ==. + // For some reason, H2 computes this square incorrectly... + assert(math.abs(rows(0).getDouble(1) - 1.00000023841859331) < 1e-12) + } +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCWriteSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCWriteSuite.scala new file mode 100644 index 0000000000000..e581ac9b50c2b --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/JDBCWriteSuite.scala @@ -0,0 +1,107 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import java.math.BigDecimal +import org.apache.spark.sql.Row +import org.apache.spark.sql.types._ +import org.apache.spark.sql.test._ +import org.scalatest.{FunSuite, BeforeAndAfter} +import java.sql.DriverManager +import TestSQLContext._ + +class JDBCWriteSuite extends FunSuite with BeforeAndAfter { + val url = "jdbc:h2:mem:testdb2" + var conn: java.sql.Connection = null + + before { + Class.forName("org.h2.Driver") + conn = DriverManager.getConnection(url) + conn.prepareStatement("create schema test").executeUpdate() + } + + after { + conn.close() + } + + val sc = TestSQLContext.sparkContext + + val arr2x2 = Array[Row](Row.apply("dave", 42), Row.apply("mary", 222)) + val arr1x2 = Array[Row](Row.apply("fred", 3)) + val schema2 = StructType( + StructField("name", StringType) :: + StructField("id", IntegerType) :: Nil) + + val arr2x3 = Array[Row](Row.apply("dave", 42, 1), Row.apply("mary", 222, 2)) + val schema3 = StructType( + StructField("name", StringType) :: + StructField("id", IntegerType) :: + StructField("seq", IntegerType) :: Nil) + + test("Basic CREATE") { + val srdd = TestSQLContext.applySchema(sc.parallelize(arr2x2), schema2) + + srdd.createJDBCTable(url, "TEST.BASICCREATETEST", false) + assert(2 == TestSQLContext.jdbcRDD(url, "TEST.BASICCREATETEST").count) + assert(2 == TestSQLContext.jdbcRDD(url, "TEST.BASICCREATETEST").collect()(0).length) + } + + test("CREATE with overwrite") { + val srdd = TestSQLContext.applySchema(sc.parallelize(arr2x3), schema3) + val srdd2 = TestSQLContext.applySchema(sc.parallelize(arr1x2), schema2) + + srdd.createJDBCTable(url, "TEST.DROPTEST", false) + assert(2 == TestSQLContext.jdbcRDD(url, "TEST.DROPTEST").count) + assert(3 == TestSQLContext.jdbcRDD(url, "TEST.DROPTEST").collect()(0).length) + + srdd2.createJDBCTable(url, "TEST.DROPTEST", true) + assert(1 == TestSQLContext.jdbcRDD(url, "TEST.DROPTEST").count) + assert(2 == TestSQLContext.jdbcRDD(url, "TEST.DROPTEST").collect()(0).length) + } + + test("CREATE then INSERT to append") { + val srdd = TestSQLContext.applySchema(sc.parallelize(arr2x2), schema2) + val srdd2 = TestSQLContext.applySchema(sc.parallelize(arr1x2), schema2) + + srdd.createJDBCTable(url, "TEST.APPENDTEST", false) + srdd2.insertIntoJDBC(url, "TEST.APPENDTEST", false) + assert(3 == TestSQLContext.jdbcRDD(url, "TEST.APPENDTEST").count) + assert(2 == TestSQLContext.jdbcRDD(url, "TEST.APPENDTEST").collect()(0).length) + } + + test("CREATE then INSERT to truncate") { + val srdd = TestSQLContext.applySchema(sc.parallelize(arr2x2), schema2) + val srdd2 = TestSQLContext.applySchema(sc.parallelize(arr1x2), schema2) + + srdd.createJDBCTable(url, "TEST.TRUNCATETEST", false) + srdd2.insertIntoJDBC(url, "TEST.TRUNCATETEST", true) + assert(1 == TestSQLContext.jdbcRDD(url, "TEST.TRUNCATETEST").count) + assert(2 == TestSQLContext.jdbcRDD(url, "TEST.TRUNCATETEST").collect()(0).length) + } + + test("Incompatible INSERT to append") { + val srdd = TestSQLContext.applySchema(sc.parallelize(arr2x2), schema2) + val srdd2 = TestSQLContext.applySchema(sc.parallelize(arr2x3), schema3) + + srdd.createJDBCTable(url, "TEST.INCOMPATIBLETEST", false) + intercept[org.apache.spark.SparkException] { + srdd2.insertIntoJDBC(url, "TEST.INCOMPATIBLETEST", true) + } + } + +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/jdbc/MySQLIntegration.scala b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/MySQLIntegration.scala new file mode 100644 index 0000000000000..89920f2650c3a --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/MySQLIntegration.scala @@ -0,0 +1,235 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import java.math.BigDecimal +import java.sql.{Date, DriverManager, Timestamp} +import com.spotify.docker.client.{DefaultDockerClient, DockerClient} +import com.spotify.docker.client.messages.ContainerConfig +import org.scalatest.{FunSuite, BeforeAndAfterAll, Ignore} + +import org.apache.spark.{SparkConf, SparkContext} +import org.apache.spark.SparkContext._ +import org.apache.spark.sql._ +import org.apache.spark.sql.test._ +import TestSQLContext._ + +import org.apache.spark.sql.jdbc._ + +class MySQLDatabase { + val docker: DockerClient = DockerClientFactory.get() + val containerId = { + println("Pulling mysql") + docker.pull("mysql") + println("Configuring container") + val config = (ContainerConfig.builder().image("mysql") + .env("MYSQL_ROOT_PASSWORD=rootpass") + .build()) + println("Creating container") + val id = docker.createContainer(config).id + println("Starting container " + id) + docker.startContainer(id) + id + } + val ip = docker.inspectContainer(containerId).networkSettings.ipAddress + + def close() { + try { + println("Killing container " + containerId) + docker.killContainer(containerId) + println("Removing container " + containerId) + docker.removeContainer(containerId) + println("Closing docker client") + DockerClientFactory.close(docker) + } catch { + case e: Exception => { + println(e) + println("You may need to clean this up manually.") + throw e + } + } + } +} + +@Ignore class MySQLIntegration extends FunSuite with BeforeAndAfterAll { + var ip: String = null + + def url(ip: String): String = url(ip, "mysql") + def url(ip: String, db: String): String = s"jdbc:mysql://$ip:3306/$db?user=root&password=rootpass" + + def waitForDatabase(ip: String, maxMillis: Long) { + println("Waiting for database to start up.") + val before = System.currentTimeMillis() + var lastException: java.sql.SQLException = null + while (true) { + if (System.currentTimeMillis() > before + maxMillis) { + throw new java.sql.SQLException(s"Database not up after $maxMillis ms.", lastException) + } + try { + val conn = java.sql.DriverManager.getConnection(url(ip)) + conn.close() + println("Database is up.") + return; + } catch { + case e: java.sql.SQLException => { + lastException = e + java.lang.Thread.sleep(250) + } + } + } + } + + def setupDatabase(ip: String) { + val conn = java.sql.DriverManager.getConnection(url(ip)) + try { + conn.prepareStatement("CREATE DATABASE foo").executeUpdate() + conn.prepareStatement("CREATE TABLE foo.tbl (x INTEGER, y TEXT(8))").executeUpdate() + conn.prepareStatement("INSERT INTO foo.tbl VALUES (42,'fred')").executeUpdate() + conn.prepareStatement("INSERT INTO foo.tbl VALUES (17,'dave')").executeUpdate() + + conn.prepareStatement("CREATE TABLE foo.numbers (onebit BIT(1), tenbits BIT(10), " + + "small SMALLINT, med MEDIUMINT, nor INT, big BIGINT, deci DECIMAL(40,20), flt FLOAT, " + + "dbl DOUBLE)").executeUpdate() + conn.prepareStatement("INSERT INTO foo.numbers VALUES (b'0', b'1000100101', " + + "17, 77777, 123456789, 123456789012345, 123456789012345.123456789012345, " + + "42.75, 1.0000000000000002)").executeUpdate() + + conn.prepareStatement("CREATE TABLE foo.dates (d DATE, t TIME, dt DATETIME, ts TIMESTAMP, " + + "yr YEAR)").executeUpdate() + conn.prepareStatement("INSERT INTO foo.dates VALUES ('1991-11-09', '13:31:24', " + + "'1996-01-01 01:23:45', '2009-02-13 23:31:30', '2001')").executeUpdate() + + // TODO: Test locale conversion for strings. + conn.prepareStatement("CREATE TABLE foo.strings (a CHAR(10), b VARCHAR(10), c TINYTEXT, " + + "d TEXT, e MEDIUMTEXT, f LONGTEXT, g BINARY(4), h VARBINARY(10), i BLOB)" + ).executeUpdate() + conn.prepareStatement("INSERT INTO foo.strings VALUES ('the', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog')").executeUpdate() + } finally { + conn.close() + } + } + + var db: MySQLDatabase = null + + override def beforeAll() { + // If you load the MySQL driver here, DriverManager will deadlock. The + // MySQL driver gets loaded when its jar gets loaded, unlike the Postgres + // and H2 drivers. + //Class.forName("com.mysql.jdbc.Driver") + + db = new MySQLDatabase() + waitForDatabase(db.ip, 60000) + setupDatabase(db.ip) + ip = db.ip + } + + override def afterAll() { + db.close() + } + + test("Basic test") { + val rdd = TestSQLContext.jdbcRDD(url(ip, "foo"), "tbl") + val rows = rdd.collect + assert(rows.length == 2) + val types = rows(0).toSeq.map(x => x.getClass.toString) + assert(types.length == 2) + assert(types(0).equals("class java.lang.Integer")) + assert(types(1).equals("class java.lang.String")) + } + + test("Numeric types") { + val rdd = TestSQLContext.jdbcRDD(url(ip, "foo"), "numbers") + val rows = rdd.collect + assert(rows.length == 1) + val types = rows(0).toSeq.map(x => x.getClass.toString) + assert(types.length == 9) + println(types(1)) + assert(types(0).equals("class java.lang.Boolean")) + assert(types(1).equals("class java.lang.Long")) + assert(types(2).equals("class java.lang.Integer")) + assert(types(3).equals("class java.lang.Integer")) + assert(types(4).equals("class java.lang.Integer")) + assert(types(5).equals("class java.lang.Long")) + assert(types(6).equals("class java.math.BigDecimal")) + assert(types(7).equals("class java.lang.Double")) + assert(types(8).equals("class java.lang.Double")) + assert(rows(0).getBoolean(0) == false) + assert(rows(0).getLong(1) == 0x225) + assert(rows(0).getInt(2) == 17) + assert(rows(0).getInt(3) == 77777) + assert(rows(0).getInt(4) == 123456789) + assert(rows(0).getLong(5) == 123456789012345L) + val bd = new BigDecimal("123456789012345.12345678901234500000") + assert(rows(0).getAs[BigDecimal](6).equals(bd)) + assert(rows(0).getDouble(7) == 42.75) + assert(rows(0).getDouble(8) == 1.0000000000000002) + } + + test("Date types") { + val rdd = TestSQLContext.jdbcRDD(url(ip, "foo"), "dates") + val rows = rdd.collect + assert(rows.length == 1) + val types = rows(0).toSeq.map(x => x.getClass.toString) + assert(types.length == 5) + assert(types(0).equals("class java.sql.Date")) + assert(types(1).equals("class java.sql.Timestamp")) + assert(types(2).equals("class java.sql.Timestamp")) + assert(types(3).equals("class java.sql.Timestamp")) + assert(types(4).equals("class java.sql.Date")) + assert(rows(0).getAs[Date](0).equals(new Date(91, 10, 9))) + assert(rows(0).getAs[Timestamp](1).equals(new Timestamp(70, 0, 1, 13, 31, 24, 0))) + assert(rows(0).getAs[Timestamp](2).equals(new Timestamp(96, 0, 1, 1, 23, 45, 0))) + assert(rows(0).getAs[Timestamp](3).equals(new Timestamp(109, 1, 13, 23, 31, 30, 0))) + assert(rows(0).getAs[Date](4).equals(new Date(101, 0, 1))) + } + + test("String types") { + val rdd = TestSQLContext.jdbcRDD(url(ip, "foo"), "strings") + val rows = rdd.collect + assert(rows.length == 1) + val types = rows(0).toSeq.map(x => x.getClass.toString) + assert(types.length == 9) + assert(types(0).equals("class java.lang.String")) + assert(types(1).equals("class java.lang.String")) + assert(types(2).equals("class java.lang.String")) + assert(types(3).equals("class java.lang.String")) + assert(types(4).equals("class java.lang.String")) + assert(types(5).equals("class java.lang.String")) + assert(types(6).equals("class [B")) + assert(types(7).equals("class [B")) + assert(types(8).equals("class [B")) + assert(rows(0).getString(0).equals("the")) + assert(rows(0).getString(1).equals("quick")) + assert(rows(0).getString(2).equals("brown")) + assert(rows(0).getString(3).equals("fox")) + assert(rows(0).getString(4).equals("jumps")) + assert(rows(0).getString(5).equals("over")) + assert(java.util.Arrays.equals(rows(0).getAs[Array[Byte]](6), Array[Byte](116, 104, 101, 0))) + assert(java.util.Arrays.equals(rows(0).getAs[Array[Byte]](7), Array[Byte](108, 97, 122, 121))) + assert(java.util.Arrays.equals(rows(0).getAs[Array[Byte]](8), Array[Byte](100, 111, 103))) + } + + test("Basic write test") { + val rdd1 = TestSQLContext.jdbcRDD(url(ip, "foo"), "numbers") + val rdd2 = TestSQLContext.jdbcRDD(url(ip, "foo"), "dates") + val rdd3 = TestSQLContext.jdbcRDD(url(ip, "foo"), "strings") + rdd1.createJDBCTable(url(ip, "foo"), "numberscopy", false) + rdd2.createJDBCTable(url(ip, "foo"), "datescopy", false) + rdd3.createJDBCTable(url(ip, "foo"), "stringscopy", false) + } +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/jdbc/PostgresIntegration.scala b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/PostgresIntegration.scala new file mode 100644 index 0000000000000..c174d7adb7204 --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/jdbc/PostgresIntegration.scala @@ -0,0 +1,149 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.jdbc + +import java.math.BigDecimal +import org.apache.spark.sql.test._ +import org.scalatest.{FunSuite, BeforeAndAfterAll, Ignore} +import java.sql.DriverManager +import TestSQLContext._ +import com.spotify.docker.client.{DefaultDockerClient, DockerClient} +import com.spotify.docker.client.messages.ContainerConfig + +class PostgresDatabase { + val docker: DockerClient = DockerClientFactory.get() + val containerId = { + println("Pulling postgres") + docker.pull("postgres") + println("Configuring container") + val config = (ContainerConfig.builder().image("postgres") + .env("POSTGRES_PASSWORD=rootpass") + .build()) + println("Creating container") + val id = docker.createContainer(config).id + println("Starting container " + id) + docker.startContainer(id) + id + } + val ip = docker.inspectContainer(containerId).networkSettings.ipAddress + + def close() { + try { + println("Killing container " + containerId) + docker.killContainer(containerId) + println("Removing container " + containerId) + docker.removeContainer(containerId) + println("Closing docker client") + DockerClientFactory.close(docker) + } catch { + case e: Exception => { + println(e) + println("You may need to clean this up manually.") + throw e + } + } + } +} + +@Ignore class PostgresIntegration extends FunSuite with BeforeAndAfterAll { + lazy val db = new PostgresDatabase() + + def url(ip: String) = s"jdbc:postgresql://$ip:5432/postgres?user=postgres&password=rootpass" + + def waitForDatabase(ip: String, maxMillis: Long) { + val before = System.currentTimeMillis() + var lastException: java.sql.SQLException = null + while (true) { + if (System.currentTimeMillis() > before + maxMillis) { + throw new java.sql.SQLException(s"Database not up after $maxMillis ms.", + lastException) + } + try { + val conn = java.sql.DriverManager.getConnection(url(ip)) + conn.close() + println("Database is up.") + return; + } catch { + case e: java.sql.SQLException => { + lastException = e + java.lang.Thread.sleep(250) + } + } + } + } + + def setupDatabase(ip: String) { + val conn = DriverManager.getConnection(url(ip)) + try { + conn.prepareStatement("CREATE DATABASE foo").executeUpdate() + conn.setCatalog("foo") + conn.prepareStatement("CREATE TABLE bar (a text, b integer, c double precision, d bigint, " + + "e bit(1), f bit(10), g bytea, h boolean, i inet, j cidr)").executeUpdate() + conn.prepareStatement("INSERT INTO bar VALUES ('hello', 42, 1.25, 123456789012345, B'0', " + + "B'1000100101', E'\\\\xDEADBEEF', true, '172.16.0.42', '192.168.0.0/16')").executeUpdate() + } finally { + conn.close() + } + } + + override def beforeAll() { + println("Waiting for database to start up.") + waitForDatabase(db.ip, 60000) + println("Setting up database.") + setupDatabase(db.ip) + } + + override def afterAll() { + db.close() + } + + test("Type mapping for various types") { + val rdd = TestSQLContext.jdbcRDD(url(db.ip), "public.bar") + val rows = rdd.collect + assert(rows.length == 1) + val types = rows(0).toSeq.map(x => x.getClass.toString) + assert(types.length == 10) + assert(types(0).equals("class java.lang.String")) + assert(types(1).equals("class java.lang.Integer")) + assert(types(2).equals("class java.lang.Double")) + assert(types(3).equals("class java.lang.Long")) + assert(types(4).equals("class java.lang.Boolean")) + assert(types(5).equals("class [B")) + assert(types(6).equals("class [B")) + assert(types(7).equals("class java.lang.Boolean")) + assert(types(8).equals("class java.lang.String")) + assert(types(9).equals("class java.lang.String")) + assert(rows(0).getString(0).equals("hello")) + assert(rows(0).getInt(1) == 42) + assert(rows(0).getDouble(2) == 1.25) + assert(rows(0).getLong(3) == 123456789012345L) + assert(rows(0).getBoolean(4) == false) + // BIT(10)'s come back as ASCII strings of ten ASCII 0's and 1's... + assert(java.util.Arrays.equals(rows(0).getAs[Array[Byte]](5), Array[Byte](49,48,48,48,49,48,48,49,48,49))) + assert(java.util.Arrays.equals(rows(0).getAs[Array[Byte]](6), Array[Byte](0xDE.toByte, 0xAD.toByte, 0xBE.toByte, 0xEF.toByte))) + assert(rows(0).getBoolean(7) == true) + assert(rows(0).getString(8) == "172.16.0.42") + assert(rows(0).getString(9) == "192.168.0.0/16") + } + + test("Basic write test") { + val rdd = TestSQLContext.jdbcRDD(url(db.ip), "public.bar") + rdd.createJDBCTable(url(db.ip), "public.barcopy", false) + // Test only that it doesn't bomb out. + } +} From cb39f120430fe44695f38d80858c9aed79eedd6f Mon Sep 17 00:00:00 2001 From: nemccarthy Date: Mon, 2 Feb 2015 20:03:13 -0800 Subject: [PATCH 27/52] [SPARK-5543][WebUI] Remove unused import JsonUtil from from JsonProtocol Simple PR to Remove unused import JsonUtil from from org.apache.spark.util.JsonProtocol.scala which fails builds with older versions of hadoop-core This import is unused. It was introduced in PR #4029 https://github.com/apache/spark/pull/4029 as a part of JIRA SPARK-5231 Author: nemccarthy Closes #4320 from nemccarthy/master and squashes the following commits: 8e34a11 [nemccarthy] [SPARK-5543][WebUI] Remove unused import JsonUtil from from org.apache.spark.util.JsonProtocol.scala which fails builds with older versions of hadoop-core --- core/src/main/scala/org/apache/spark/util/JsonProtocol.scala | 1 - 1 file changed, 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/util/JsonProtocol.scala b/core/src/main/scala/org/apache/spark/util/JsonProtocol.scala index 414bc49a57f8a..8e0e41ad3782e 100644 --- a/core/src/main/scala/org/apache/spark/util/JsonProtocol.scala +++ b/core/src/main/scala/org/apache/spark/util/JsonProtocol.scala @@ -32,7 +32,6 @@ import org.apache.spark.executor._ import org.apache.spark.scheduler._ import org.apache.spark.storage._ import org.apache.spark._ -import org.apache.hadoop.hdfs.web.JsonUtil /** * Serializes SparkListener events to/from JSON. This protocol provides strong backwards- From 0ef38f5fad637fe96464778c1e5ec99cfcc6313c Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Mon, 2 Feb 2015 21:00:30 -0800 Subject: [PATCH 28/52] SPARK-5542: Decouple publishing, packaging, and tagging in release script These are some changes to the build script to allow parts of it to be run independently. This has already been tested during the 1.2.1 release cycle. Author: Patrick Wendell Author: Patrick Wendell Closes #4319 from pwendell/release-updates and squashes the following commits: dfe7ed9 [Patrick Wendell] Merge remote-tracking branch 'apache/master' into release-updates 478b072 [Patrick Wendell] Merge remote-tracking branch 'apache/master' into release-updates 126dd0c [Patrick Wendell] Allow decoupling Maven publishing from cutting release --- dev/create-release/create-release.sh | 188 ++++++++++++++------------- 1 file changed, 99 insertions(+), 89 deletions(-) diff --git a/dev/create-release/create-release.sh b/dev/create-release/create-release.sh index b2a7e092a0291..607ce1c803507 100755 --- a/dev/create-release/create-release.sh +++ b/dev/create-release/create-release.sh @@ -22,8 +22,9 @@ # Expects to be run in a totally empty directory. # # Options: -# --package-only only packages an existing release candidate -# +# --skip-create-release Assume the desired release tag already exists +# --skip-publish Do not publish to Maven central +# --skip-package Do not package and upload binary artifacts # Would be nice to add: # - Send output to stderr and have useful logging in stdout @@ -51,7 +52,7 @@ set -e GIT_TAG=v$RELEASE_VERSION-$RC_NAME -if [[ ! "$@" =~ --package-only ]]; then +if [[ ! "$@" =~ --skip-create-release ]]; then echo "Creating release commit and publishing to Apache repository" # Artifact publishing git clone https://$ASF_USERNAME:$ASF_PASSWORD@git-wip-us.apache.org/repos/asf/spark.git \ @@ -87,8 +88,15 @@ if [[ ! "$@" =~ --package-only ]]; then git commit -a -m "Preparing development version $next_ver" git push origin $GIT_TAG git push origin HEAD:$GIT_BRANCH - git checkout -f $GIT_TAG + popd + rm -rf spark +fi +if [[ ! "$@" =~ --skip-publish ]]; then + git clone https://$ASF_USERNAME:$ASF_PASSWORD@git-wip-us.apache.org/repos/asf/spark.git + pushd spark + git checkout --force $GIT_TAG + # Using Nexus API documented here: # https://support.sonatype.com/entries/39720203-Uploading-to-a-Staging-Repository-via-REST-API echo "Creating Nexus staging repository" @@ -106,7 +114,7 @@ if [[ ! "$@" =~ --package-only ]]; then clean install ./dev/change-version-to-2.11.sh - + mvn -DskipTests -Dhadoop.version=2.2.0 -Dyarn.version=2.2.0 \ -Dscala-2.11 -Pyarn -Phive -Phadoop-2.2 -Pspark-ganglia-lgpl -Pkinesis-asl \ clean install @@ -155,88 +163,90 @@ if [[ ! "$@" =~ --package-only ]]; then rm -rf spark fi -# Source and binary tarballs -echo "Packaging release tarballs" -git clone https://git-wip-us.apache.org/repos/asf/spark.git -cd spark -git checkout --force $GIT_TAG -release_hash=`git rev-parse HEAD` - -rm .gitignore -rm -rf .git -cd .. - -cp -r spark spark-$RELEASE_VERSION -tar cvzf spark-$RELEASE_VERSION.tgz spark-$RELEASE_VERSION -echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --armour --output spark-$RELEASE_VERSION.tgz.asc \ - --detach-sig spark-$RELEASE_VERSION.tgz -echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --print-md MD5 spark-$RELEASE_VERSION.tgz > \ - spark-$RELEASE_VERSION.tgz.md5 -echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --print-md SHA512 spark-$RELEASE_VERSION.tgz > \ - spark-$RELEASE_VERSION.tgz.sha -rm -rf spark-$RELEASE_VERSION - -make_binary_release() { - NAME=$1 - FLAGS=$2 - cp -r spark spark-$RELEASE_VERSION-bin-$NAME - - cd spark-$RELEASE_VERSION-bin-$NAME - - # TODO There should probably be a flag to make-distribution to allow 2.11 support - if [[ $FLAGS == *scala-2.11* ]]; then - ./dev/change-version-to-2.11.sh - fi - - ./make-distribution.sh --name $NAME --tgz $FLAGS 2>&1 | tee ../binary-release-$NAME.log +if [[ ! "$@" =~ --skip-package ]]; then + # Source and binary tarballs + echo "Packaging release tarballs" + git clone https://git-wip-us.apache.org/repos/asf/spark.git + cd spark + git checkout --force $GIT_TAG + release_hash=`git rev-parse HEAD` + + rm .gitignore + rm -rf .git cd .. - cp spark-$RELEASE_VERSION-bin-$NAME/spark-$RELEASE_VERSION-bin-$NAME.tgz . - rm -rf spark-$RELEASE_VERSION-bin-$NAME - - echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --armour \ - --output spark-$RELEASE_VERSION-bin-$NAME.tgz.asc \ - --detach-sig spark-$RELEASE_VERSION-bin-$NAME.tgz - echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --print-md \ - MD5 spark-$RELEASE_VERSION-bin-$NAME.tgz > \ - spark-$RELEASE_VERSION-bin-$NAME.tgz.md5 - echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --print-md \ - SHA512 spark-$RELEASE_VERSION-bin-$NAME.tgz > \ - spark-$RELEASE_VERSION-bin-$NAME.tgz.sha -} - - -make_binary_release "hadoop1" "-Phive -Phive-thriftserver -Dhadoop.version=1.0.4" & -make_binary_release "hadoop1-scala2.11" "-Phive -Dscala-2.11" & -make_binary_release "cdh4" "-Phive -Phive-thriftserver -Dhadoop.version=2.0.0-mr1-cdh4.2.0" & -make_binary_release "hadoop2.3" "-Phadoop-2.3 -Phive -Phive-thriftserver -Pyarn" & -make_binary_release "hadoop2.4" "-Phadoop-2.4 -Phive -Phive-thriftserver -Pyarn" & -make_binary_release "mapr3" "-Pmapr3 -Phive -Phive-thriftserver" & -make_binary_release "mapr4" "-Pmapr4 -Pyarn -Phive -Phive-thriftserver" & -make_binary_release "hadoop2.4-without-hive" "-Phadoop-2.4 -Pyarn" & -wait - -# Copy data -echo "Copying release tarballs" -rc_folder=spark-$RELEASE_VERSION-$RC_NAME -ssh $ASF_USERNAME@people.apache.org \ - mkdir /home/$ASF_USERNAME/public_html/$rc_folder -scp spark-* \ - $ASF_USERNAME@people.apache.org:/home/$ASF_USERNAME/public_html/$rc_folder/ - -# Docs -cd spark -build/sbt clean -cd docs -# Compile docs with Java 7 to use nicer format -JAVA_HOME=$JAVA_7_HOME PRODUCTION=1 jekyll build -echo "Copying release documentation" -rc_docs_folder=${rc_folder}-docs -ssh $ASF_USERNAME@people.apache.org \ - mkdir /home/$ASF_USERNAME/public_html/$rc_docs_folder -rsync -r _site/* $ASF_USERNAME@people.apache.org:/home/$ASF_USERNAME/public_html/$rc_docs_folder - -echo "Release $RELEASE_VERSION completed:" -echo "Git tag:\t $GIT_TAG" -echo "Release commit:\t $release_hash" -echo "Binary location:\t http://people.apache.org/~$ASF_USERNAME/$rc_folder" -echo "Doc location:\t http://people.apache.org/~$ASF_USERNAME/$rc_docs_folder" + + cp -r spark spark-$RELEASE_VERSION + tar cvzf spark-$RELEASE_VERSION.tgz spark-$RELEASE_VERSION + echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --armour --output spark-$RELEASE_VERSION.tgz.asc \ + --detach-sig spark-$RELEASE_VERSION.tgz + echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --print-md MD5 spark-$RELEASE_VERSION.tgz > \ + spark-$RELEASE_VERSION.tgz.md5 + echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --print-md SHA512 spark-$RELEASE_VERSION.tgz > \ + spark-$RELEASE_VERSION.tgz.sha + rm -rf spark-$RELEASE_VERSION + + make_binary_release() { + NAME=$1 + FLAGS=$2 + cp -r spark spark-$RELEASE_VERSION-bin-$NAME + + cd spark-$RELEASE_VERSION-bin-$NAME + + # TODO There should probably be a flag to make-distribution to allow 2.11 support + if [[ $FLAGS == *scala-2.11* ]]; then + ./dev/change-version-to-2.11.sh + fi + + ./make-distribution.sh --name $NAME --tgz $FLAGS 2>&1 | tee ../binary-release-$NAME.log + cd .. + cp spark-$RELEASE_VERSION-bin-$NAME/spark-$RELEASE_VERSION-bin-$NAME.tgz . + rm -rf spark-$RELEASE_VERSION-bin-$NAME + + echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --armour \ + --output spark-$RELEASE_VERSION-bin-$NAME.tgz.asc \ + --detach-sig spark-$RELEASE_VERSION-bin-$NAME.tgz + echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --print-md \ + MD5 spark-$RELEASE_VERSION-bin-$NAME.tgz > \ + spark-$RELEASE_VERSION-bin-$NAME.tgz.md5 + echo $GPG_PASSPHRASE | gpg --passphrase-fd 0 --print-md \ + SHA512 spark-$RELEASE_VERSION-bin-$NAME.tgz > \ + spark-$RELEASE_VERSION-bin-$NAME.tgz.sha + } + + + make_binary_release "hadoop1" "-Phive -Phive-thriftserver -Dhadoop.version=1.0.4" & + make_binary_release "hadoop1-scala2.11" "-Phive -Dscala-2.11" & + make_binary_release "cdh4" "-Phive -Phive-thriftserver -Dhadoop.version=2.0.0-mr1-cdh4.2.0" & + make_binary_release "hadoop2.3" "-Phadoop-2.3 -Phive -Phive-thriftserver -Pyarn" & + make_binary_release "hadoop2.4" "-Phadoop-2.4 -Phive -Phive-thriftserver -Pyarn" & + make_binary_release "mapr3" "-Pmapr3 -Phive -Phive-thriftserver" & + make_binary_release "mapr4" "-Pmapr4 -Pyarn -Phive -Phive-thriftserver" & + make_binary_release "hadoop2.4-without-hive" "-Phadoop-2.4 -Pyarn" & + wait + + # Copy data + echo "Copying release tarballs" + rc_folder=spark-$RELEASE_VERSION-$RC_NAME + ssh $ASF_USERNAME@people.apache.org \ + mkdir /home/$ASF_USERNAME/public_html/$rc_folder + scp spark-* \ + $ASF_USERNAME@people.apache.org:/home/$ASF_USERNAME/public_html/$rc_folder/ + + # Docs + cd spark + sbt/sbt clean + cd docs + # Compile docs with Java 7 to use nicer format + JAVA_HOME=$JAVA_7_HOME PRODUCTION=1 jekyll build + echo "Copying release documentation" + rc_docs_folder=${rc_folder}-docs + ssh $ASF_USERNAME@people.apache.org \ + mkdir /home/$ASF_USERNAME/public_html/$rc_docs_folder + rsync -r _site/* $ASF_USERNAME@people.apache.org:/home/$ASF_USERNAME/public_html/$rc_docs_folder + + echo "Release $RELEASE_VERSION completed:" + echo "Git tag:\t $GIT_TAG" + echo "Release commit:\t $release_hash" + echo "Binary location:\t http://people.apache.org/~$ASF_USERNAME/$rc_folder" + echo "Doc location:\t http://people.apache.org/~$ASF_USERNAME/$rc_docs_folder" +fi From 7930d2bef0e2c7f62456e013124455061dfe6dc8 Mon Sep 17 00:00:00 2001 From: Patrick Wendell Date: Mon, 2 Feb 2015 21:01:36 -0800 Subject: [PATCH 29/52] SPARK-3996: Add jetty servlet and continuations. These are needed transitively from the other Jetty libraries we include. It was not picked up by unit tests because we disable the UI. Author: Patrick Wendell Closes #4323 from pwendell/jetty and squashes the following commits: d8669da [Patrick Wendell] SPARK-3996: Add jetty servlet and continuations. --- core/pom.xml | 12 +++++++++++- pom.xml | 14 ++++++++++++++ streaming/pom.xml | 4 ++++ yarn/pom.xml | 4 ++++ 4 files changed, 33 insertions(+), 1 deletion(-) diff --git a/core/pom.xml b/core/pom.xml index 4d24ae93c4ae3..2c115683fce66 100644 --- a/core/pom.xml +++ b/core/pom.xml @@ -122,6 +122,16 @@ jetty-http compile + + org.eclipse.jetty + jetty-continuation + compile + + + org.eclipse.jetty + jetty-servlet + compile + org.apache.commons @@ -377,7 +387,7 @@ true true - guava,jetty-io,jetty-http,jetty-plus,jetty-util,jetty-server + guava,jetty-io,jetty-servlet,jetty-continuation,jetty-http,jetty-plus,jetty-util,jetty-server true diff --git a/pom.xml b/pom.xml index 08d1cc33e4701..e25eced877578 100644 --- a/pom.xml +++ b/pom.xml @@ -347,6 +347,18 @@ ${jetty.version} provided + + org.eclipse.jetty + jetty-continuation + ${jetty.version} + provided + + + org.eclipse.jetty + jetty-servlet + ${jetty.version} + provided + org.eclipse.jetty jetty-util @@ -1297,6 +1309,8 @@ org.eclipse.jetty:jetty-io org.eclipse.jetty:jetty-http + org.eclipse.jetty:jetty-continuation + org.eclipse.jetty:jetty-servlet org.eclipse.jetty:jetty-plus org.eclipse.jetty:jetty-security org.eclipse.jetty:jetty-util diff --git a/streaming/pom.xml b/streaming/pom.xml index 5efed16039339..1e92ba686a57d 100644 --- a/streaming/pom.xml +++ b/streaming/pom.xml @@ -62,6 +62,10 @@ org.eclipse.jetty jetty-http + + org.eclipse.jetty + jetty-servlet + diff --git a/yarn/pom.xml b/yarn/pom.xml index 6bdf9d2416823..65344aa8738e0 100644 --- a/yarn/pom.xml +++ b/yarn/pom.xml @@ -80,6 +80,10 @@ org.eclipse.jetty jetty-http + + org.eclipse.jetty + jetty-servlet + From 60f67e7a142f831f91f60676f94affa8add9944f Mon Sep 17 00:00:00 2001 From: Cheng Lian Date: Mon, 2 Feb 2015 21:14:21 -0800 Subject: [PATCH 30/52] [Doc] Minor: Fixes several formatting issues Fixes several minor formatting issues in the [Continuous Compilation] [1] section. [1]: http://spark.apache.org/docs/latest/building-spark.html#continuous-compilation [Review on Reviewable](https://reviewable.io/reviews/apache/spark/4316) Author: Cheng Lian Closes #4316 from liancheng/fix-build-instruction-docs and squashes the following commits: 0a92e01 [Cheng Lian] Fixes several formatting issues --- docs/building-spark.md | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/docs/building-spark.md b/docs/building-spark.md index fb93017861ed0..db69905813817 100644 --- a/docs/building-spark.md +++ b/docs/building-spark.md @@ -137,15 +137,18 @@ We use the scala-maven-plugin which supports incremental and continuous compilat should run continuous compilation (i.e. wait for changes). However, this has not been tested extensively. A couple of gotchas to note: + * it only scans the paths `src/main` and `src/test` (see [docs](http://scala-tools.org/mvnsites/maven-scala-plugin/usage_cc.html)), so it will only work from within certain submodules that have that structure. + * you'll typically need to run `mvn install` from the project root for compilation within specific submodules to work; this is because submodules that depend on other submodules do so via the `spark-parent` module). Thus, the full flow for running continuous-compilation of the `core` submodule may look more like: - ``` + +``` $ mvn install $ cd core $ mvn scala:cc From c306555f491e45ef870f58938af397f9ec5f166a Mon Sep 17 00:00:00 2001 From: zsxwing Date: Mon, 2 Feb 2015 21:42:18 -0800 Subject: [PATCH 31/52] [SPARK-5219][Core] Add locks to avoid scheduling race conditions Author: zsxwing Closes #4019 from zsxwing/SPARK-5219 and squashes the following commits: 36a8b4e [zsxwing] Add locks to avoid race conditions --- .../scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala | 2 +- .../scala/org/apache/spark/scheduler/TaskSetManager.scala | 4 ++-- 2 files changed, 3 insertions(+), 3 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala b/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala index 33a7aae5d3fcd..79f84e70df9d5 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/TaskSchedulerImpl.scala @@ -361,7 +361,7 @@ private[spark] class TaskSchedulerImpl( dagScheduler.executorHeartbeatReceived(execId, metricsWithStageIds, blockManagerId) } - def handleTaskGettingResult(taskSetManager: TaskSetManager, tid: Long) { + def handleTaskGettingResult(taskSetManager: TaskSetManager, tid: Long): Unit = synchronized { taskSetManager.handleTaskGettingResult(tid) } diff --git a/core/src/main/scala/org/apache/spark/scheduler/TaskSetManager.scala b/core/src/main/scala/org/apache/spark/scheduler/TaskSetManager.scala index 5c94c6bbcb37b..97c22fe724abd 100644 --- a/core/src/main/scala/org/apache/spark/scheduler/TaskSetManager.scala +++ b/core/src/main/scala/org/apache/spark/scheduler/TaskSetManager.scala @@ -542,7 +542,7 @@ private[spark] class TaskSetManager( /** * Check whether has enough quota to fetch the result with `size` bytes */ - def canFetchMoreResults(size: Long): Boolean = synchronized { + def canFetchMoreResults(size: Long): Boolean = sched.synchronized { totalResultSize += size calculatedTasks += 1 if (maxResultSize > 0 && totalResultSize > maxResultSize) { @@ -671,7 +671,7 @@ private[spark] class TaskSetManager( maybeFinishTaskSet() } - def abort(message: String) { + def abort(message: String): Unit = sched.synchronized { // TODO: Kill running tasks if we were not terminated due to a Mesos error sched.dagScheduler.taskSetFailed(taskSet, message) isZombie = true From eb0da6c4bd55aaab972c53eb934e68257b8994e5 Mon Sep 17 00:00:00 2001 From: freeman Date: Mon, 2 Feb 2015 22:42:15 -0800 Subject: [PATCH 32/52] [SPARK-4979][MLLIB] Streaming logisitic regression This adds support for streaming logistic regression with stochastic gradient descent, in the same manner as the existing implementation of streaming linear regression. It is a relatively simple addition because most of the work is already done by the abstract class `StreamingLinearAlgorithm` and existing algorithms and models from MLlib. The PR includes - Streaming Logistic Regression algorithm - Unit tests for accuracy, streaming convergence, and streaming prediction - An example use cc mengxr tdas Author: freeman Closes #4306 from freeman-lab/streaming-logisitic-regression and squashes the following commits: 5c2c70b [freeman] Use Option on model 5cca2bc [freeman] Merge remote-tracking branch 'upstream/master' into streaming-logisitic-regression 275f8bd [freeman] Make private to mllib 3926e4e [freeman] Line formatting 5ee8694 [freeman] Experimental tag for docs 2fc68ac [freeman] Fix example formatting 85320b1 [freeman] Fixed line length d88f717 [freeman] Remove stray comment 59d7ecb [freeman] Add streaming logistic regression e78fe28 [freeman] Add streaming logistic regression example 321cc66 [freeman] Set private and protected within mllib --- .../mllib/StreamingLinearRegression.scala | 3 +- .../mllib/StreamingLogisticRegression.scala | 73 ++++++++++ .../classification/LogisticRegression.scala | 4 +- .../StreamingLogisticRegressionWithSGD.scala | 95 ++++++++++++ .../regression/StreamingLinearAlgorithm.scala | 28 ++-- .../StreamingLinearRegressionWithSGD.scala | 16 +-- .../StreamingLogisticRegressionSuite.scala | 135 ++++++++++++++++++ 7 files changed, 327 insertions(+), 27 deletions(-) create mode 100644 examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLogisticRegression.scala create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala create mode 100644 mllib/src/test/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionSuite.scala diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLinearRegression.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLinearRegression.scala index c5bd5b0b178d9..1a95048bbfe2d 100644 --- a/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLinearRegression.scala +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLinearRegression.scala @@ -35,8 +35,7 @@ import org.apache.spark.streaming.{Seconds, StreamingContext} * * To run on your local machine using the two directories `trainingDir` and `testDir`, * with updates every 5 seconds, and 2 features per data point, call: - * $ bin/run-example \ - * org.apache.spark.examples.mllib.StreamingLinearRegression trainingDir testDir 5 2 + * $ bin/run-example mllib.StreamingLinearRegression trainingDir testDir 5 2 * * As you add text files to `trainingDir` the model will continuously update. * Anytime you add text files to `testDir`, you'll see predictions from the current model. diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLogisticRegression.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLogisticRegression.scala new file mode 100644 index 0000000000000..e1998099c2d78 --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/StreamingLogisticRegression.scala @@ -0,0 +1,73 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.mllib + +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.mllib.classification.StreamingLogisticRegressionWithSGD +import org.apache.spark.SparkConf +import org.apache.spark.streaming.{Seconds, StreamingContext} + +/** + * Train a logistic regression model on one stream of data and make predictions + * on another stream, where the data streams arrive as text files + * into two different directories. + * + * The rows of the text files must be labeled data points in the form + * `(y,[x1,x2,x3,...,xn])` + * Where n is the number of features, y is a binary label, and + * n must be the same for train and test. + * + * Usage: StreamingLogisticRegression + * + * To run on your local machine using the two directories `trainingDir` and `testDir`, + * with updates every 5 seconds, and 2 features per data point, call: + * $ bin/run-example mllib.StreamingLogisticRegression trainingDir testDir 5 2 + * + * As you add text files to `trainingDir` the model will continuously update. + * Anytime you add text files to `testDir`, you'll see predictions from the current model. + * + */ +object StreamingLogisticRegression { + + def main(args: Array[String]) { + + if (args.length != 4) { + System.err.println( + "Usage: StreamingLogisticRegression ") + System.exit(1) + } + + val conf = new SparkConf().setMaster("local").setAppName("StreamingLogisticRegression") + val ssc = new StreamingContext(conf, Seconds(args(2).toLong)) + + val trainingData = ssc.textFileStream(args(0)).map(LabeledPoint.parse) + val testData = ssc.textFileStream(args(1)).map(LabeledPoint.parse) + + val model = new StreamingLogisticRegressionWithSGD() + .setInitialWeights(Vectors.zeros(args(3).toInt)) + + model.trainOn(trainingData) + model.predictOnValues(testData.map(lp => (lp.label, lp.features))).print() + + ssc.start() + ssc.awaitTermination() + + } + +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala index 282fb3ff283f4..a469315a1b5c3 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/LogisticRegression.scala @@ -136,7 +136,7 @@ class LogisticRegressionModel ( * for k classes multi-label classification problem. * Using [[LogisticRegressionWithLBFGS]] is recommended over this. */ -class LogisticRegressionWithSGD private ( +class LogisticRegressionWithSGD private[mllib] ( private var stepSize: Double, private var numIterations: Int, private var regParam: Double, @@ -158,7 +158,7 @@ class LogisticRegressionWithSGD private ( */ def this() = this(1.0, 100, 0.01, 1.0) - override protected def createModel(weights: Vector, intercept: Double) = { + override protected[mllib] def createModel(weights: Vector, intercept: Double) = { new LogisticRegressionModel(weights, intercept) } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala new file mode 100644 index 0000000000000..eabd2162e287f --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala @@ -0,0 +1,95 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.classification + +import org.apache.spark.annotation.Experimental +import org.apache.spark.mllib.linalg.Vector +import org.apache.spark.mllib.regression.StreamingLinearAlgorithm + +/** + * :: Experimental :: + * Train or predict a logistic regression model on streaming data. Training uses + * Stochastic Gradient Descent to update the model based on each new batch of + * incoming data from a DStream (see `LogisticRegressionWithSGD` for model equation) + * + * Each batch of data is assumed to be an RDD of LabeledPoints. + * The number of data points per batch can vary, but the number + * of features must be constant. An initial weight + * vector must be provided. + * + * Use a builder pattern to construct a streaming logistic regression + * analysis in an application, like: + * + * val model = new StreamingLogisticRegressionWithSGD() + * .setStepSize(0.5) + * .setNumIterations(10) + * .setInitialWeights(Vectors.dense(...)) + * .trainOn(DStream) + * + */ +@Experimental +class StreamingLogisticRegressionWithSGD private[mllib] ( + private var stepSize: Double, + private var numIterations: Int, + private var miniBatchFraction: Double, + private var regParam: Double) + extends StreamingLinearAlgorithm[LogisticRegressionModel, LogisticRegressionWithSGD] + with Serializable { + + /** + * Construct a StreamingLogisticRegression object with default parameters: + * {stepSize: 0.1, numIterations: 50, miniBatchFraction: 1.0, regParam: 0.0}. + * Initial weights must be set before using trainOn or predictOn + * (see `StreamingLinearAlgorithm`) + */ + def this() = this(0.1, 50, 1.0, 0.0) + + val algorithm = new LogisticRegressionWithSGD( + stepSize, numIterations, regParam, miniBatchFraction) + + /** Set the step size for gradient descent. Default: 0.1. */ + def setStepSize(stepSize: Double): this.type = { + this.algorithm.optimizer.setStepSize(stepSize) + this + } + + /** Set the number of iterations of gradient descent to run per update. Default: 50. */ + def setNumIterations(numIterations: Int): this.type = { + this.algorithm.optimizer.setNumIterations(numIterations) + this + } + + /** Set the fraction of each batch to use for updates. Default: 1.0. */ + def setMiniBatchFraction(miniBatchFraction: Double): this.type = { + this.algorithm.optimizer.setMiniBatchFraction(miniBatchFraction) + this + } + + /** Set the regularization parameter. Default: 0.0. */ + def setRegParam(regParam: Double): this.type = { + this.algorithm.optimizer.setRegParam(regParam) + this + } + + /** Set the initial weights. Default: [0.0, 0.0]. */ + def setInitialWeights(initialWeights: Vector): this.type = { + this.model = Option(algorithm.createModel(initialWeights, 0.0)) + this + } + +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala index b549b7c475fc3..39a0dee931d3d 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala @@ -58,14 +58,14 @@ abstract class StreamingLinearAlgorithm[ A <: GeneralizedLinearAlgorithm[M]] extends Logging { /** The model to be updated and used for prediction. */ - protected var model: M + protected var model: Option[M] = null /** The algorithm to use for updating. */ protected val algorithm: A /** Return the latest model. */ def latestModel(): M = { - model + model.get } /** @@ -77,16 +77,16 @@ abstract class StreamingLinearAlgorithm[ * @param data DStream containing labeled data */ def trainOn(data: DStream[LabeledPoint]) { - if (Option(model.weights) == None) { - logError("Initial weights must be set before starting training") + if (Option(model) == None) { + logError("Model must be initialized before starting training") throw new IllegalArgumentException } data.foreachRDD { (rdd, time) => - model = algorithm.run(rdd, model.weights) + model = Option(algorithm.run(rdd, model.get.weights)) logInfo("Model updated at time %s".format(time.toString)) - val display = model.weights.size match { - case x if x > 100 => model.weights.toArray.take(100).mkString("[", ",", "...") - case _ => model.weights.toArray.mkString("[", ",", "]") + val display = model.get.weights.size match { + case x if x > 100 => model.get.weights.toArray.take(100).mkString("[", ",", "...") + case _ => model.get.weights.toArray.mkString("[", ",", "]") } logInfo("Current model: weights, %s".format (display)) } @@ -99,12 +99,12 @@ abstract class StreamingLinearAlgorithm[ * @return DStream containing predictions */ def predictOn(data: DStream[Vector]): DStream[Double] = { - if (Option(model.weights) == None) { - val msg = "Initial weights must be set before starting prediction" + if (Option(model) == None) { + val msg = "Model must be initialized before starting prediction" logError(msg) throw new IllegalArgumentException(msg) } - data.map(model.predict) + data.map(model.get.predict) } /** @@ -114,11 +114,11 @@ abstract class StreamingLinearAlgorithm[ * @return DStream containing the input keys and the predictions as values */ def predictOnValues[K: ClassTag](data: DStream[(K, Vector)]): DStream[(K, Double)] = { - if (Option(model.weights) == None) { - val msg = "Initial weights must be set before starting prediction" + if (Option(model) == None) { + val msg = "Model must be initialized before starting prediction" logError(msg) throw new IllegalArgumentException(msg) } - data.mapValues(model.predict) + data.mapValues(model.get.predict) } } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala index 1d11fde24712c..c0625b4880953 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala @@ -21,6 +21,7 @@ import org.apache.spark.annotation.Experimental import org.apache.spark.mllib.linalg.Vector /** + * :: Experimental :: * Train or predict a linear regression model on streaming data. Training uses * Stochastic Gradient Descent to update the model based on each new batch of * incoming data from a DStream (see `LinearRegressionWithSGD` for model equation) @@ -41,13 +42,12 @@ import org.apache.spark.mllib.linalg.Vector * */ @Experimental -class StreamingLinearRegressionWithSGD ( +class StreamingLinearRegressionWithSGD private[mllib] ( private var stepSize: Double, private var numIterations: Int, - private var miniBatchFraction: Double, - private var initialWeights: Vector) - extends StreamingLinearAlgorithm[ - LinearRegressionModel, LinearRegressionWithSGD] with Serializable { + private var miniBatchFraction: Double) + extends StreamingLinearAlgorithm[LinearRegressionModel, LinearRegressionWithSGD] + with Serializable { /** * Construct a StreamingLinearRegression object with default parameters: @@ -55,12 +55,10 @@ class StreamingLinearRegressionWithSGD ( * Initial weights must be set before using trainOn or predictOn * (see `StreamingLinearAlgorithm`) */ - def this() = this(0.1, 50, 1.0, null) + def this() = this(0.1, 50, 1.0) val algorithm = new LinearRegressionWithSGD(stepSize, numIterations, miniBatchFraction) - var model = algorithm.createModel(initialWeights, 0.0) - /** Set the step size for gradient descent. Default: 0.1. */ def setStepSize(stepSize: Double): this.type = { this.algorithm.optimizer.setStepSize(stepSize) @@ -81,7 +79,7 @@ class StreamingLinearRegressionWithSGD ( /** Set the initial weights. Default: [0.0, 0.0]. */ def setInitialWeights(initialWeights: Vector): this.type = { - this.model = algorithm.createModel(initialWeights, 0.0) + this.model = Option(algorithm.createModel(initialWeights, 0.0)) this } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionSuite.scala new file mode 100644 index 0000000000000..8b3e6e5ce9249 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionSuite.scala @@ -0,0 +1,135 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.classification + +import scala.collection.mutable.ArrayBuffer + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.linalg.Vectors +import org.apache.spark.mllib.regression.LabeledPoint +import org.apache.spark.mllib.util.TestingUtils._ +import org.apache.spark.streaming.dstream.DStream +import org.apache.spark.streaming.TestSuiteBase + +class StreamingLogisticRegressionSuite extends FunSuite with TestSuiteBase { + + // use longer wait time to ensure job completion + override def maxWaitTimeMillis = 30000 + + // Test if we can accurately learn B for Y = logistic(BX) on streaming data + test("parameter accuracy") { + + val nPoints = 100 + val B = 1.5 + + // create model + val model = new StreamingLogisticRegressionWithSGD() + .setInitialWeights(Vectors.dense(0.0)) + .setStepSize(0.2) + .setNumIterations(25) + + // generate sequence of simulated data + val numBatches = 20 + val input = (0 until numBatches).map { i => + LogisticRegressionSuite.generateLogisticInput(0.0, B, nPoints, 42 * (i + 1)) + } + + // apply model training to input stream + val ssc = setupStreams(input, (inputDStream: DStream[LabeledPoint]) => { + model.trainOn(inputDStream) + inputDStream.count() + }) + runStreams(ssc, numBatches, numBatches) + + // check accuracy of final parameter estimates + assert(model.latestModel().weights(0) ~== B relTol 0.1) + + } + + // Test that parameter estimates improve when learning Y = logistic(BX) on streaming data + test("parameter convergence") { + + val B = 1.5 + val nPoints = 100 + + // create model + val model = new StreamingLogisticRegressionWithSGD() + .setInitialWeights(Vectors.dense(0.0)) + .setStepSize(0.2) + .setNumIterations(25) + + // generate sequence of simulated data + val numBatches = 20 + val input = (0 until numBatches).map { i => + LogisticRegressionSuite.generateLogisticInput(0.0, B, nPoints, 42 * (i + 1)) + } + + // create buffer to store intermediate fits + val history = new ArrayBuffer[Double](numBatches) + + // apply model training to input stream, storing the intermediate results + // (we add a count to ensure the result is a DStream) + val ssc = setupStreams(input, (inputDStream: DStream[LabeledPoint]) => { + model.trainOn(inputDStream) + inputDStream.foreachRDD(x => history.append(math.abs(model.latestModel().weights(0) - B))) + inputDStream.count() + }) + runStreams(ssc, numBatches, numBatches) + + // compute change in error + val deltas = history.drop(1).zip(history.dropRight(1)) + // check error stability (it always either shrinks, or increases with small tol) + assert(deltas.forall(x => (x._1 - x._2) <= 0.1)) + // check that error shrunk on at least 2 batches + assert(deltas.map(x => if ((x._1 - x._2) < 0) 1 else 0).sum > 1) + } + + // Test predictions on a stream + test("predictions") { + + val B = 1.5 + val nPoints = 100 + + // create model initialized with true weights + val model = new StreamingLogisticRegressionWithSGD() + .setInitialWeights(Vectors.dense(1.5)) + .setStepSize(0.2) + .setNumIterations(25) + + // generate sequence of simulated data for testing + val numBatches = 10 + val testInput = (0 until numBatches).map { i => + LogisticRegressionSuite.generateLogisticInput(0.0, B, nPoints, 42 * (i + 1)) + } + + // apply model predictions to test stream + val ssc = setupStreams(testInput, (inputDStream: DStream[LabeledPoint]) => { + model.predictOnValues(inputDStream.map(x => (x.label, x.features))) + }) + + // collect the output as (true, estimated) tuples + val output: Seq[Seq[(Double, Double)]] = runStreams(ssc, numBatches, numBatches) + + // check that at least 60% of predictions are correct on all batches + val errors = output.map(batch => batch.map(p => math.abs(p._1 - p._2)).sum / nPoints) + + assert(errors.forall(x => x <= 0.4)) + } + +} From c31c36c4a76bd3449696383321332ec95bff7fed Mon Sep 17 00:00:00 2001 From: Thomas Graves Date: Mon, 2 Feb 2015 22:45:55 -0800 Subject: [PATCH 33/52] [SPARK-3778] newAPIHadoopRDD doesn't properly pass credentials for secure hdfs .this was https://github.com/apache/spark/pull/2676 https://issues.apache.org/jira/browse/SPARK-3778 This affects if someone is trying to access secure hdfs something like: val lines = { val hconf = new Configuration() hconf.set("mapred.input.dir", "mydir") hconf.set("textinputformat.record.delimiter","\003432\n") sc.newAPIHadoopRDD(hconf, classOf[TextInputFormat], classOf[LongWritable], classOf[Text]) } Author: Thomas Graves Closes #4292 from tgravescs/SPARK-3788 and squashes the following commits: cf3b453 [Thomas Graves] newAPIHadoopRDD doesn't properly pass credentials for secure hdfs on yarn --- core/src/main/scala/org/apache/spark/SparkContext.scala | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/core/src/main/scala/org/apache/spark/SparkContext.scala b/core/src/main/scala/org/apache/spark/SparkContext.scala index 228076f01c841..6a16a31654630 100644 --- a/core/src/main/scala/org/apache/spark/SparkContext.scala +++ b/core/src/main/scala/org/apache/spark/SparkContext.scala @@ -804,6 +804,8 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli vClass: Class[V], conf: Configuration = hadoopConfiguration): RDD[(K, V)] = { assertNotStopped() + // The call to new NewHadoopJob automatically adds security credentials to conf, + // so we don't need to explicitly add them ourselves val job = new NewHadoopJob(conf) NewFileInputFormat.addInputPath(job, new Path(path)) val updatedConf = job.getConfiguration @@ -826,7 +828,10 @@ class SparkContext(config: SparkConf) extends Logging with ExecutorAllocationCli kClass: Class[K], vClass: Class[V]): RDD[(K, V)] = { assertNotStopped() - new NewHadoopRDD(this, fClass, kClass, vClass, conf) + // Add necessary security credentials to the JobConf. Required to access secure HDFS. + val jconf = new JobConf(conf) + SparkHadoopUtil.get.addCredentials(jconf) + new NewHadoopRDD(this, fClass, kClass, vClass, jconf) } /** Get an RDD for a Hadoop SequenceFile with given key and value types. From 50a1a874e1d087a6c79835b1936d0009622a97b1 Mon Sep 17 00:00:00 2001 From: FlytxtRnD Date: Mon, 2 Feb 2015 23:04:55 -0800 Subject: [PATCH 34/52] [SPARK-5012][MLLib][PySpark]Python API for Gaussian Mixture Model Python API for the Gaussian Mixture Model clustering algorithm in MLLib. Author: FlytxtRnD Closes #4059 from FlytxtRnD/PythonGmmWrapper and squashes the following commits: c973ab3 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper 339b09c [FlytxtRnD] Added MultivariateGaussian namedtuple and Arraybuffer in trainGaussianMixture fa0a142 [FlytxtRnD] New line added d5b36ab [FlytxtRnD] Changed argument names to lowercase ac134f1 [FlytxtRnD] Merge branch 'PythonGmmWrapper' of https://github.com/FlytxtRnD/spark into PythonGmmWrapper 6671ea1 [FlytxtRnD] Added mllib/stat/distribution.py 3aee84b [FlytxtRnD] Fixed style issues 2e9f12a [FlytxtRnD] Added mllib/stat/distribution.py and fixed style issues b22532c [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper 2e14d82 [FlytxtRnD] Incorporate MultivariateGaussian instances in GaussianMixtureModel 05767c7 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper 3464d19 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper c1d4c71 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'origin/PythonGmmWrapper' into PythonGmmWrapper 426d130 [FlytxtRnD] Added random seed parameter 332bad1 [FlytxtRnD] Merge branch 'PythonGmmWrapper', remote-tracking branch 'upstream/master' into PythonGmmWrapper f82750b [FlytxtRnD] Fixed style issues 5c83825 [FlytxtRnD] Split input file with space delimiter fda60f3 [FlytxtRnD] Python API for Gaussian Mixture Model --- .../python/mllib/gaussian_mixture_model.py | 65 +++++++++++++ .../mllib/api/python/PythonMLLibAPI.scala | 56 ++++++++++- python/pyspark/mllib/clustering.py | 92 ++++++++++++++++++- python/pyspark/mllib/stat/__init__.py | 3 +- python/pyspark/mllib/stat/distribution.py | 31 +++++++ python/pyspark/mllib/tests.py | 26 ++++++ 6 files changed, 267 insertions(+), 6 deletions(-) create mode 100644 examples/src/main/python/mllib/gaussian_mixture_model.py create mode 100644 python/pyspark/mllib/stat/distribution.py diff --git a/examples/src/main/python/mllib/gaussian_mixture_model.py b/examples/src/main/python/mllib/gaussian_mixture_model.py new file mode 100644 index 0000000000000..a2cd626c9f19d --- /dev/null +++ b/examples/src/main/python/mllib/gaussian_mixture_model.py @@ -0,0 +1,65 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +""" +A Gaussian Mixture Model clustering program using MLlib. +""" +import sys +import random +import argparse +import numpy as np + +from pyspark import SparkConf, SparkContext +from pyspark.mllib.clustering import GaussianMixture + + +def parseVector(line): + return np.array([float(x) for x in line.split(' ')]) + + +if __name__ == "__main__": + """ + Parameters + ---------- + :param inputFile: Input file path which contains data points + :param k: Number of mixture components + :param convergenceTol: Convergence threshold. Default to 1e-3 + :param maxIterations: Number of EM iterations to perform. Default to 100 + :param seed: Random seed + """ + + parser = argparse.ArgumentParser() + parser.add_argument('inputFile', help='Input File') + parser.add_argument('k', type=int, help='Number of clusters') + parser.add_argument('--convergenceTol', default=1e-3, type=float, help='convergence threshold') + parser.add_argument('--maxIterations', default=100, type=int, help='Number of iterations') + parser.add_argument('--seed', default=random.getrandbits(19), + type=long, help='Random seed') + args = parser.parse_args() + + conf = SparkConf().setAppName("GMM") + sc = SparkContext(conf=conf) + + lines = sc.textFile(args.inputFile) + data = lines.map(parseVector) + model = GaussianMixture.train(data, args.k, args.convergenceTol, + args.maxIterations, args.seed) + for i in range(args.k): + print ("weight = ", model.weights[i], "mu = ", model.gaussians[i].mu, + "sigma = ", model.gaussians[i].sigma.toArray()) + print ("Cluster labels (first 100): ", model.predict(data).take(100)) + sc.stop() diff --git a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala index a66d6f0cf29c7..980980593d194 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/api/python/PythonMLLibAPI.scala @@ -22,6 +22,7 @@ import java.nio.{ByteBuffer, ByteOrder} import java.util.{ArrayList => JArrayList, List => JList, Map => JMap} import scala.collection.JavaConverters._ +import scala.collection.mutable.ArrayBuffer import scala.language.existentials import scala.reflect.ClassTag @@ -40,6 +41,7 @@ import org.apache.spark.mllib.recommendation._ import org.apache.spark.mllib.regression._ import org.apache.spark.mllib.stat.{MultivariateStatisticalSummary, Statistics} import org.apache.spark.mllib.stat.correlation.CorrelationNames +import org.apache.spark.mllib.stat.distribution.MultivariateGaussian import org.apache.spark.mllib.stat.test.ChiSqTestResult import org.apache.spark.mllib.tree.{GradientBoostedTrees, RandomForest, DecisionTree} import org.apache.spark.mllib.tree.configuration.{BoostingStrategy, Algo, Strategy} @@ -260,7 +262,7 @@ class PythonMLLibAPI extends Serializable { } /** - * Java stub for Python mllib KMeans.train() + * Java stub for Python mllib KMeans.run() */ def trainKMeansModel( data: JavaRDD[Vector], @@ -284,6 +286,58 @@ class PythonMLLibAPI extends Serializable { } } + /** + * Java stub for Python mllib GaussianMixture.run() + * Returns a list containing weights, mean and covariance of each mixture component. + */ + def trainGaussianMixture( + data: JavaRDD[Vector], + k: Int, + convergenceTol: Double, + maxIterations: Int, + seed: Long): JList[Object] = { + val gmmAlg = new GaussianMixture() + .setK(k) + .setConvergenceTol(convergenceTol) + .setMaxIterations(maxIterations) + + if (seed != null) gmmAlg.setSeed(seed) + + try { + val model = gmmAlg.run(data.rdd.persist(StorageLevel.MEMORY_AND_DISK)) + var wt = ArrayBuffer.empty[Double] + var mu = ArrayBuffer.empty[Vector] + var sigma = ArrayBuffer.empty[Matrix] + for (i <- 0 until model.k) { + wt += model.weights(i) + mu += model.gaussians(i).mu + sigma += model.gaussians(i).sigma + } + List(wt.toArray, mu.toArray, sigma.toArray).map(_.asInstanceOf[Object]).asJava + } finally { + data.rdd.unpersist(blocking = false) + } + } + + /** + * Java stub for Python mllib GaussianMixtureModel.predictSoft() + */ + def predictSoftGMM( + data: JavaRDD[Vector], + wt: Object, + mu: Array[Object], + si: Array[Object]): RDD[Array[Double]] = { + + val weight = wt.asInstanceOf[Array[Double]] + val mean = mu.map(_.asInstanceOf[DenseVector]) + val sigma = si.map(_.asInstanceOf[DenseMatrix]) + val gaussians = Array.tabulate(weight.length){ + i => new MultivariateGaussian(mean(i), sigma(i)) + } + val model = new GaussianMixtureModel(weight, gaussians) + model.predictSoft(data) + } + /** * A Wrapper of MatrixFactorizationModel to provide helpfer method for Python */ diff --git a/python/pyspark/mllib/clustering.py b/python/pyspark/mllib/clustering.py index 6b713aa39374e..f6b97abb1723c 100644 --- a/python/pyspark/mllib/clustering.py +++ b/python/pyspark/mllib/clustering.py @@ -15,19 +15,22 @@ # limitations under the License. # +from numpy import array + +from pyspark import RDD from pyspark import SparkContext from pyspark.mllib.common import callMLlibFunc, callJavaFunc -from pyspark.mllib.linalg import SparseVector, _convert_to_vector +from pyspark.mllib.linalg import DenseVector, SparseVector, _convert_to_vector +from pyspark.mllib.stat.distribution import MultivariateGaussian -__all__ = ['KMeansModel', 'KMeans'] +__all__ = ['KMeansModel', 'KMeans', 'GaussianMixtureModel', 'GaussianMixture'] class KMeansModel(object): """A clustering model derived from the k-means method. - >>> from numpy import array - >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4,2) + >>> data = array([0.0,0.0, 1.0,1.0, 9.0,8.0, 8.0,9.0]).reshape(4, 2) >>> model = KMeans.train( ... sc.parallelize(data), 2, maxIterations=10, runs=30, initializationMode="random") >>> model.predict(array([0.0, 0.0])) == model.predict(array([1.0, 1.0])) @@ -86,6 +89,87 @@ def train(cls, rdd, k, maxIterations=100, runs=1, initializationMode="k-means||" return KMeansModel([c.toArray() for c in centers]) +class GaussianMixtureModel(object): + + """A clustering model derived from the Gaussian Mixture Model method. + + >>> clusterdata_1 = sc.parallelize(array([-0.1,-0.05,-0.01,-0.1, + ... 0.9,0.8,0.75,0.935, + ... -0.83,-0.68,-0.91,-0.76 ]).reshape(6, 2)) + >>> model = GaussianMixture.train(clusterdata_1, 3, convergenceTol=0.0001, + ... maxIterations=50, seed=10) + >>> labels = model.predict(clusterdata_1).collect() + >>> labels[0]==labels[1] + False + >>> labels[1]==labels[2] + True + >>> labels[4]==labels[5] + True + >>> clusterdata_2 = sc.parallelize(array([-5.1971, -2.5359, -3.8220, + ... -5.2211, -5.0602, 4.7118, + ... 6.8989, 3.4592, 4.6322, + ... 5.7048, 4.6567, 5.5026, + ... 4.5605, 5.2043, 6.2734]).reshape(5, 3)) + >>> model = GaussianMixture.train(clusterdata_2, 2, convergenceTol=0.0001, + ... maxIterations=150, seed=10) + >>> labels = model.predict(clusterdata_2).collect() + >>> labels[0]==labels[1]==labels[2] + True + >>> labels[3]==labels[4] + True + """ + + def __init__(self, weights, gaussians): + self.weights = weights + self.gaussians = gaussians + self.k = len(self.weights) + + def predict(self, x): + """ + Find the cluster to which the points in 'x' has maximum membership + in this model. + + :param x: RDD of data points. + :return: cluster_labels. RDD of cluster labels. + """ + if isinstance(x, RDD): + cluster_labels = self.predictSoft(x).map(lambda z: z.index(max(z))) + return cluster_labels + + def predictSoft(self, x): + """ + Find the membership of each point in 'x' to all mixture components. + + :param x: RDD of data points. + :return: membership_matrix. RDD of array of double values. + """ + if isinstance(x, RDD): + means, sigmas = zip(*[(g.mu, g.sigma) for g in self.gaussians]) + membership_matrix = callMLlibFunc("predictSoftGMM", x.map(_convert_to_vector), + self.weights, means, sigmas) + return membership_matrix + + +class GaussianMixture(object): + """ + Estimate model parameters with the expectation-maximization algorithm. + + :param data: RDD of data points + :param k: Number of components + :param convergenceTol: Threshold value to check the convergence criteria. Defaults to 1e-3 + :param maxIterations: Number of iterations. Default to 100 + :param seed: Random Seed + """ + @classmethod + def train(cls, rdd, k, convergenceTol=1e-3, maxIterations=100, seed=None): + """Train a Gaussian Mixture clustering model.""" + weight, mu, sigma = callMLlibFunc("trainGaussianMixture", + rdd.map(_convert_to_vector), k, + convergenceTol, maxIterations, seed) + mvg_obj = [MultivariateGaussian(mu[i], sigma[i]) for i in range(k)] + return GaussianMixtureModel(weight, mvg_obj) + + def _test(): import doctest globs = globals().copy() diff --git a/python/pyspark/mllib/stat/__init__.py b/python/pyspark/mllib/stat/__init__.py index 799d260c096b1..b686d955a0080 100644 --- a/python/pyspark/mllib/stat/__init__.py +++ b/python/pyspark/mllib/stat/__init__.py @@ -20,5 +20,6 @@ """ from pyspark.mllib.stat._statistics import * +from pyspark.mllib.stat.distribution import MultivariateGaussian -__all__ = ["Statistics", "MultivariateStatisticalSummary"] +__all__ = ["Statistics", "MultivariateStatisticalSummary", "MultivariateGaussian"] diff --git a/python/pyspark/mllib/stat/distribution.py b/python/pyspark/mllib/stat/distribution.py new file mode 100644 index 0000000000000..07792e1532046 --- /dev/null +++ b/python/pyspark/mllib/stat/distribution.py @@ -0,0 +1,31 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +from collections import namedtuple + +__all__ = ['MultivariateGaussian'] + + +class MultivariateGaussian(namedtuple('MultivariateGaussian', ['mu', 'sigma'])): + + """ Represents a (mu, sigma) tuple + >>> m = MultivariateGaussian(Vectors.dense([11,12]),DenseMatrix(2, 2, (1.0, 3.0, 5.0, 2.0))) + >>> (m.mu, m.sigma.toArray()) + (DenseVector([11.0, 12.0]), array([[ 1., 5.],[ 3., 2.]])) + >>> (m[0], m[1]) + (DenseVector([11.0, 12.0]), array([[ 1., 5.],[ 3., 2.]])) + """ diff --git a/python/pyspark/mllib/tests.py b/python/pyspark/mllib/tests.py index 61e0cf5d90bd0..42aa22873772d 100644 --- a/python/pyspark/mllib/tests.py +++ b/python/pyspark/mllib/tests.py @@ -167,6 +167,32 @@ def test_kmeans_deterministic(self): # TODO: Allow small numeric difference. self.assertTrue(array_equal(c1, c2)) + def test_gmm(self): + from pyspark.mllib.clustering import GaussianMixture + data = self.sc.parallelize([ + [1, 2], + [8, 9], + [-4, -3], + [-6, -7], + ]) + clusters = GaussianMixture.train(data, 2, convergenceTol=0.001, + maxIterations=100, seed=56) + labels = clusters.predict(data).collect() + self.assertEquals(labels[0], labels[1]) + self.assertEquals(labels[2], labels[3]) + + def test_gmm_deterministic(self): + from pyspark.mllib.clustering import GaussianMixture + x = range(0, 100, 10) + y = range(0, 100, 10) + data = self.sc.parallelize([[a, b] for a, b in zip(x, y)]) + clusters1 = GaussianMixture.train(data, 5, convergenceTol=0.001, + maxIterations=100, seed=63) + clusters2 = GaussianMixture.train(data, 5, convergenceTol=0.001, + maxIterations=100, seed=63) + for c1, c2 in zip(clusters1.weights, clusters2.weights): + self.assertEquals(round(c1, 7), round(c2, 7)) + def test_classification(self): from pyspark.mllib.classification import LogisticRegressionWithSGD, SVMWithSGD, NaiveBayes from pyspark.mllib.tree import DecisionTree, RandomForest, GradientBoostedTrees From 13531dd97c08563e53dacdaeaf1102bdd13ef825 Mon Sep 17 00:00:00 2001 From: Yin Huai Date: Mon, 2 Feb 2015 23:30:44 -0800 Subject: [PATCH 35/52] [SPARK-5501][SPARK-5420][SQL] Write support for the data source API This PR aims to support `INSERT INTO/OVERWRITE TABLE tableName` and `CREATE TABLE tableName AS SELECT` for the data source API (partitioned tables are not supported). In this PR, I am also adding the support of `IF NOT EXISTS` for our ddl parser. The current semantic of `IF NOT EXISTS` is explained as follows. * For a `CREATE TEMPORARY TABLE` statement, it does not `IF NOT EXISTS` for now. * For a `CREATE TABLE` statement (we are creating a metastore table), if there is an existing table having the same name ... * when `IF NOT EXISTS` clause is used, we will do nothing. * when `IF NOT EXISTS` clause is not used, the user will see an exception saying the table already exists. TODOs: - [x] CTAS support - [x] Programmatic APIs - [ ] Python API (another PR) - [x] More unit tests - [ ] Documents (another PR) marmbrus liancheng rxin Author: Yin Huai Closes #4294 from yhuai/writeSupport and squashes the following commits: 3db1539 [Yin Huai] save does not take overwrite. 1c98881 [Yin Huai] Fix test. 142372a [Yin Huai] Merge remote-tracking branch 'upstream/master' into writeSupport 34e1bfb [Yin Huai] Address comments. 1682ca6 [Yin Huai] Better support for CTAS statements. e789d64 [Yin Huai] For the Scala API, let users to use tuples to provide options. 0128065 [Yin Huai] Short hand versions of save and load. 66ebd74 [Yin Huai] Formatting. 9203ec2 [Yin Huai] Merge remote-tracking branch 'upstream/master' into writeSupport e5d29f2 [Yin Huai] Programmatic APIs. 1a719a5 [Yin Huai] CREATE TEMPORARY TABLE with IF NOT EXISTS is not allowed for now. 909924f [Yin Huai] Add saveAsTable for the data source API to DataFrame. 95a7c71 [Yin Huai] Fix bug when handling IF NOT EXISTS clause in a CREATE TEMPORARY TABLE statement. d37b19c [Yin Huai] Cheng's comments. fd6758c [Yin Huai] Use BeforeAndAfterAll. 7880891 [Yin Huai] Support CREATE TABLE AS SELECT STATEMENT and the IF NOT EXISTS clause. cb85b05 [Yin Huai] Initial write support. 2f91354 [Yin Huai] Make INSERT OVERWRITE/INTO statements consistent between HiveQL and SqlParser. --- .../apache/spark/sql/catalyst/SqlParser.scala | 4 +- .../org/apache/spark/sql/DataFrame.scala | 49 ++++- .../org/apache/spark/sql/DataFrameImpl.scala | 58 +++++- .../apache/spark/sql/IncomputableColumn.scala | 22 +++ .../scala/org/apache/spark/sql/SQLConf.scala | 6 + .../org/apache/spark/sql/SQLContext.scala | 26 ++- .../main/scala/org/apache/spark/sql/api.scala | 27 +++ .../spark/sql/execution/SparkStrategies.scala | 31 ++- .../apache/spark/sql/json/JSONRelation.scala | 59 +++++- .../sql/sources/DataSourceStrategy.scala | 9 +- .../apache/spark/sql/sources/commands.scala | 35 ++++ .../org/apache/spark/sql/sources/ddl.scala | 126 ++++++++++-- .../apache/spark/sql/sources/interfaces.scala | 23 ++- .../spark/sql/parquet/ParquetQuerySuite.scala | 12 +- .../sources/CreateTableAsSelectSuite.scala | 147 ++++++++++++++ .../spark/sql/sources/InsertIntoSuite.scala | 96 +++++++++ .../spark/sql/sources/SaveLoadSuite.scala | 88 +++++++++ .../apache/spark/sql/hive/HiveContext.scala | 67 ++++++- .../spark/sql/hive/HiveMetastoreCatalog.scala | 35 +++- .../spark/sql/hive/HiveStrategies.scala | 18 +- .../spark/sql/hive/execution/commands.scala | 76 ++++++- .../sql/hive/MetastoreDataSourcesSuite.scala | 185 +++++++++++++++++- .../sql/hive/execution/SQLQuerySuite.scala | 2 +- 23 files changed, 1141 insertions(+), 60 deletions(-) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/sources/commands.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/sources/CreateTableAsSelectSuite.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/sources/InsertIntoSuite.scala create mode 100644 sql/core/src/test/scala/org/apache/spark/sql/sources/SaveLoadSuite.scala diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index 594a423146d77..25e639d390da0 100755 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -147,8 +147,8 @@ class SqlParser extends AbstractSparkSQLParser { } protected lazy val insert: Parser[LogicalPlan] = - INSERT ~> OVERWRITE.? ~ (INTO ~> relation) ~ select ^^ { - case o ~ r ~ s => InsertIntoTable(r, Map.empty[String, Option[String]], s, o.isDefined) + INSERT ~> (OVERWRITE ^^^ true | INTO ^^^ false) ~ (TABLE ~> relation) ~ select ^^ { + case o ~ r ~ s => InsertIntoTable(r, Map.empty[String, Option[String]], s, o) } protected lazy val projection: Parser[Expression] = diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 385e1ec74f5f7..4cbfb6af5de94 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -17,8 +17,6 @@ package org.apache.spark.sql -import java.util.{List => JList} - import scala.reflect.ClassTag import org.apache.spark.annotation.{DeveloperApi, Experimental} @@ -485,6 +483,53 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { @Experimental override def saveAsTable(tableName: String): Unit + /** + * :: Experimental :: + * Creates a table from the the contents of this DataFrame based on a given data source and + * a set of options. This will fail if the table already exists. + * + * Note that this currently only works with DataFrames that are created from a HiveContext as + * there is no notion of a persisted catalog in a standard SQL context. Instead you can write + * an RDD out to a parquet file, and then register that file as a table. This "table" can then + * be the target of an `insertInto`. + */ + @Experimental + override def saveAsTable( + tableName: String, + dataSourceName: String, + option: (String, String), + options: (String, String)*): Unit + + /** + * :: Experimental :: + * Creates a table from the the contents of this DataFrame based on a given data source and + * a set of options. This will fail if the table already exists. + * + * Note that this currently only works with DataFrames that are created from a HiveContext as + * there is no notion of a persisted catalog in a standard SQL context. Instead you can write + * an RDD out to a parquet file, and then register that file as a table. This "table" can then + * be the target of an `insertInto`. + */ + @Experimental + override def saveAsTable( + tableName: String, + dataSourceName: String, + options: java.util.Map[String, String]): Unit + + @Experimental + override def save(path: String): Unit + + @Experimental + override def save( + dataSourceName: String, + option: (String, String), + options: (String, String)*): Unit + + @Experimental + override def save( + dataSourceName: String, + options: java.util.Map[String, String]): Unit + /** * :: Experimental :: * Adds the rows from this RDD to the specified table, optionally overwriting the existing data. diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala index f8fcc25569482..f84dbf32fa5b2 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala @@ -36,6 +36,7 @@ import org.apache.spark.sql.catalyst.plans.{JoinType, Inner} import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.execution.{LogicalRDD, EvaluatePython} import org.apache.spark.sql.json.JsonRDD +import org.apache.spark.sql.sources.{ResolvedDataSource, CreateTableUsingAsLogicalPlan} import org.apache.spark.sql.types.{NumericType, StructType} import org.apache.spark.util.Utils @@ -303,8 +304,61 @@ private[sql] class DataFrameImpl protected[sql]( } override def saveAsTable(tableName: String): Unit = { - sqlContext.executePlan( - CreateTableAsSelect(None, tableName, logicalPlan, allowExisting = false)).toRdd + val dataSourceName = sqlContext.conf.defaultDataSourceName + val cmd = + CreateTableUsingAsLogicalPlan( + tableName, + dataSourceName, + temporary = false, + Map.empty, + allowExisting = false, + logicalPlan) + + sqlContext.executePlan(cmd).toRdd + } + + override def saveAsTable( + tableName: String, + dataSourceName: String, + option: (String, String), + options: (String, String)*): Unit = { + val cmd = + CreateTableUsingAsLogicalPlan( + tableName, + dataSourceName, + temporary = false, + (option +: options).toMap, + allowExisting = false, + logicalPlan) + + sqlContext.executePlan(cmd).toRdd + } + + override def saveAsTable( + tableName: String, + dataSourceName: String, + options: java.util.Map[String, String]): Unit = { + val opts = options.toSeq + saveAsTable(tableName, dataSourceName, opts.head, opts.tail:_*) + } + + override def save(path: String): Unit = { + val dataSourceName = sqlContext.conf.defaultDataSourceName + save(dataSourceName, ("path" -> path)) + } + + override def save( + dataSourceName: String, + option: (String, String), + options: (String, String)*): Unit = { + ResolvedDataSource(sqlContext, dataSourceName, (option +: options).toMap, this) + } + + override def save( + dataSourceName: String, + options: java.util.Map[String, String]): Unit = { + val opts = options.toSeq + save(dataSourceName, opts.head, opts.tail:_*) } override def insertInto(tableName: String, overwrite: Boolean): Unit = { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala b/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala index 2f8c695d5654b..9b051de68feb8 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala @@ -152,6 +152,28 @@ private[sql] class IncomputableColumn(protected[sql] val expr: Expression) exten override def saveAsTable(tableName: String): Unit = err() + override def saveAsTable( + tableName: String, + dataSourceName: String, + option: (String, String), + options: (String, String)*): Unit = err() + + override def saveAsTable( + tableName: String, + dataSourceName: String, + options: java.util.Map[String, String]): Unit = err() + + override def save(path: String): Unit = err() + + override def save( + dataSourceName: String, + option: (String, String), + options: (String, String)*): Unit = err() + + override def save( + dataSourceName: String, + options: java.util.Map[String, String]): Unit = err() + override def insertInto(tableName: String, overwrite: Boolean): Unit = err() override def toJSON: RDD[String] = err() diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala index 243dc997078f3..561a91d2d60ee 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala @@ -47,6 +47,9 @@ private[spark] object SQLConf { // This is only used for the thriftserver val THRIFTSERVER_POOL = "spark.sql.thriftserver.scheduler.pool" + // This is used to set the default data source + val DEFAULT_DATA_SOURCE_NAME = "spark.sql.default.datasource" + object Deprecated { val MAPRED_REDUCE_TASKS = "mapred.reduce.tasks" } @@ -155,6 +158,9 @@ private[sql] class SQLConf extends Serializable { private[spark] def broadcastTimeout: Int = getConf(BROADCAST_TIMEOUT, (5 * 60).toString).toInt + private[spark] def defaultDataSourceName: String = + getConf(DEFAULT_DATA_SOURCE_NAME, "org.apache.spark.sql.parquet") + /** ********************** SQLConf functionality methods ************ */ /** Set Spark SQL configuration properties. */ diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index f4692b3ff59d3..a741d0031d155 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -21,6 +21,7 @@ import java.beans.Introspector import java.util.Properties import scala.collection.immutable +import scala.collection.JavaConversions._ import scala.language.implicitConversions import scala.reflect.runtime.universe.TypeTag @@ -37,7 +38,7 @@ import org.apache.spark.sql.catalyst.rules.RuleExecutor import org.apache.spark.sql.execution._ import org.apache.spark.sql.json._ import org.apache.spark.sql.jdbc.{JDBCPartition, JDBCPartitioningInfo, JDBCRelation} -import org.apache.spark.sql.sources.{LogicalRelation, BaseRelation, DDLParser, DataSourceStrategy} +import org.apache.spark.sql.sources._ import org.apache.spark.sql.types._ import org.apache.spark.util.Utils @@ -335,6 +336,29 @@ class SQLContext(@transient val sparkContext: SparkContext) applySchema(rowRDD, appliedSchema) } + @Experimental + def load(path: String): DataFrame = { + val dataSourceName = conf.defaultDataSourceName + load(dataSourceName, ("path", path)) + } + + @Experimental + def load( + dataSourceName: String, + option: (String, String), + options: (String, String)*): DataFrame = { + val resolved = ResolvedDataSource(this, None, dataSourceName, (option +: options).toMap) + DataFrame(this, LogicalRelation(resolved.relation)) + } + + @Experimental + def load( + dataSourceName: String, + options: java.util.Map[String, String]): DataFrame = { + val opts = options.toSeq + load(dataSourceName, opts.head, opts.tail:_*) + } + /** * :: Experimental :: * Construct an RDD representing the database table accessible via JDBC URL diff --git a/sql/core/src/main/scala/org/apache/spark/sql/api.scala b/sql/core/src/main/scala/org/apache/spark/sql/api.scala index eb0eb3f32560c..c4a00cdb20408 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/api.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/api.scala @@ -170,6 +170,33 @@ private[sql] trait DataFrameSpecificApi { @Experimental def saveAsTable(tableName: String): Unit + @Experimental + def saveAsTable( + tableName: String, + dataSourceName: String, + option: (String, String), + options: (String, String)*): Unit + + @Experimental + def saveAsTable( + tableName: String, + dataSourceName: String, + options: java.util.Map[String, String]): Unit + + @Experimental + def save(path: String): Unit + + @Experimental + def save( + dataSourceName: String, + option: (String, String), + options: (String, String)*): Unit + + @Experimental + def save( + dataSourceName: String, + options: java.util.Map[String, String]): Unit + @Experimental def insertInto(tableName: String, overwrite: Boolean): Unit diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala index 0cc9d049c9640..ff0609d4b3b72 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/SparkStrategies.scala @@ -26,7 +26,7 @@ import org.apache.spark.sql.catalyst.plans.physical._ import org.apache.spark.sql.columnar.{InMemoryColumnarTableScan, InMemoryRelation} import org.apache.spark.sql.parquet._ import org.apache.spark.sql.types._ -import org.apache.spark.sql.sources.{CreateTempTableUsing, CreateTableUsing} +import org.apache.spark.sql.sources._ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] { @@ -314,12 +314,33 @@ private[sql] abstract class SparkStrategies extends QueryPlanner[SparkPlan] { object DDLStrategy extends Strategy { def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match { - case CreateTableUsing(tableName, userSpecifiedSchema, provider, true, options) => + case CreateTableUsing(tableName, userSpecifiedSchema, provider, true, opts, false) => ExecutedCommand( - CreateTempTableUsing(tableName, userSpecifiedSchema, provider, options)) :: Nil - - case CreateTableUsing(tableName, userSpecifiedSchema, provider, false, options) => + CreateTempTableUsing( + tableName, userSpecifiedSchema, provider, opts)) :: Nil + case c: CreateTableUsing if !c.temporary => + sys.error("Tables created with SQLContext must be TEMPORARY. Use a HiveContext instead.") + case c: CreateTableUsing if c.temporary && c.allowExisting => + sys.error("allowExisting should be set to false when creating a temporary table.") + + case CreateTableUsingAsSelect(tableName, provider, true, opts, false, query) => + val logicalPlan = sqlContext.parseSql(query) + val cmd = + CreateTempTableUsingAsSelect(tableName, provider, opts, logicalPlan) + ExecutedCommand(cmd) :: Nil + case c: CreateTableUsingAsSelect if !c.temporary => + sys.error("Tables created with SQLContext must be TEMPORARY. Use a HiveContext instead.") + case c: CreateTableUsingAsSelect if c.temporary && c.allowExisting => + sys.error("allowExisting should be set to false when creating a temporary table.") + + case CreateTableUsingAsLogicalPlan(tableName, provider, true, opts, false, query) => + val cmd = + CreateTempTableUsingAsSelect(tableName, provider, opts, query) + ExecutedCommand(cmd) :: Nil + case c: CreateTableUsingAsLogicalPlan if !c.temporary => sys.error("Tables created with SQLContext must be TEMPORARY. Use a HiveContext instead.") + case c: CreateTableUsingAsLogicalPlan if c.temporary && c.allowExisting => + sys.error("allowExisting should be set to false when creating a temporary table.") case _ => Nil } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala index 1af96c28d5fdf..8372decbf8aa1 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JSONRelation.scala @@ -17,21 +17,26 @@ package org.apache.spark.sql.json -import org.apache.spark.sql.SQLContext +import java.io.IOException + +import org.apache.hadoop.fs.Path +import org.apache.spark.rdd.RDD +import org.apache.spark.sql.{DataFrame, Row, SQLContext} import org.apache.spark.sql.sources._ import org.apache.spark.sql.types.StructType -private[sql] class DefaultSource extends RelationProvider with SchemaRelationProvider { +private[sql] class DefaultSource + extends RelationProvider with SchemaRelationProvider with CreateableRelationProvider { /** Returns a new base relation with the parameters. */ override def createRelation( sqlContext: SQLContext, parameters: Map[String, String]): BaseRelation = { - val fileName = parameters.getOrElse("path", sys.error("Option 'path' not specified")) + val path = parameters.getOrElse("path", sys.error("Option 'path' not specified")) val samplingRatio = parameters.get("samplingRatio").map(_.toDouble).getOrElse(1.0) - JSONRelation(fileName, samplingRatio, None)(sqlContext) + JSONRelation(path, samplingRatio, None)(sqlContext) } /** Returns a new base relation with the given schema and parameters. */ @@ -39,21 +44,37 @@ private[sql] class DefaultSource extends RelationProvider with SchemaRelationPro sqlContext: SQLContext, parameters: Map[String, String], schema: StructType): BaseRelation = { - val fileName = parameters.getOrElse("path", sys.error("Option 'path' not specified")) + val path = parameters.getOrElse("path", sys.error("Option 'path' not specified")) val samplingRatio = parameters.get("samplingRatio").map(_.toDouble).getOrElse(1.0) - JSONRelation(fileName, samplingRatio, Some(schema))(sqlContext) + JSONRelation(path, samplingRatio, Some(schema))(sqlContext) + } + + override def createRelation( + sqlContext: SQLContext, + parameters: Map[String, String], + data: DataFrame): BaseRelation = { + val path = parameters.getOrElse("path", sys.error("Option 'path' not specified")) + val filesystemPath = new Path(path) + val fs = filesystemPath.getFileSystem(sqlContext.sparkContext.hadoopConfiguration) + if (fs.exists(filesystemPath)) { + sys.error(s"path $path already exists.") + } + data.toJSON.saveAsTextFile(path) + + createRelation(sqlContext, parameters, data.schema) } } private[sql] case class JSONRelation( - fileName: String, + path: String, samplingRatio: Double, userSpecifiedSchema: Option[StructType])( @transient val sqlContext: SQLContext) - extends TableScan { + extends TableScan with InsertableRelation { - private def baseRDD = sqlContext.sparkContext.textFile(fileName) + // TODO: Support partitioned JSON relation. + private def baseRDD = sqlContext.sparkContext.textFile(path) override val schema = userSpecifiedSchema.getOrElse( JsonRDD.nullTypeToStringType( @@ -64,4 +85,24 @@ private[sql] case class JSONRelation( override def buildScan() = JsonRDD.jsonStringToRow(baseRDD, schema, sqlContext.conf.columnNameOfCorruptRecord) + + override def insert(data: DataFrame, overwrite: Boolean) = { + val filesystemPath = new Path(path) + val fs = filesystemPath.getFileSystem(sqlContext.sparkContext.hadoopConfiguration) + + if (overwrite) { + try { + fs.delete(filesystemPath, true) + } catch { + case e: IOException => + throw new IOException( + s"Unable to clear output directory ${filesystemPath.toString} prior" + + s" to INSERT OVERWRITE a JSON table:\n${e.toString}") + } + data.toJSON.saveAsTextFile(path) + } else { + // TODO: Support INSERT INTO + sys.error("JSON table only support INSERT OVERWRITE for now.") + } + } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/DataSourceStrategy.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/DataSourceStrategy.scala index d13f2ce2a5e1d..386ff2452f1a3 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/DataSourceStrategy.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/DataSourceStrategy.scala @@ -22,7 +22,7 @@ import org.apache.spark.sql.{Row, Strategy} import org.apache.spark.sql.catalyst.expressions import org.apache.spark.sql.catalyst.expressions.{And, Attribute, AttributeReference, AttributeSet, Expression, NamedExpression} import org.apache.spark.sql.catalyst.planning.PhysicalOperation -import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan +import org.apache.spark.sql.catalyst.plans.logical.{LogicalPlan, InsertIntoTable => LogicalInsertIntoTable} import org.apache.spark.sql.execution /** @@ -54,6 +54,13 @@ private[sql] object DataSourceStrategy extends Strategy { case l @ LogicalRelation(t: TableScan) => execution.PhysicalRDD(l.output, t.buildScan()) :: Nil + case i @ LogicalInsertIntoTable( + l @ LogicalRelation(t: InsertableRelation), partition, query, overwrite) => + if (partition.nonEmpty) { + sys.error(s"Insert into a partition is not allowed because $l is not partitioned.") + } + execution.ExecutedCommand(InsertIntoRelation(t, query, overwrite)) :: Nil + case _ => Nil } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/commands.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/commands.scala new file mode 100644 index 0000000000000..d7942dc30934b --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/commands.scala @@ -0,0 +1,35 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.sql.sources + +import org.apache.spark.sql.{DataFrame, SQLContext} +import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan +import org.apache.spark.sql.execution.RunnableCommand + +private[sql] case class InsertIntoRelation( + relation: InsertableRelation, + query: LogicalPlan, + overwrite: Boolean) + extends RunnableCommand { + + override def run(sqlContext: SQLContext) = { + relation.insert(DataFrame(sqlContext, query), overwrite) + + Seq.empty[Row] + } +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala index b1bbe0f89af73..ead827728cf4b 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/ddl.scala @@ -36,6 +36,7 @@ private[sql] class DDLParser extends AbstractSparkSQLParser with Logging { try { Some(apply(input)) } catch { + case ddlException: DDLException => throw ddlException case _ if !exceptionOnError => None case x: Throwable => throw x } @@ -45,8 +46,7 @@ private[sql] class DDLParser extends AbstractSparkSQLParser with Logging { lexical.initialize(reservedWords) phrase(dataType)(new lexical.Scanner(input)) match { case Success(r, x) => r - case x => - sys.error(s"Unsupported dataType: $x") + case x => throw new DDLException(s"Unsupported dataType: $x") } } @@ -56,8 +56,12 @@ private[sql] class DDLParser extends AbstractSparkSQLParser with Logging { protected val CREATE = Keyword("CREATE") protected val TEMPORARY = Keyword("TEMPORARY") protected val TABLE = Keyword("TABLE") + protected val IF = Keyword("IF") + protected val NOT = Keyword("NOT") + protected val EXISTS = Keyword("EXISTS") protected val USING = Keyword("USING") protected val OPTIONS = Keyword("OPTIONS") + protected val AS = Keyword("AS") protected val COMMENT = Keyword("COMMENT") // Data types. @@ -83,22 +87,51 @@ private[sql] class DDLParser extends AbstractSparkSQLParser with Logging { protected def start: Parser[LogicalPlan] = ddl /** - * `CREATE [TEMPORARY] TABLE avroTable + * `CREATE [TEMPORARY] TABLE avroTable [IF NOT EXISTS] * USING org.apache.spark.sql.avro * OPTIONS (path "../hive/src/test/resources/data/files/episodes.avro")` * or - * `CREATE [TEMPORARY] TABLE avroTable(intField int, stringField string...) + * `CREATE [TEMPORARY] TABLE avroTable(intField int, stringField string...) [IF NOT EXISTS] * USING org.apache.spark.sql.avro * OPTIONS (path "../hive/src/test/resources/data/files/episodes.avro")` + * or + * `CREATE [TEMPORARY] TABLE avroTable [IF NOT EXISTS] + * USING org.apache.spark.sql.avro + * OPTIONS (path "../hive/src/test/resources/data/files/episodes.avro")` + * AS SELECT ... */ protected lazy val createTable: Parser[LogicalPlan] = ( - (CREATE ~> TEMPORARY.? <~ TABLE) ~ ident - ~ (tableCols).? ~ (USING ~> className) ~ (OPTIONS ~> options) ^^ { - case temp ~ tableName ~ columns ~ provider ~ opts => - val userSpecifiedSchema = columns.flatMap(fields => Some(StructType(fields))) - CreateTableUsing(tableName, userSpecifiedSchema, provider, temp.isDefined, opts) - } + (CREATE ~> TEMPORARY.? <~ TABLE) ~ (IF ~> NOT <~ EXISTS).? ~ ident + ~ (tableCols).? ~ (USING ~> className) ~ (OPTIONS ~> options) ~ (AS ~> restInput).? ^^ { + case temp ~ allowExisting ~ tableName ~ columns ~ provider ~ opts ~ query => + if (temp.isDefined && allowExisting.isDefined) { + throw new DDLException( + "a CREATE TEMPORARY TABLE statement does not allow IF NOT EXISTS clause.") + } + + if (query.isDefined) { + if (columns.isDefined) { + throw new DDLException( + "a CREATE TABLE AS SELECT statement does not allow column definitions.") + } + CreateTableUsingAsSelect(tableName, + provider, + temp.isDefined, + opts, + allowExisting.isDefined, + query.get) + } else { + val userSpecifiedSchema = columns.flatMap(fields => Some(StructType(fields))) + CreateTableUsing( + tableName, + userSpecifiedSchema, + provider, + temp.isDefined, + opts, + allowExisting.isDefined) + } + } ) protected lazy val tableCols: Parser[Seq[StructField]] = "(" ~> repsep(column, ",") <~ ")" @@ -193,7 +226,7 @@ object ResolvedDataSource { dataSource .asInstanceOf[org.apache.spark.sql.sources.SchemaRelationProvider] .createRelation(sqlContext, new CaseInsensitiveMap(options), schema) - case _ => + case dataSource: org.apache.spark.sql.sources.RelationProvider => sys.error(s"${clazz.getCanonicalName} does not allow user-specified schemas.") } } @@ -203,7 +236,7 @@ object ResolvedDataSource { dataSource .asInstanceOf[org.apache.spark.sql.sources.RelationProvider] .createRelation(sqlContext, new CaseInsensitiveMap(options)) - case _ => + case dataSource: org.apache.spark.sql.sources.SchemaRelationProvider => sys.error(s"A schema needs to be specified when using ${clazz.getCanonicalName}.") } } @@ -211,6 +244,32 @@ object ResolvedDataSource { new ResolvedDataSource(clazz, relation) } + + def apply( + sqlContext: SQLContext, + provider: String, + options: Map[String, String], + data: DataFrame): ResolvedDataSource = { + val loader = Utils.getContextOrSparkClassLoader + val clazz: Class[_] = try loader.loadClass(provider) catch { + case cnf: java.lang.ClassNotFoundException => + try loader.loadClass(provider + ".DefaultSource") catch { + case cnf: java.lang.ClassNotFoundException => + sys.error(s"Failed to load class for data source: $provider") + } + } + + val relation = clazz.newInstance match { + case dataSource: org.apache.spark.sql.sources.CreateableRelationProvider => + dataSource + .asInstanceOf[org.apache.spark.sql.sources.CreateableRelationProvider] + .createRelation(sqlContext, options, data) + case _ => + sys.error(s"${clazz.getCanonicalName} does not allow create table as select.") + } + + new ResolvedDataSource(clazz, relation) + } } private[sql] case class ResolvedDataSource(provider: Class[_], relation: BaseRelation) @@ -220,13 +279,30 @@ private[sql] case class CreateTableUsing( userSpecifiedSchema: Option[StructType], provider: String, temporary: Boolean, - options: Map[String, String]) extends Command + options: Map[String, String], + allowExisting: Boolean) extends Command + +private[sql] case class CreateTableUsingAsSelect( + tableName: String, + provider: String, + temporary: Boolean, + options: Map[String, String], + allowExisting: Boolean, + query: String) extends Command + +private[sql] case class CreateTableUsingAsLogicalPlan( + tableName: String, + provider: String, + temporary: Boolean, + options: Map[String, String], + allowExisting: Boolean, + query: LogicalPlan) extends Command private [sql] case class CreateTempTableUsing( tableName: String, userSpecifiedSchema: Option[StructType], provider: String, - options: Map[String, String]) extends RunnableCommand { + options: Map[String, String]) extends RunnableCommand { def run(sqlContext: SQLContext) = { val resolved = ResolvedDataSource(sqlContext, userSpecifiedSchema, provider, options) @@ -236,6 +312,22 @@ private [sql] case class CreateTempTableUsing( } } +private [sql] case class CreateTempTableUsingAsSelect( + tableName: String, + provider: String, + options: Map[String, String], + query: LogicalPlan) extends RunnableCommand { + + def run(sqlContext: SQLContext) = { + val df = DataFrame(sqlContext, query) + val resolved = ResolvedDataSource(sqlContext, provider, options, df) + sqlContext.registerRDDAsTable( + DataFrame(sqlContext, LogicalRelation(resolved.relation)), tableName) + + Seq.empty + } +} + /** * Builds a map in which keys are case insensitive */ @@ -253,3 +345,9 @@ protected class CaseInsensitiveMap(map: Map[String, String]) extends Map[String, override def -(key: String): Map[String, String] = baseMap - key.toLowerCase() } + +/** + * The exception thrown from the DDL parser. + * @param message + */ +protected[sql] class DDLException(message: String) extends Exception(message) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala b/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala index cd82cc6ecb61b..ad0a35b91ebc2 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/sources/interfaces.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.sources import org.apache.spark.annotation.{Experimental, DeveloperApi} import org.apache.spark.rdd.RDD -import org.apache.spark.sql.{Row, SQLContext} +import org.apache.spark.sql.{DataFrame, Row, SQLContext} import org.apache.spark.sql.catalyst.expressions.{Expression, Attribute} import org.apache.spark.sql.types.StructType @@ -77,6 +77,14 @@ trait SchemaRelationProvider { schema: StructType): BaseRelation } +@DeveloperApi +trait CreateableRelationProvider { + def createRelation( + sqlContext: SQLContext, + parameters: Map[String, String], + data: DataFrame): BaseRelation +} + /** * ::DeveloperApi:: * Represents a collection of tuples with a known schema. Classes that extend BaseRelation must @@ -108,7 +116,7 @@ abstract class BaseRelation { * A BaseRelation that can produce all of its tuples as an RDD of Row objects. */ @DeveloperApi -abstract class TableScan extends BaseRelation { +trait TableScan extends BaseRelation { def buildScan(): RDD[Row] } @@ -118,7 +126,7 @@ abstract class TableScan extends BaseRelation { * containing all of its tuples as Row objects. */ @DeveloperApi -abstract class PrunedScan extends BaseRelation { +trait PrunedScan extends BaseRelation { def buildScan(requiredColumns: Array[String]): RDD[Row] } @@ -132,7 +140,7 @@ abstract class PrunedScan extends BaseRelation { * as filtering partitions based on a bloom filter. */ @DeveloperApi -abstract class PrunedFilteredScan extends BaseRelation { +trait PrunedFilteredScan extends BaseRelation { def buildScan(requiredColumns: Array[String], filters: Array[Filter]): RDD[Row] } @@ -145,6 +153,11 @@ abstract class PrunedFilteredScan extends BaseRelation { * for experimentation. */ @Experimental -abstract class CatalystScan extends BaseRelation { +trait CatalystScan extends BaseRelation { def buildScan(requiredColumns: Seq[Attribute], filters: Seq[Expression]): RDD[Row] } + +@DeveloperApi +trait InsertableRelation extends BaseRelation { + def insert(data: DataFrame, overwrite: Boolean): Unit +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala index 3d82f4bce7778..5ec7a156d9353 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/parquet/ParquetQuerySuite.scala @@ -37,11 +37,21 @@ class ParquetQuerySuite extends QueryTest with ParquetTest { test("appending") { val data = (0 until 10).map(i => (i, i.toString)) withParquetTable(data, "t") { - sql("INSERT INTO t SELECT * FROM t") + sql("INSERT INTO TABLE t SELECT * FROM t") checkAnswer(table("t"), (data ++ data).map(Row.fromTuple)) } } + // This test case will trigger the NPE mentioned in + // https://issues.apache.org/jira/browse/PARQUET-151. + ignore("overwriting") { + val data = (0 until 10).map(i => (i, i.toString)) + withParquetTable(data, "t") { + sql("INSERT OVERWRITE TABLE t SELECT * FROM t") + checkAnswer(table("t"), data.map(Row.fromTuple)) + } + } + test("self-join") { // 4 rows, cells of column 1 of row 2 and row 4 are null val data = (1 to 4).map { i => diff --git a/sql/core/src/test/scala/org/apache/spark/sql/sources/CreateTableAsSelectSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/sources/CreateTableAsSelectSuite.scala new file mode 100644 index 0000000000000..b02389978b625 --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/sources/CreateTableAsSelectSuite.scala @@ -0,0 +1,147 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.sources + +import java.io.File + +import org.scalatest.BeforeAndAfterAll + +import org.apache.spark.sql.catalyst.util +import org.apache.spark.util.Utils + +class CreateTableAsSelectSuite extends DataSourceTest with BeforeAndAfterAll { + + import caseInsensisitiveContext._ + + var path: File = null + + override def beforeAll(): Unit = { + path = util.getTempFilePath("jsonCTAS").getCanonicalFile + val rdd = sparkContext.parallelize((1 to 10).map(i => s"""{"a":$i, "b":"str${i}"}""")) + jsonRDD(rdd).registerTempTable("jt") + } + + override def afterAll(): Unit = { + dropTempTable("jt") + } + + after { + if (path.exists()) Utils.deleteRecursively(path) + } + + test("CREATE TEMPORARY TABLE AS SELECT") { + sql( + s""" + |CREATE TEMPORARY TABLE jsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${path.toString}' + |) AS + |SELECT a, b FROM jt + """.stripMargin) + + checkAnswer( + sql("SELECT a, b FROM jsonTable"), + sql("SELECT a, b FROM jt").collect()) + + dropTempTable("jsonTable") + } + + test("create a table, drop it and create another one with the same name") { + sql( + s""" + |CREATE TEMPORARY TABLE jsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${path.toString}' + |) AS + |SELECT a, b FROM jt + """.stripMargin) + + checkAnswer( + sql("SELECT a, b FROM jsonTable"), + sql("SELECT a, b FROM jt").collect()) + + dropTempTable("jsonTable") + + val message = intercept[RuntimeException]{ + sql( + s""" + |CREATE TEMPORARY TABLE jsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${path.toString}' + |) AS + |SELECT a * 4 FROM jt + """.stripMargin) + }.getMessage + assert( + message.contains(s"path ${path.toString} already exists."), + "CREATE TEMPORARY TABLE IF NOT EXISTS should not be allowed.") + + // Explicitly delete it. + if (path.exists()) Utils.deleteRecursively(path) + + sql( + s""" + |CREATE TEMPORARY TABLE jsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${path.toString}' + |) AS + |SELECT a * 4 FROM jt + """.stripMargin) + + checkAnswer( + sql("SELECT * FROM jsonTable"), + sql("SELECT a * 4 FROM jt").collect()) + + dropTempTable("jsonTable") + } + + test("CREATE TEMPORARY TABLE AS SELECT with IF NOT EXISTS is not allowed") { + val message = intercept[DDLException]{ + sql( + s""" + |CREATE TEMPORARY TABLE IF NOT EXISTS jsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${path.toString}' + |) AS + |SELECT b FROM jt + """.stripMargin) + }.getMessage + assert( + message.contains("a CREATE TEMPORARY TABLE statement does not allow IF NOT EXISTS clause."), + "CREATE TEMPORARY TABLE IF NOT EXISTS should not be allowed.") + } + + test("a CTAS statement with column definitions is not allowed") { + intercept[DDLException]{ + sql( + s""" + |CREATE TEMPORARY TABLE jsonTable (a int, b string) + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${path.toString}' + |) AS + |SELECT a, b FROM jt + """.stripMargin) + } + } +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/sources/InsertIntoSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/sources/InsertIntoSuite.scala new file mode 100644 index 0000000000000..f91cea6a37060 --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/sources/InsertIntoSuite.scala @@ -0,0 +1,96 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.sources + +import java.io.File + +import org.scalatest.BeforeAndAfterAll + +import org.apache.spark.sql.Row +import org.apache.spark.sql.catalyst.util +import org.apache.spark.util.Utils + +class InsertIntoSuite extends DataSourceTest with BeforeAndAfterAll { + + import caseInsensisitiveContext._ + + var path: File = null + + override def beforeAll: Unit = { + path = util.getTempFilePath("jsonCTAS").getCanonicalFile + val rdd = sparkContext.parallelize((1 to 10).map(i => s"""{"a":$i, "b":"str${i}"}""")) + jsonRDD(rdd).registerTempTable("jt") + sql( + s""" + |CREATE TEMPORARY TABLE jsonTable (a int, b string) + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${path.toString}' + |) + """.stripMargin) + } + + override def afterAll: Unit = { + dropTempTable("jsonTable") + dropTempTable("jt") + if (path.exists()) Utils.deleteRecursively(path) + } + + test("Simple INSERT OVERWRITE a JSONRelation") { + sql( + s""" + |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt + """.stripMargin) + + checkAnswer( + sql("SELECT a, b FROM jsonTable"), + (1 to 10).map(i => Row(i, s"str$i")) + ) + } + + test("INSERT OVERWRITE a JSONRelation multiple times") { + sql( + s""" + |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt + """.stripMargin) + + sql( + s""" + |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt + """.stripMargin) + + sql( + s""" + |INSERT OVERWRITE TABLE jsonTable SELECT a, b FROM jt + """.stripMargin) + + checkAnswer( + sql("SELECT a, b FROM jsonTable"), + (1 to 10).map(i => Row(i, s"str$i")) + ) + } + + test("INSERT INTO not supported for JSONRelation for now") { + intercept[RuntimeException]{ + sql( + s""" + |INSERT INTO TABLE jsonTable SELECT a, b FROM jt + """.stripMargin) + } + } +} diff --git a/sql/core/src/test/scala/org/apache/spark/sql/sources/SaveLoadSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/sources/SaveLoadSuite.scala new file mode 100644 index 0000000000000..fe2f76cc397f5 --- /dev/null +++ b/sql/core/src/test/scala/org/apache/spark/sql/sources/SaveLoadSuite.scala @@ -0,0 +1,88 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.sources + +import java.io.File + +import org.scalatest.BeforeAndAfterAll + +import org.apache.spark.sql.DataFrame +import org.apache.spark.util.Utils + +import org.apache.spark.sql.catalyst.util + +class SaveLoadSuite extends DataSourceTest with BeforeAndAfterAll { + + import caseInsensisitiveContext._ + + var originalDefaultSource: String = null + + var path: File = null + + var df: DataFrame = null + + override def beforeAll(): Unit = { + originalDefaultSource = conf.defaultDataSourceName + conf.setConf("spark.sql.default.datasource", "org.apache.spark.sql.json") + + path = util.getTempFilePath("datasource").getCanonicalFile + + val rdd = sparkContext.parallelize((1 to 10).map(i => s"""{"a":$i, "b":"str${i}"}""")) + df = jsonRDD(rdd) + } + + override def afterAll(): Unit = { + conf.setConf("spark.sql.default.datasource", originalDefaultSource) + } + + after { + if (path.exists()) Utils.deleteRecursively(path) + } + + def checkLoad(): Unit = { + checkAnswer(load(path.toString), df.collect()) + checkAnswer(load("org.apache.spark.sql.json", ("path", path.toString)), df.collect()) + } + + test("save with overwrite and load") { + df.save(path.toString) + checkLoad + } + + test("save with data source and options, and load") { + df.save("org.apache.spark.sql.json", ("path", path.toString)) + checkLoad + } + + test("save and save again") { + df.save(path.toString) + + val message = intercept[RuntimeException] { + df.save(path.toString) + }.getMessage + + assert( + message.contains("already exists"), + "We should complain that the path already exists.") + + if (path.exists()) Utils.deleteRecursively(path) + + df.save(path.toString) + checkLoad + } +} \ No newline at end of file diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala index 5efc3b1e30774..f6d9027f90a99 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala @@ -41,7 +41,7 @@ import org.apache.spark.sql.catalyst.analysis.{Analyzer, EliminateAnalysisOperat import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.execution.{ExecutedCommand, ExtractPythonUdfs, SetCommand, QueryExecutionException} import org.apache.spark.sql.hive.execution.{HiveNativeCommand, DescribeHiveTableCommand} -import org.apache.spark.sql.sources.DataSourceStrategy +import org.apache.spark.sql.sources.{CreateTableUsing, DataSourceStrategy} import org.apache.spark.sql.types._ /** @@ -86,6 +86,7 @@ class HiveContext(sc: SparkContext) extends SQLContext(sc) { * @param allowExisting When false, an exception will be thrown if the table already exists. * @tparam A A case class that is used to describe the schema of the table to be created. */ + @Deprecated def createTable[A <: Product : TypeTag](tableName: String, allowExisting: Boolean = true) { catalog.createTable("default", tableName, ScalaReflection.attributesFor[A], allowExisting) } @@ -106,6 +107,70 @@ class HiveContext(sc: SparkContext) extends SQLContext(sc) { catalog.invalidateTable("default", tableName) } + @Experimental + def createTable(tableName: String, path: String, allowExisting: Boolean): Unit = { + val dataSourceName = conf.defaultDataSourceName + createTable(tableName, dataSourceName, allowExisting, ("path", path)) + } + + @Experimental + def createTable( + tableName: String, + dataSourceName: String, + allowExisting: Boolean, + option: (String, String), + options: (String, String)*): Unit = { + val cmd = + CreateTableUsing( + tableName, + userSpecifiedSchema = None, + dataSourceName, + temporary = false, + (option +: options).toMap, + allowExisting) + executePlan(cmd).toRdd + } + + @Experimental + def createTable( + tableName: String, + dataSourceName: String, + schema: StructType, + allowExisting: Boolean, + option: (String, String), + options: (String, String)*): Unit = { + val cmd = + CreateTableUsing( + tableName, + userSpecifiedSchema = Some(schema), + dataSourceName, + temporary = false, + (option +: options).toMap, + allowExisting) + executePlan(cmd).toRdd + } + + @Experimental + def createTable( + tableName: String, + dataSourceName: String, + allowExisting: Boolean, + options: java.util.Map[String, String]): Unit = { + val opts = options.toSeq + createTable(tableName, dataSourceName, allowExisting, opts.head, opts.tail:_*) + } + + @Experimental + def createTable( + tableName: String, + dataSourceName: String, + schema: StructType, + allowExisting: Boolean, + options: java.util.Map[String, String]): Unit = { + val opts = options.toSeq + createTable(tableName, dataSourceName, schema, allowExisting, opts.head, opts.tail:_*) + } + /** * Analyzes the given table in the current database to generate statistics, which will be * used in query optimizations. diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala index d910ee950904d..48bea6c1bd685 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveMetastoreCatalog.scala @@ -23,10 +23,9 @@ import java.util.{List => JList} import com.google.common.cache.{LoadingCache, CacheLoader, CacheBuilder} import org.apache.hadoop.util.ReflectionUtils -import org.apache.hadoop.hive.metastore.TableType -import org.apache.hadoop.hive.metastore.api.{Table => TTable, Partition => TPartition, FieldSchema} -import org.apache.hadoop.hive.ql.metadata.{Hive, Partition, Table, HiveException} -import org.apache.hadoop.hive.ql.metadata.InvalidTableException +import org.apache.hadoop.hive.metastore.{Warehouse, TableType} +import org.apache.hadoop.hive.metastore.api.{Table => TTable, Partition => TPartition, AlreadyExistsException, FieldSchema} +import org.apache.hadoop.hive.ql.metadata._ import org.apache.hadoop.hive.ql.plan.CreateTableDesc import org.apache.hadoop.hive.serde.serdeConstants import org.apache.hadoop.hive.serde2.{Deserializer, SerDeException} @@ -52,6 +51,8 @@ private[hive] class HiveMetastoreCatalog(hive: HiveContext) extends Catalog with /** Connection to hive metastore. Usages should lock on `this`. */ protected[hive] val client = Hive.get(hive.hiveconf) + protected[hive] lazy val hiveWarehouse = new Warehouse(hive.hiveconf) + // TODO: Use this everywhere instead of tuples or databaseName, tableName,. /** A fully qualified identifier for a table (i.e., database.tableName) */ case class QualifiedTableName(database: String, name: String) { @@ -99,11 +100,22 @@ private[hive] class HiveMetastoreCatalog(hive: HiveContext) extends Catalog with val caseSensitive: Boolean = false + /** * + * Creates a data source table (a table created with USING clause) in Hive's metastore. + * Returns true when the table has been created. Otherwise, false. + * @param tableName + * @param userSpecifiedSchema + * @param provider + * @param options + * @param isExternal + * @return + */ def createDataSourceTable( tableName: String, userSpecifiedSchema: Option[StructType], provider: String, - options: Map[String, String]) = { + options: Map[String, String], + isExternal: Boolean): Unit = { val (dbName, tblName) = processDatabaseAndTableName("default", tableName) val tbl = new Table(dbName, tblName) @@ -113,8 +125,13 @@ private[hive] class HiveMetastoreCatalog(hive: HiveContext) extends Catalog with } options.foreach { case (key, value) => tbl.setSerdeParam(key, value) } - tbl.setProperty("EXTERNAL", "TRUE") - tbl.setTableType(TableType.EXTERNAL_TABLE) + if (isExternal) { + tbl.setProperty("EXTERNAL", "TRUE") + tbl.setTableType(TableType.EXTERNAL_TABLE) + } else { + tbl.setProperty("EXTERNAL", "FALSE") + tbl.setTableType(TableType.MANAGED_TABLE) + } // create the table synchronized { @@ -122,6 +139,10 @@ private[hive] class HiveMetastoreCatalog(hive: HiveContext) extends Catalog with } } + def hiveDefaultTableFilePath(tableName: String): String = { + hiveWarehouse.getTablePath(client.getDatabaseCurrent, tableName).toString + } + def tableExists(tableIdentifier: Seq[String]): Boolean = { val tableIdent = processTableIdentifier(tableIdentifier) val databaseName = tableIdent.lift(tableIdent.size - 2).getOrElse( diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala index fa997288a2848..d89111094b9ff 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveStrategies.scala @@ -33,7 +33,7 @@ import org.apache.spark.sql.execution.{DescribeCommand => RunnableDescribeComman import org.apache.spark.sql.execution._ import org.apache.spark.sql.hive.execution._ import org.apache.spark.sql.parquet.ParquetRelation -import org.apache.spark.sql.sources.CreateTableUsing +import org.apache.spark.sql.sources.{CreateTableUsingAsLogicalPlan, CreateTableUsingAsSelect, CreateTableUsing} import org.apache.spark.sql.types.StringType @@ -212,9 +212,21 @@ private[hive] trait HiveStrategies { object HiveDDLStrategy extends Strategy { def apply(plan: LogicalPlan): Seq[SparkPlan] = plan match { - case CreateTableUsing(tableName, userSpecifiedSchema, provider, false, options) => + case CreateTableUsing(tableName, userSpecifiedSchema, provider, false, opts, allowExisting) => ExecutedCommand( - CreateMetastoreDataSource(tableName, userSpecifiedSchema, provider, options)) :: Nil + CreateMetastoreDataSource( + tableName, userSpecifiedSchema, provider, opts, allowExisting)) :: Nil + + case CreateTableUsingAsSelect(tableName, provider, false, opts, allowExisting, query) => + val logicalPlan = hiveContext.parseSql(query) + val cmd = + CreateMetastoreDataSourceAsSelect(tableName, provider, opts, allowExisting, logicalPlan) + ExecutedCommand(cmd) :: Nil + + case CreateTableUsingAsLogicalPlan(tableName, provider, false, opts, allowExisting, query) => + val cmd = + CreateMetastoreDataSourceAsSelect(tableName, provider, opts, allowExisting, query) + ExecutedCommand(cmd) :: Nil case _ => Nil } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/commands.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/commands.scala index 4814cb7ebfe51..95dcaccefdc54 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/commands.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/execution/commands.scala @@ -18,8 +18,10 @@ package org.apache.spark.sql.hive.execution import org.apache.spark.annotation.DeveloperApi -import org.apache.spark.sql.SQLContext +import org.apache.spark.sql.sources.ResolvedDataSource +import org.apache.spark.sql.{DataFrame, SQLContext} import org.apache.spark.sql.catalyst.expressions.Row +import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan import org.apache.spark.sql.execution.RunnableCommand import org.apache.spark.sql.hive.HiveContext import org.apache.spark.sql.types.StructType @@ -102,11 +104,77 @@ case class CreateMetastoreDataSource( tableName: String, userSpecifiedSchema: Option[StructType], provider: String, - options: Map[String, String]) extends RunnableCommand { + options: Map[String, String], + allowExisting: Boolean) extends RunnableCommand { - override def run(sqlContext: SQLContext) = { + override def run(sqlContext: SQLContext): Seq[Row] = { val hiveContext = sqlContext.asInstanceOf[HiveContext] - hiveContext.catalog.createDataSourceTable(tableName, userSpecifiedSchema, provider, options) + + if (hiveContext.catalog.tableExists(tableName :: Nil)) { + if (allowExisting) { + return Seq.empty[Row] + } else { + sys.error(s"Table $tableName already exists.") + } + } + + var isExternal = true + val optionsWithPath = + if (!options.contains("path")) { + isExternal = false + options + ("path" -> hiveContext.catalog.hiveDefaultTableFilePath(tableName)) + } else { + options + } + + hiveContext.catalog.createDataSourceTable( + tableName, + userSpecifiedSchema, + provider, + optionsWithPath, + isExternal) + + Seq.empty[Row] + } +} + +case class CreateMetastoreDataSourceAsSelect( + tableName: String, + provider: String, + options: Map[String, String], + allowExisting: Boolean, + query: LogicalPlan) extends RunnableCommand { + + override def run(sqlContext: SQLContext): Seq[Row] = { + val hiveContext = sqlContext.asInstanceOf[HiveContext] + + if (hiveContext.catalog.tableExists(tableName :: Nil)) { + if (allowExisting) { + return Seq.empty[Row] + } else { + sys.error(s"Table $tableName already exists.") + } + } + + val df = DataFrame(hiveContext, query) + var isExternal = true + val optionsWithPath = + if (!options.contains("path")) { + isExternal = false + options + ("path" -> hiveContext.catalog.hiveDefaultTableFilePath(tableName)) + } else { + options + } + + // Create the relation based on the data of df. + ResolvedDataSource(sqlContext, provider, optionsWithPath, df) + + hiveContext.catalog.createDataSourceTable( + tableName, + None, + provider, + optionsWithPath, + isExternal) Seq.empty[Row] } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/MetastoreDataSourcesSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/MetastoreDataSourcesSuite.scala index 7408c7ffd69e8..85795acb658e2 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/MetastoreDataSourcesSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/MetastoreDataSourcesSuite.scala @@ -22,7 +22,9 @@ import java.io.File import org.scalatest.BeforeAndAfterEach import org.apache.commons.io.FileUtils +import org.apache.hadoop.fs.Path +import org.apache.spark.sql.catalyst.util import org.apache.spark.sql._ import org.apache.spark.util.Utils import org.apache.spark.sql.types._ @@ -36,9 +38,11 @@ import org.apache.spark.sql.hive.test.TestHive._ class MetastoreDataSourcesSuite extends QueryTest with BeforeAndAfterEach { override def afterEach(): Unit = { reset() + if (ctasPath.exists()) Utils.deleteRecursively(ctasPath) } val filePath = Utils.getSparkClassLoader.getResource("sample.json").getFile + var ctasPath: File = util.getTempFilePath("jsonCTAS").getCanonicalFile test ("persistent JSON table") { sql( @@ -94,7 +98,7 @@ class MetastoreDataSourcesSuite extends QueryTest with BeforeAndAfterEach { StructField("", innerStruct, true) :: StructField("b", StringType, true) :: Nil) - assert(expectedSchema == table("jsonTable").schema) + assert(expectedSchema === table("jsonTable").schema) jsonFile(filePath).registerTempTable("expectedJsonTable") @@ -137,6 +141,11 @@ class MetastoreDataSourcesSuite extends QueryTest with BeforeAndAfterEach { intercept[Exception] { sql("SELECT * FROM jsonTable").collect() } + + assert( + (new File(filePath)).exists(), + "The table with specified path is considered as an external table, " + + "its data should not deleted after DROP TABLE.") } test("check change without refresh") { @@ -240,7 +249,144 @@ class MetastoreDataSourcesSuite extends QueryTest with BeforeAndAfterEach { invalidateTable("jsonTable") val expectedSchema = StructType(StructField("c_!@(3)", IntegerType, true) :: Nil) - assert(expectedSchema == table("jsonTable").schema) + assert(expectedSchema === table("jsonTable").schema) + } + + test("CTAS") { + sql( + s""" + |CREATE TABLE jsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${filePath}' + |) + """.stripMargin) + + sql( + s""" + |CREATE TABLE ctasJsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${ctasPath}' + |) AS + |SELECT * FROM jsonTable + """.stripMargin) + + assert(table("ctasJsonTable").schema === table("jsonTable").schema) + + checkAnswer( + sql("SELECT * FROM ctasJsonTable"), + sql("SELECT * FROM jsonTable").collect()) + } + + test("CTAS with IF NOT EXISTS") { + sql( + s""" + |CREATE TABLE jsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${filePath}' + |) + """.stripMargin) + + sql( + s""" + |CREATE TABLE ctasJsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${ctasPath}' + |) AS + |SELECT * FROM jsonTable + """.stripMargin) + + // Create the table again should trigger a AlreadyExistsException. + val message = intercept[RuntimeException] { + sql( + s""" + |CREATE TABLE ctasJsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${ctasPath}' + |) AS + |SELECT * FROM jsonTable + """.stripMargin) + }.getMessage + assert(message.contains("Table ctasJsonTable already exists."), + "We should complain that ctasJsonTable already exists") + + // The following statement should be fine if it has IF NOT EXISTS. + // It tries to create a table ctasJsonTable with a new schema. + // The actual table's schema and data should not be changed. + sql( + s""" + |CREATE TABLE IF NOT EXISTS ctasJsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${ctasPath}' + |) AS + |SELECT a FROM jsonTable + """.stripMargin) + + // Discard the cached relation. + invalidateTable("ctasJsonTable") + + // Schema should not be changed. + assert(table("ctasJsonTable").schema === table("jsonTable").schema) + // Table data should not be changed. + checkAnswer( + sql("SELECT * FROM ctasJsonTable"), + sql("SELECT * FROM jsonTable").collect()) + } + + test("CTAS a managed table") { + sql( + s""" + |CREATE TABLE jsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${filePath}' + |) + """.stripMargin) + + new Path("/Users/yhuai/Desktop/whatever") + + + val expectedPath = catalog.hiveDefaultTableFilePath("ctasJsonTable") + val filesystemPath = new Path(expectedPath) + val fs = filesystemPath.getFileSystem(sparkContext.hadoopConfiguration) + if (fs.exists(filesystemPath)) fs.delete(filesystemPath, true) + + // It is a managed table when we do not specify the location. + sql( + s""" + |CREATE TABLE ctasJsonTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | + |) AS + |SELECT * FROM jsonTable + """.stripMargin) + + assert(fs.exists(filesystemPath), s"$expectedPath should exist after we create the table.") + + sql( + s""" + |CREATE TABLE loadedTable + |USING org.apache.spark.sql.json.DefaultSource + |OPTIONS ( + | path '${expectedPath}' + |) + """.stripMargin) + + assert(table("ctasJsonTable").schema === table("loadedTable").schema) + + checkAnswer( + sql("SELECT * FROM ctasJsonTable"), + sql("SELECT * FROM loadedTable").collect() + ) + + sql("DROP TABLE ctasJsonTable") + assert(!fs.exists(filesystemPath), s"$expectedPath should not exist after we drop the table.") } test("SPARK-5286 Fail to drop an invalid table when using the data source API") { @@ -255,4 +401,39 @@ class MetastoreDataSourcesSuite extends QueryTest with BeforeAndAfterEach { sql("DROP TABLE jsonTable").collect().foreach(println) } + + test("save and load table") { + val originalDefaultSource = conf.defaultDataSourceName + conf.setConf("spark.sql.default.datasource", "org.apache.spark.sql.json") + + val rdd = sparkContext.parallelize((1 to 10).map(i => s"""{"a":$i, "b":"str${i}"}""")) + val df = jsonRDD(rdd) + + df.saveAsTable("savedJsonTable") + + checkAnswer( + sql("SELECT * FROM savedJsonTable"), + df.collect()) + + createTable("createdJsonTable", catalog.hiveDefaultTableFilePath("savedJsonTable"), false) + assert(table("createdJsonTable").schema === df.schema) + checkAnswer( + sql("SELECT * FROM createdJsonTable"), + df.collect()) + + val message = intercept[RuntimeException] { + createTable("createdJsonTable", filePath.toString, false) + }.getMessage + assert(message.contains("Table createdJsonTable already exists."), + "We should complain that ctasJsonTable already exists") + + createTable("createdJsonTable", filePath.toString, true) + // createdJsonTable should be not changed. + assert(table("createdJsonTable").schema === df.schema) + checkAnswer( + sql("SELECT * FROM createdJsonTable"), + df.collect()) + + conf.setConf("spark.sql.default.datasource", originalDefaultSource) + } } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/SQLQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/SQLQuerySuite.scala index eb7a7750af02d..4efe0c5e0cd44 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/SQLQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/SQLQuerySuite.scala @@ -170,7 +170,7 @@ class SQLQuerySuite extends QueryTest { sql("CREATE TABLE test2 (key INT, value STRING)") testData.insertInto("test2") testData.insertInto("test2") - sql("SELECT COUNT(a.value) FROM test1 a JOIN test2 b ON a.key = b.key").saveAsTable("test") + sql("CREATE TABLE test AS SELECT COUNT(a.value) FROM test1 a JOIN test2 b ON a.key = b.key") checkAnswer( table("test"), sql("SELECT COUNT(a.value) FROM test1 a JOIN test2 b ON a.key = b.key").collect().toSeq) From b8ebebeaaa259be4fcddf65b3280d23165b011a1 Mon Sep 17 00:00:00 2001 From: Josh Rosen Date: Mon, 2 Feb 2015 23:35:07 -0800 Subject: [PATCH 36/52] [SPARK-5414] Add SparkFirehoseListener class for consuming all SparkListener events There isn't a good way to write a SparkListener that receives all SparkListener events and which will be future-compatible (e.g. it will receive events introduced in newer versions of Spark without having to override new methods to process those events). To address this, this patch adds `SparkFirehoseListener`, a SparkListener implementation that receives all events and dispatches them to a single `onEvent` method (which can be overridden by users). Author: Josh Rosen Closes #4210 from JoshRosen/firehose-listener and squashes the following commits: 223f579 [Josh Rosen] Expand comment to explain rationale for this being a Java class. ecdfaed [Josh Rosen] Add SparkFirehoseListener class for consuming all SparkListener events. --- .../apache/spark/SparkFirehoseListener.java | 115 ++++++++++++++++++ 1 file changed, 115 insertions(+) create mode 100644 core/src/main/java/org/apache/spark/SparkFirehoseListener.java diff --git a/core/src/main/java/org/apache/spark/SparkFirehoseListener.java b/core/src/main/java/org/apache/spark/SparkFirehoseListener.java new file mode 100644 index 0000000000000..fbc5666959055 --- /dev/null +++ b/core/src/main/java/org/apache/spark/SparkFirehoseListener.java @@ -0,0 +1,115 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark; + +import org.apache.spark.scheduler.*; + +/** + * Class that allows users to receive all SparkListener events. + * Users should override the onEvent method. + * + * This is a concrete Java class in order to ensure that we don't forget to update it when adding + * new methods to SparkListener: forgetting to add a method will result in a compilation error (if + * this was a concrete Scala class, default implementations of new event handlers would be inherited + * from the SparkListener trait). + */ +public class SparkFirehoseListener implements SparkListener { + + public void onEvent(SparkListenerEvent event) { } + + @Override + public final void onStageCompleted(SparkListenerStageCompleted stageCompleted) { + onEvent(stageCompleted); + } + + @Override + public final void onStageSubmitted(SparkListenerStageSubmitted stageSubmitted) { + onEvent(stageSubmitted); + } + + @Override + public final void onTaskStart(SparkListenerTaskStart taskStart) { + onEvent(taskStart); + } + + @Override + public final void onTaskGettingResult(SparkListenerTaskGettingResult taskGettingResult) { + onEvent(taskGettingResult); + } + + @Override + public final void onTaskEnd(SparkListenerTaskEnd taskEnd) { + onEvent(taskEnd); + } + + @Override + public final void onJobStart(SparkListenerJobStart jobStart) { + onEvent(jobStart); + } + + @Override + public final void onJobEnd(SparkListenerJobEnd jobEnd) { + onEvent(jobEnd); + } + + @Override + public final void onEnvironmentUpdate(SparkListenerEnvironmentUpdate environmentUpdate) { + onEvent(environmentUpdate); + } + + @Override + public final void onBlockManagerAdded(SparkListenerBlockManagerAdded blockManagerAdded) { + onEvent(blockManagerAdded); + } + + @Override + public final void onBlockManagerRemoved(SparkListenerBlockManagerRemoved blockManagerRemoved) { + onEvent(blockManagerRemoved); + } + + @Override + public final void onUnpersistRDD(SparkListenerUnpersistRDD unpersistRDD) { + onEvent(unpersistRDD); + } + + @Override + public final void onApplicationStart(SparkListenerApplicationStart applicationStart) { + onEvent(applicationStart); + } + + @Override + public final void onApplicationEnd(SparkListenerApplicationEnd applicationEnd) { + onEvent(applicationEnd); + } + + @Override + public final void onExecutorMetricsUpdate( + SparkListenerExecutorMetricsUpdate executorMetricsUpdate) { + onEvent(executorMetricsUpdate); + } + + @Override + public final void onExecutorAdded(SparkListenerExecutorAdded executorAdded) { + onEvent(executorAdded); + } + + @Override + public final void onExecutorRemoved(SparkListenerExecutorRemoved executorRemoved) { + onEvent(executorRemoved); + } +} From 0cc7b88c99405db99bc4c3d66f5409e5da0e3c6e Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Mon, 2 Feb 2015 23:49:09 -0800 Subject: [PATCH 37/52] [SPARK-5536] replace old ALS implementation by the new one The only issue is that `analyzeBlock` is removed, which was marked as a developer API. I didn't change other tests in the ALSSuite under `spark.mllib` to ensure that the implementation is correct. CC: srowen coderxiang Author: Xiangrui Meng Closes #4321 from mengxr/SPARK-5536 and squashes the following commits: 5a3cee8 [Xiangrui Meng] update python tests that are too strict e840acf [Xiangrui Meng] ignore scala style check for ALS.train e9a721c [Xiangrui Meng] update mima excludes 9ee6a36 [Xiangrui Meng] merge master 9a8aeac [Xiangrui Meng] update tests d8c3271 [Xiangrui Meng] remove analyzeBlocks d68eee7 [Xiangrui Meng] add checkpoint to new ALS 22a56f8 [Xiangrui Meng] wrap old ALS c387dff [Xiangrui Meng] support random seed 3bdf24b [Xiangrui Meng] make storage level configurable in the new ALS --- .../apache/spark/ml/recommendation/ALS.scala | 69 +- .../spark/mllib/recommendation/ALS.scala | 600 +----------------- .../spark/ml/recommendation/ALSSuite.scala | 2 +- .../spark/mllib/recommendation/ALSSuite.scala | 18 - project/MimaExcludes.scala | 7 +- python/pyspark/mllib/recommendation.py | 16 +- 6 files changed, 90 insertions(+), 622 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala index 82d21d5e4cb6e..511cb2fe4005e 100644 --- a/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala +++ b/mllib/src/main/scala/org/apache/spark/ml/recommendation/ALS.scala @@ -22,6 +22,7 @@ import java.{util => ju} import scala.collection.mutable import scala.reflect.ClassTag import scala.util.Sorting +import scala.util.hashing.byteswap64 import com.github.fommil.netlib.BLAS.{getInstance => blas} import com.github.fommil.netlib.LAPACK.{getInstance => lapack} @@ -37,6 +38,7 @@ import org.apache.spark.rdd.RDD import org.apache.spark.sql.DataFrame import org.apache.spark.sql.Dsl._ import org.apache.spark.sql.types.{DoubleType, FloatType, IntegerType, StructField, StructType} +import org.apache.spark.storage.StorageLevel import org.apache.spark.util.Utils import org.apache.spark.util.collection.{OpenHashMap, OpenHashSet, SortDataFormat, Sorter} import org.apache.spark.util.random.XORShiftRandom @@ -412,7 +414,7 @@ object ALS extends Logging { /** * Implementation of the ALS algorithm. */ - def train[ID: ClassTag]( + def train[ID: ClassTag]( // scalastyle:ignore ratings: RDD[Rating[ID]], rank: Int = 10, numUserBlocks: Int = 10, @@ -421,34 +423,47 @@ object ALS extends Logging { regParam: Double = 1.0, implicitPrefs: Boolean = false, alpha: Double = 1.0, - nonnegative: Boolean = false)( + nonnegative: Boolean = false, + intermediateRDDStorageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK, + finalRDDStorageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK, + seed: Long = 0L)( implicit ord: Ordering[ID]): (RDD[(ID, Array[Float])], RDD[(ID, Array[Float])]) = { + require(intermediateRDDStorageLevel != StorageLevel.NONE, + "ALS is not designed to run without persisting intermediate RDDs.") + val sc = ratings.sparkContext val userPart = new HashPartitioner(numUserBlocks) val itemPart = new HashPartitioner(numItemBlocks) val userLocalIndexEncoder = new LocalIndexEncoder(userPart.numPartitions) val itemLocalIndexEncoder = new LocalIndexEncoder(itemPart.numPartitions) val solver = if (nonnegative) new NNLSSolver else new CholeskySolver - val blockRatings = partitionRatings(ratings, userPart, itemPart).cache() - val (userInBlocks, userOutBlocks) = makeBlocks("user", blockRatings, userPart, itemPart) + val blockRatings = partitionRatings(ratings, userPart, itemPart) + .persist(intermediateRDDStorageLevel) + val (userInBlocks, userOutBlocks) = + makeBlocks("user", blockRatings, userPart, itemPart, intermediateRDDStorageLevel) // materialize blockRatings and user blocks userOutBlocks.count() val swappedBlockRatings = blockRatings.map { case ((userBlockId, itemBlockId), RatingBlock(userIds, itemIds, localRatings)) => ((itemBlockId, userBlockId), RatingBlock(itemIds, userIds, localRatings)) } - val (itemInBlocks, itemOutBlocks) = makeBlocks("item", swappedBlockRatings, itemPart, userPart) + val (itemInBlocks, itemOutBlocks) = + makeBlocks("item", swappedBlockRatings, itemPart, userPart, intermediateRDDStorageLevel) // materialize item blocks itemOutBlocks.count() - var userFactors = initialize(userInBlocks, rank) - var itemFactors = initialize(itemInBlocks, rank) + val seedGen = new XORShiftRandom(seed) + var userFactors = initialize(userInBlocks, rank, seedGen.nextLong()) + var itemFactors = initialize(itemInBlocks, rank, seedGen.nextLong()) if (implicitPrefs) { for (iter <- 1 to maxIter) { - userFactors.setName(s"userFactors-$iter").persist() + userFactors.setName(s"userFactors-$iter").persist(intermediateRDDStorageLevel) val previousItemFactors = itemFactors itemFactors = computeFactors(userFactors, userOutBlocks, itemInBlocks, rank, regParam, userLocalIndexEncoder, implicitPrefs, alpha, solver) previousItemFactors.unpersist() - itemFactors.setName(s"itemFactors-$iter").persist() + if (sc.checkpointDir.isDefined && (iter % 3 == 0)) { + itemFactors.checkpoint() + } + itemFactors.setName(s"itemFactors-$iter").persist(intermediateRDDStorageLevel) val previousUserFactors = userFactors userFactors = computeFactors(itemFactors, itemOutBlocks, userInBlocks, rank, regParam, itemLocalIndexEncoder, implicitPrefs, alpha, solver) @@ -467,21 +482,23 @@ object ALS extends Logging { .join(userFactors) .values .setName("userFactors") - .cache() - userIdAndFactors.count() - itemFactors.unpersist() + .persist(finalRDDStorageLevel) val itemIdAndFactors = itemInBlocks .mapValues(_.srcIds) .join(itemFactors) .values .setName("itemFactors") - .cache() - itemIdAndFactors.count() - userInBlocks.unpersist() - userOutBlocks.unpersist() - itemInBlocks.unpersist() - itemOutBlocks.unpersist() - blockRatings.unpersist() + .persist(finalRDDStorageLevel) + if (finalRDDStorageLevel != StorageLevel.NONE) { + userIdAndFactors.count() + itemFactors.unpersist() + itemIdAndFactors.count() + userInBlocks.unpersist() + userOutBlocks.unpersist() + itemInBlocks.unpersist() + itemOutBlocks.unpersist() + blockRatings.unpersist() + } val userOutput = userIdAndFactors.flatMap { case (ids, factors) => ids.view.zip(factors) } @@ -546,14 +563,15 @@ object ALS extends Logging { */ private def initialize[ID]( inBlocks: RDD[(Int, InBlock[ID])], - rank: Int): RDD[(Int, FactorBlock)] = { + rank: Int, + seed: Long): RDD[(Int, FactorBlock)] = { // Choose a unit vector uniformly at random from the unit sphere, but from the // "first quadrant" where all elements are nonnegative. This can be done by choosing // elements distributed as Normal(0,1) and taking the absolute value, and then normalizing. // This appears to create factorizations that have a slightly better reconstruction // (<1%) compared picking elements uniformly at random in [0,1]. inBlocks.map { case (srcBlockId, inBlock) => - val random = new XORShiftRandom(srcBlockId) + val random = new XORShiftRandom(byteswap64(seed ^ srcBlockId)) val factors = Array.fill(inBlock.srcIds.length) { val factor = Array.fill(rank)(random.nextGaussian().toFloat) val nrm = blas.snrm2(rank, factor, 1) @@ -877,7 +895,8 @@ object ALS extends Logging { prefix: String, ratingBlocks: RDD[((Int, Int), RatingBlock[ID])], srcPart: Partitioner, - dstPart: Partitioner)( + dstPart: Partitioner, + storageLevel: StorageLevel)( implicit srcOrd: Ordering[ID]): (RDD[(Int, InBlock[ID])], RDD[(Int, OutBlock)]) = { val inBlocks = ratingBlocks.map { case ((srcBlockId, dstBlockId), RatingBlock(srcIds, dstIds, ratings)) => @@ -914,7 +933,8 @@ object ALS extends Logging { builder.add(dstBlockId, srcIds, dstLocalIndices, ratings) } builder.build().compress() - }.setName(prefix + "InBlocks").cache() + }.setName(prefix + "InBlocks") + .persist(storageLevel) val outBlocks = inBlocks.mapValues { case InBlock(srcIds, dstPtrs, dstEncodedIndices, _) => val encoder = new LocalIndexEncoder(dstPart.numPartitions) val activeIds = Array.fill(dstPart.numPartitions)(mutable.ArrayBuilder.make[Int]) @@ -936,7 +956,8 @@ object ALS extends Logging { activeIds.map { x => x.result() } - }.setName(prefix + "OutBlocks").cache() + }.setName(prefix + "OutBlocks") + .persist(storageLevel) (inBlocks, outBlocks) } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala index a5ffe888ca880..f4f51f2ac5210 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/recommendation/ALS.scala @@ -17,46 +17,12 @@ package org.apache.spark.mllib.recommendation -import scala.collection.mutable -import scala.collection.mutable.ArrayBuffer -import scala.math.{abs, sqrt} -import scala.util.{Random, Sorting} -import scala.util.hashing.byteswap32 - -import org.jblas.{DoubleMatrix, SimpleBlas, Solve} - -import org.apache.spark.{HashPartitioner, Logging, Partitioner} -import org.apache.spark.SparkContext._ +import org.apache.spark.Logging import org.apache.spark.annotation.{DeveloperApi, Experimental} import org.apache.spark.api.java.JavaRDD -import org.apache.spark.broadcast.Broadcast -import org.apache.spark.mllib.optimization.NNLS +import org.apache.spark.ml.recommendation.{ALS => NewALS} import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel -import org.apache.spark.util.Utils - -/** - * Out-link information for a user or product block. This includes the original user/product IDs - * of the elements within this block, and the list of destination blocks that each user or - * product will need to send its feature vector to. - */ -private[recommendation] -case class OutLinkBlock(elementIds: Array[Int], shouldSend: Array[mutable.BitSet]) - - -/** - * In-link information for a user (or product) block. This includes the original user/product IDs - * of the elements within this block, as well as an array of indices and ratings that specify - * which user in the block will be rated by which products from each product block (or vice-versa). - * Specifically, if this InLinkBlock is for users, ratingsForBlock(b)(i) will contain two arrays, - * indices and ratings, for the i'th product that will be sent to us by product block b (call this - * P). These arrays represent the users that product P had ratings for (by their index in this - * block), as well as the corresponding rating for each one. We can thus use this information when - * we get product block b's message to update the corresponding users. - */ -private[recommendation] case class InLinkBlock( - elementIds: Array[Int], ratingsForBlock: Array[Array[(Array[Int], Array[Double])]]) - /** * :: Experimental :: @@ -201,6 +167,8 @@ class ALS private ( */ @DeveloperApi def setIntermediateRDDStorageLevel(storageLevel: StorageLevel): this.type = { + require(storageLevel != StorageLevel.NONE, + "ALS is not designed to run without persisting intermediate RDDs.") this.intermediateRDDStorageLevel = storageLevel this } @@ -236,431 +204,39 @@ class ALS private ( this.numProductBlocks } - val userPartitioner = new ALSPartitioner(numUserBlocks) - val productPartitioner = new ALSPartitioner(numProductBlocks) - - val ratingsByUserBlock = ratings.map { rating => - (userPartitioner.getPartition(rating.user), rating) - } - val ratingsByProductBlock = ratings.map { rating => - (productPartitioner.getPartition(rating.product), - Rating(rating.product, rating.user, rating.rating)) - } - - val (userInLinks, userOutLinks) = - makeLinkRDDs(numUserBlocks, numProductBlocks, ratingsByUserBlock, productPartitioner) - val (productInLinks, productOutLinks) = - makeLinkRDDs(numProductBlocks, numUserBlocks, ratingsByProductBlock, userPartitioner) - userInLinks.setName("userInLinks") - userOutLinks.setName("userOutLinks") - productInLinks.setName("productInLinks") - productOutLinks.setName("productOutLinks") - - // Initialize user and product factors randomly, but use a deterministic seed for each - // partition so that fault recovery works - val seedGen = new Random(seed) - val seed1 = seedGen.nextInt() - val seed2 = seedGen.nextInt() - var users = userOutLinks.mapPartitionsWithIndex { (index, itr) => - val rand = new Random(byteswap32(seed1 ^ index)) - itr.map { case (x, y) => - (x, y.elementIds.map(_ => randomFactor(rank, rand))) - } - } - var products = productOutLinks.mapPartitionsWithIndex { (index, itr) => - val rand = new Random(byteswap32(seed2 ^ index)) - itr.map { case (x, y) => - (x, y.elementIds.map(_ => randomFactor(rank, rand))) - } - } - - if (implicitPrefs) { - for (iter <- 1 to iterations) { - // perform ALS update - logInfo("Re-computing I given U (Iteration %d/%d)".format(iter, iterations)) - // Persist users because it will be called twice. - users.setName(s"users-$iter").persist() - val YtY = Some(sc.broadcast(computeYtY(users))) - val previousProducts = products - products = updateFeatures(numProductBlocks, users, userOutLinks, productInLinks, - rank, lambda, alpha, YtY) - previousProducts.unpersist() - logInfo("Re-computing U given I (Iteration %d/%d)".format(iter, iterations)) - if (sc.checkpointDir.isDefined && (iter % 3 == 0)) { - products.checkpoint() - } - products.setName(s"products-$iter").persist() - val XtX = Some(sc.broadcast(computeYtY(products))) - val previousUsers = users - users = updateFeatures(numUserBlocks, products, productOutLinks, userInLinks, - rank, lambda, alpha, XtX) - previousUsers.unpersist() - } - } else { - for (iter <- 1 to iterations) { - // perform ALS update - logInfo("Re-computing I given U (Iteration %d/%d)".format(iter, iterations)) - products = updateFeatures(numProductBlocks, users, userOutLinks, productInLinks, - rank, lambda, alpha, YtY = None) - if (sc.checkpointDir.isDefined && (iter % 3 == 0)) { - products.checkpoint() - } - products.setName(s"products-$iter") - logInfo("Re-computing U given I (Iteration %d/%d)".format(iter, iterations)) - users = updateFeatures(numUserBlocks, products, productOutLinks, userInLinks, - rank, lambda, alpha, YtY = None) - users.setName(s"users-$iter") - } + val (floatUserFactors, floatProdFactors) = NewALS.train[Int]( + ratings = ratings.map(r => NewALS.Rating(r.user, r.product, r.rating.toFloat)), + rank = rank, + numUserBlocks = numUserBlocks, + numItemBlocks = numProductBlocks, + maxIter = iterations, + regParam = lambda, + implicitPrefs = implicitPrefs, + alpha = alpha, + nonnegative = nonnegative, + intermediateRDDStorageLevel = intermediateRDDStorageLevel, + finalRDDStorageLevel = StorageLevel.NONE, + seed = seed) + + val userFactors = floatUserFactors + .mapValues(_.map(_.toDouble)) + .setName("users") + .persist(finalRDDStorageLevel) + val prodFactors = floatProdFactors + .mapValues(_.map(_.toDouble)) + .setName("products") + .persist(finalRDDStorageLevel) + if (finalRDDStorageLevel != StorageLevel.NONE) { + userFactors.count() + prodFactors.count() } - - // The last `products` will be used twice. One to generate the last `users` and the other to - // generate `productsOut`. So we cache it for better performance. - products.setName("products").persist() - - // Flatten and cache the two final RDDs to un-block them - val usersOut = unblockFactors(users, userOutLinks) - val productsOut = unblockFactors(products, productOutLinks) - - usersOut.setName("usersOut").persist(finalRDDStorageLevel) - productsOut.setName("productsOut").persist(finalRDDStorageLevel) - - // Materialize usersOut and productsOut. - usersOut.count() - productsOut.count() - - products.unpersist() - - // Clean up. - userInLinks.unpersist() - userOutLinks.unpersist() - productInLinks.unpersist() - productOutLinks.unpersist() - - new MatrixFactorizationModel(rank, usersOut, productsOut) + new MatrixFactorizationModel(rank, userFactors, prodFactors) } /** * Java-friendly version of [[ALS.run]]. */ def run(ratings: JavaRDD[Rating]): MatrixFactorizationModel = run(ratings.rdd) - - /** - * Computes the (`rank x rank`) matrix `YtY`, where `Y` is the (`nui x rank`) matrix of factors - * for each user (or product), in a distributed fashion. - * - * @param factors the (block-distributed) user or product factor vectors - * @return YtY - whose value is only used in the implicit preference model - */ - private def computeYtY(factors: RDD[(Int, Array[Array[Double]])]) = { - val n = rank * (rank + 1) / 2 - val LYtY = factors.values.aggregate(new DoubleMatrix(n))( seqOp = (L, Y) => { - Y.foreach(y => dspr(1.0, wrapDoubleArray(y), L)) - L - }, combOp = (L1, L2) => { - L1.addi(L2) - }) - val YtY = new DoubleMatrix(rank, rank) - fillFullMatrix(LYtY, YtY) - YtY - } - - /** - * Adds alpha * x * x.t to a matrix in-place. This is the same as BLAS's DSPR. - * - * @param L the lower triangular part of the matrix packed in an array (row major) - */ - private def dspr(alpha: Double, x: DoubleMatrix, L: DoubleMatrix) = { - val n = x.length - var i = 0 - var j = 0 - var idx = 0 - var axi = 0.0 - val xd = x.data - val Ld = L.data - while (i < n) { - axi = alpha * xd(i) - j = 0 - while (j <= i) { - Ld(idx) += axi * xd(j) - j += 1 - idx += 1 - } - i += 1 - } - } - - /** - * Wrap a double array in a DoubleMatrix without creating garbage. - * This is a temporary fix for jblas 1.2.3; it should be safe to move back to the - * DoubleMatrix(double[]) constructor come jblas 1.2.4. - */ - private def wrapDoubleArray(v: Array[Double]): DoubleMatrix = { - new DoubleMatrix(v.length, 1, v: _*) - } - - /** - * Flatten out blocked user or product factors into an RDD of (id, factor vector) pairs - */ - private def unblockFactors( - blockedFactors: RDD[(Int, Array[Array[Double]])], - outLinks: RDD[(Int, OutLinkBlock)]): RDD[(Int, Array[Double])] = { - blockedFactors.join(outLinks).flatMap { case (b, (factors, outLinkBlock)) => - for (i <- 0 until factors.length) yield (outLinkBlock.elementIds(i), factors(i)) - } - } - - /** - * Make the out-links table for a block of the users (or products) dataset given the list of - * (user, product, rating) values for the users in that block (or the opposite for products). - */ - private def makeOutLinkBlock(numProductBlocks: Int, ratings: Array[Rating], - productPartitioner: Partitioner): OutLinkBlock = { - val userIds = ratings.map(_.user).distinct.sorted - val numUsers = userIds.length - val userIdToPos = userIds.zipWithIndex.toMap - val shouldSend = Array.fill(numUsers)(new mutable.BitSet(numProductBlocks)) - for (r <- ratings) { - shouldSend(userIdToPos(r.user))(productPartitioner.getPartition(r.product)) = true - } - OutLinkBlock(userIds, shouldSend) - } - - /** - * Make the in-links table for a block of the users (or products) dataset given a list of - * (user, product, rating) values for the users in that block (or the opposite for products). - */ - private def makeInLinkBlock(numProductBlocks: Int, ratings: Array[Rating], - productPartitioner: Partitioner): InLinkBlock = { - val userIds = ratings.map(_.user).distinct.sorted - val userIdToPos = userIds.zipWithIndex.toMap - // Split out our ratings by product block - val blockRatings = Array.fill(numProductBlocks)(new ArrayBuffer[Rating]) - for (r <- ratings) { - blockRatings(productPartitioner.getPartition(r.product)) += r - } - val ratingsForBlock = new Array[Array[(Array[Int], Array[Double])]](numProductBlocks) - for (productBlock <- 0 until numProductBlocks) { - // Create an array of (product, Seq(Rating)) ratings - val groupedRatings = blockRatings(productBlock).groupBy(_.product).toArray - // Sort them by product ID - val ordering = new Ordering[(Int, ArrayBuffer[Rating])] { - def compare(a: (Int, ArrayBuffer[Rating]), b: (Int, ArrayBuffer[Rating])): Int = - a._1 - b._1 - } - Sorting.quickSort(groupedRatings)(ordering) - // Translate the user IDs to indices based on userIdToPos - ratingsForBlock(productBlock) = groupedRatings.map { case (p, rs) => - (rs.view.map(r => userIdToPos(r.user)).toArray, rs.view.map(_.rating).toArray) - } - } - InLinkBlock(userIds, ratingsForBlock) - } - - /** - * Make RDDs of InLinkBlocks and OutLinkBlocks given an RDD of (blockId, (u, p, r)) values for - * the users (or (blockId, (p, u, r)) for the products). We create these simultaneously to avoid - * having to shuffle the (blockId, (u, p, r)) RDD twice, or to cache it. - */ - private def makeLinkRDDs( - numUserBlocks: Int, - numProductBlocks: Int, - ratingsByUserBlock: RDD[(Int, Rating)], - productPartitioner: Partitioner): (RDD[(Int, InLinkBlock)], RDD[(Int, OutLinkBlock)]) = { - val grouped = ratingsByUserBlock.partitionBy(new HashPartitioner(numUserBlocks)) - val links = grouped.mapPartitionsWithIndex((blockId, elements) => { - val ratings = elements.map(_._2).toArray - val inLinkBlock = makeInLinkBlock(numProductBlocks, ratings, productPartitioner) - val outLinkBlock = makeOutLinkBlock(numProductBlocks, ratings, productPartitioner) - Iterator.single((blockId, (inLinkBlock, outLinkBlock))) - }, preservesPartitioning = true) - val inLinks = links.mapValues(_._1) - val outLinks = links.mapValues(_._2) - inLinks.persist(intermediateRDDStorageLevel) - outLinks.persist(intermediateRDDStorageLevel) - (inLinks, outLinks) - } - - /** - * Make a random factor vector with the given random. - */ - private def randomFactor(rank: Int, rand: Random): Array[Double] = { - // Choose a unit vector uniformly at random from the unit sphere, but from the - // "first quadrant" where all elements are nonnegative. This can be done by choosing - // elements distributed as Normal(0,1) and taking the absolute value, and then normalizing. - // This appears to create factorizations that have a slightly better reconstruction - // (<1%) compared picking elements uniformly at random in [0,1]. - val factor = Array.fill(rank)(abs(rand.nextGaussian())) - val norm = sqrt(factor.map(x => x * x).sum) - factor.map(x => x / norm) - } - - /** - * Compute the user feature vectors given the current products (or vice-versa). This first joins - * the products with their out-links to generate a set of messages to each destination block - * (specifically, the features for the products that user block cares about), then groups these - * by destination and joins them with the in-link info to figure out how to update each user. - * It returns an RDD of new feature vectors for each user block. - */ - private def updateFeatures( - numUserBlocks: Int, - products: RDD[(Int, Array[Array[Double]])], - productOutLinks: RDD[(Int, OutLinkBlock)], - userInLinks: RDD[(Int, InLinkBlock)], - rank: Int, - lambda: Double, - alpha: Double, - YtY: Option[Broadcast[DoubleMatrix]]): RDD[(Int, Array[Array[Double]])] = { - productOutLinks.join(products).flatMap { case (bid, (outLinkBlock, factors)) => - val toSend = Array.fill(numUserBlocks)(new ArrayBuffer[Array[Double]]) - for (p <- 0 until outLinkBlock.elementIds.length; userBlock <- 0 until numUserBlocks) { - if (outLinkBlock.shouldSend(p)(userBlock)) { - toSend(userBlock) += factors(p) - } - } - toSend.zipWithIndex.map{ case (buf, idx) => (idx, (bid, buf.toArray)) } - }.groupByKey(new HashPartitioner(numUserBlocks)) - .join(userInLinks) - .mapValues{ case (messages, inLinkBlock) => - updateBlock(messages, inLinkBlock, rank, lambda, alpha, YtY) - } - } - - /** - * Compute the new feature vectors for a block of the users matrix given the list of factors - * it received from each product and its InLinkBlock. - */ - private def updateBlock(messages: Iterable[(Int, Array[Array[Double]])], inLinkBlock: InLinkBlock, - rank: Int, lambda: Double, alpha: Double, YtY: Option[Broadcast[DoubleMatrix]]) - : Array[Array[Double]] = - { - // Sort the incoming block factor messages by block ID and make them an array - val blockFactors = messages.toSeq.sortBy(_._1).map(_._2).toArray // Array[Array[Double]] - val numProductBlocks = blockFactors.length - val numUsers = inLinkBlock.elementIds.length - - // We'll sum up the XtXes using vectors that represent only the lower-triangular part, since - // the matrices are symmetric - val triangleSize = rank * (rank + 1) / 2 - val userXtX = Array.fill(numUsers)(DoubleMatrix.zeros(triangleSize)) - val userXy = Array.fill(numUsers)(DoubleMatrix.zeros(rank)) - - // Some temp variables to avoid memory allocation - val tempXtX = DoubleMatrix.zeros(triangleSize) - val fullXtX = DoubleMatrix.zeros(rank, rank) - - // Count the number of ratings each user gives to provide user-specific regularization - val numRatings = Array.fill(numUsers)(0) - - // Compute the XtX and Xy values for each user by adding products it rated in each product - // block - for (productBlock <- 0 until numProductBlocks) { - var p = 0 - while (p < blockFactors(productBlock).length) { - val x = wrapDoubleArray(blockFactors(productBlock)(p)) - tempXtX.fill(0.0) - dspr(1.0, x, tempXtX) - val (us, rs) = inLinkBlock.ratingsForBlock(productBlock)(p) - if (implicitPrefs) { - var i = 0 - while (i < us.length) { - numRatings(us(i)) += 1 - // Extension to the original paper to handle rs(i) < 0. confidence is a function - // of |rs(i)| instead so that it is never negative: - val confidence = 1 + alpha * abs(rs(i)) - SimpleBlas.axpy(confidence - 1.0, tempXtX, userXtX(us(i))) - // For rs(i) < 0, the corresponding entry in P is 0 now, not 1 -- negative rs(i) - // means we try to reconstruct 0. We add terms only where P = 1, so, term below - // is now only added for rs(i) > 0: - if (rs(i) > 0) { - SimpleBlas.axpy(confidence, x, userXy(us(i))) - } - i += 1 - } - } else { - var i = 0 - while (i < us.length) { - numRatings(us(i)) += 1 - userXtX(us(i)).addi(tempXtX) - SimpleBlas.axpy(rs(i), x, userXy(us(i))) - i += 1 - } - } - p += 1 - } - } - - val ws = if (nonnegative) NNLS.createWorkspace(rank) else null - - // Solve the least-squares problem for each user and return the new feature vectors - Array.range(0, numUsers).map { index => - // Compute the full XtX matrix from the lower-triangular part we got above - fillFullMatrix(userXtX(index), fullXtX) - // Add regularization - val regParam = numRatings(index) * lambda - var i = 0 - while (i < rank) { - fullXtX.data(i * rank + i) += regParam - i += 1 - } - // Solve the resulting matrix, which is symmetric and positive-definite - if (implicitPrefs) { - solveLeastSquares(fullXtX.addi(YtY.get.value), userXy(index), ws) - } else { - solveLeastSquares(fullXtX, userXy(index), ws) - } - } - } - - /** - * Given A^T A and A^T b, find the x minimising ||Ax - b||_2, possibly subject - * to nonnegativity constraints if `nonnegative` is true. - */ - private def solveLeastSquares(ata: DoubleMatrix, atb: DoubleMatrix, - ws: NNLS.Workspace): Array[Double] = { - if (!nonnegative) { - Solve.solvePositive(ata, atb).data - } else { - NNLS.solve(ata, atb, ws) - } - } - - /** - * Given a triangular matrix in the order of fillXtX above, compute the full symmetric square - * matrix that it represents, storing it into destMatrix. - */ - private def fillFullMatrix(triangularMatrix: DoubleMatrix, destMatrix: DoubleMatrix) { - val rank = destMatrix.rows - var i = 0 - var pos = 0 - while (i < rank) { - var j = 0 - while (j <= i) { - destMatrix.data(i*rank + j) = triangularMatrix.data(pos) - destMatrix.data(j*rank + i) = triangularMatrix.data(pos) - pos += 1 - j += 1 - } - i += 1 - } - } -} - -/** - * Partitioner for ALS. - */ -private[recommendation] class ALSPartitioner(override val numPartitions: Int) extends Partitioner { - override def getPartition(key: Any): Int = { - Utils.nonNegativeMod(byteswap32(key.asInstanceOf[Int]), numPartitions) - } - - override def equals(obj: Any): Boolean = { - obj match { - case p: ALSPartitioner => - this.numPartitions == p.numPartitions - case _ => - false - } - } } /** @@ -834,120 +410,4 @@ object ALS { : MatrixFactorizationModel = { trainImplicit(ratings, rank, iterations, 0.01, -1, 1.0) } - - /** - * :: DeveloperApi :: - * Statistics of a block in ALS computation. - * - * @param category type of this block, "user" or "product" - * @param index index of this block - * @param count number of users or products inside this block, the same as the number of - * least-squares problems to solve on this block in each iteration - * @param numRatings total number of ratings inside this block, the same as the number of outer - * products we need to make on this block in each iteration - * @param numInLinks total number of incoming links, the same as the number of vectors to retrieve - * before each iteration - * @param numOutLinks total number of outgoing links, the same as the number of vectors to send - * for the next iteration - */ - @DeveloperApi - case class BlockStats( - category: String, - index: Int, - count: Long, - numRatings: Long, - numInLinks: Long, - numOutLinks: Long) - - /** - * :: DeveloperApi :: - * Given an RDD of ratings, number of user blocks, and number of product blocks, computes the - * statistics of each block in ALS computation. This is useful for estimating cost and diagnosing - * load balance. - * - * @param ratings an RDD of ratings - * @param numUserBlocks number of user blocks - * @param numProductBlocks number of product blocks - * @return statistics of user blocks and product blocks - */ - @DeveloperApi - def analyzeBlocks( - ratings: RDD[Rating], - numUserBlocks: Int, - numProductBlocks: Int): Array[BlockStats] = { - - val userPartitioner = new ALSPartitioner(numUserBlocks) - val productPartitioner = new ALSPartitioner(numProductBlocks) - - val ratingsByUserBlock = ratings.map { rating => - (userPartitioner.getPartition(rating.user), rating) - } - val ratingsByProductBlock = ratings.map { rating => - (productPartitioner.getPartition(rating.product), - Rating(rating.product, rating.user, rating.rating)) - } - - val als = new ALS() - val (userIn, userOut) = - als.makeLinkRDDs(numUserBlocks, numProductBlocks, ratingsByUserBlock, userPartitioner) - val (prodIn, prodOut) = - als.makeLinkRDDs(numProductBlocks, numUserBlocks, ratingsByProductBlock, productPartitioner) - - def sendGrid(outLinks: RDD[(Int, OutLinkBlock)]): Map[(Int, Int), Long] = { - outLinks.map { x => - val grid = new mutable.HashMap[(Int, Int), Long]() - val uPartition = x._1 - x._2.shouldSend.foreach { ss => - ss.foreach { pPartition => - val pair = (uPartition, pPartition) - grid.put(pair, grid.getOrElse(pair, 0L) + 1L) - } - } - grid - }.reduce { (grid1, grid2) => - grid2.foreach { x => - grid1.put(x._1, grid1.getOrElse(x._1, 0L) + x._2) - } - grid1 - }.toMap - } - - val userSendGrid = sendGrid(userOut) - val prodSendGrid = sendGrid(prodOut) - - val userInbound = new Array[Long](numUserBlocks) - val prodInbound = new Array[Long](numProductBlocks) - val userOutbound = new Array[Long](numUserBlocks) - val prodOutbound = new Array[Long](numProductBlocks) - - for (u <- 0 until numUserBlocks; p <- 0 until numProductBlocks) { - userOutbound(u) += userSendGrid.getOrElse((u, p), 0L) - prodInbound(p) += userSendGrid.getOrElse((u, p), 0L) - userInbound(u) += prodSendGrid.getOrElse((p, u), 0L) - prodOutbound(p) += prodSendGrid.getOrElse((p, u), 0L) - } - - val userCounts = userOut.mapValues(x => x.elementIds.length).collectAsMap() - val prodCounts = prodOut.mapValues(x => x.elementIds.length).collectAsMap() - - val userRatings = countRatings(userIn) - val prodRatings = countRatings(prodIn) - - val userStats = Array.tabulate(numUserBlocks)( - u => BlockStats("user", u, userCounts(u), userRatings(u), userInbound(u), userOutbound(u))) - val productStatus = Array.tabulate(numProductBlocks)( - p => BlockStats("product", p, prodCounts(p), prodRatings(p), prodInbound(p), prodOutbound(p))) - - (userStats ++ productStatus).toArray - } - - private def countRatings(inLinks: RDD[(Int, InLinkBlock)]): Map[Int, Long] = { - inLinks.mapValues { ilb => - var numRatings = 0L - ilb.ratingsForBlock.foreach { ar => - ar.foreach { p => numRatings += p._1.length } - } - numRatings - }.collectAsMap().toMap - } } diff --git a/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala b/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala index ee08c3c32760e..acc447742bad0 100644 --- a/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/ml/recommendation/ALSSuite.scala @@ -414,7 +414,7 @@ class ALSSuite extends FunSuite with MLlibTestSparkContext with Logging { val (training, test) = genExplicitTestData(numUsers = 20, numItems = 40, rank = 2, noiseStd = 0.01) for ((numUserBlocks, numItemBlocks) <- Seq((1, 1), (1, 2), (2, 1), (2, 2))) { - testALS(training, test, maxIter = 4, rank = 2, regParam = 0.01, targetRMSE = 0.03, + testALS(training, test, maxIter = 4, rank = 3, regParam = 0.01, targetRMSE = 0.03, numUserBlocks = numUserBlocks, numItemBlocks = numItemBlocks) } } diff --git a/mllib/src/test/scala/org/apache/spark/mllib/recommendation/ALSSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/recommendation/ALSSuite.scala index e9fc37e000526..8775c0ca9df84 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/recommendation/ALSSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/recommendation/ALSSuite.scala @@ -24,9 +24,7 @@ import scala.util.Random import org.scalatest.FunSuite import org.jblas.DoubleMatrix -import org.apache.spark.SparkContext._ import org.apache.spark.mllib.util.MLlibTestSparkContext -import org.apache.spark.mllib.recommendation.ALS.BlockStats import org.apache.spark.storage.StorageLevel object ALSSuite { @@ -189,22 +187,6 @@ class ALSSuite extends FunSuite with MLlibTestSparkContext { testALS(100, 200, 2, 15, 0.7, 0.4, false, false, false, -1, -1, false) } - test("analyze one user block and one product block") { - val localRatings = Seq( - Rating(0, 100, 1.0), - Rating(0, 101, 2.0), - Rating(0, 102, 3.0), - Rating(1, 102, 4.0), - Rating(2, 103, 5.0)) - val ratings = sc.makeRDD(localRatings, 2) - val stats = ALS.analyzeBlocks(ratings, 1, 1) - assert(stats.size === 2) - assert(stats(0) === BlockStats("user", 0, 3, 5, 4, 3)) - assert(stats(1) === BlockStats("product", 0, 4, 5, 3, 4)) - } - - // TODO: add tests for analyzing multiple user/product blocks - /** * Test if we can correctly factorize R = U * P where U and P are of known rank. * diff --git a/project/MimaExcludes.scala b/project/MimaExcludes.scala index 78de1f0652741..b17532c1d814c 100644 --- a/project/MimaExcludes.scala +++ b/project/MimaExcludes.scala @@ -69,7 +69,12 @@ object MimaExcludes { ) ++ Seq( // SPARK-5540 ProblemFilters.exclude[MissingMethodProblem]( - "org.apache.spark.mllib.recommendation.ALS.solveLeastSquares") + "org.apache.spark.mllib.recommendation.ALS.solveLeastSquares"), + // SPARK-5536 + ProblemFilters.exclude[MissingMethodProblem]( + "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateFeatures"), + ProblemFilters.exclude[MissingMethodProblem]( + "org.apache.spark.mllib.recommendation.ALS.org$apache$spark$mllib$recommendation$ALS$^dateBlock") ) ++ Seq( // SPARK-3325 ProblemFilters.exclude[MissingMethodProblem]( diff --git a/python/pyspark/mllib/recommendation.py b/python/pyspark/mllib/recommendation.py index 97ec74eda0b71..0d99e6dedfad9 100644 --- a/python/pyspark/mllib/recommendation.py +++ b/python/pyspark/mllib/recommendation.py @@ -49,17 +49,17 @@ class MatrixFactorizationModel(JavaModelWrapper): >>> r3 = (2, 1, 2.0) >>> ratings = sc.parallelize([r1, r2, r3]) >>> model = ALS.trainImplicit(ratings, 1, seed=10) - >>> model.predict(2,2) - 0.4473... + >>> model.predict(2, 2) + 0.43... >>> testset = sc.parallelize([(1, 2), (1, 1)]) - >>> model = ALS.train(ratings, 1, seed=10) + >>> model = ALS.train(ratings, 2, seed=0) >>> model.predictAll(testset).collect() - [Rating(user=1, product=1, rating=1.0471...), Rating(user=1, product=2, rating=1.9679...)] + [Rating(user=1, product=1, rating=1.0...), Rating(user=1, product=2, rating=1.9...)] >>> model = ALS.train(ratings, 4, seed=10) >>> model.userFeatures().collect() - [(2, array('d', [...])), (1, array('d', [...]))] + [(1, array('d', [...])), (2, array('d', [...]))] >>> first_user = model.userFeatures().take(1)[0] >>> latents = first_user[1] @@ -67,7 +67,7 @@ class MatrixFactorizationModel(JavaModelWrapper): True >>> model.productFeatures().collect() - [(2, array('d', [...])), (1, array('d', [...]))] + [(1, array('d', [...])), (2, array('d', [...]))] >>> first_product = model.productFeatures().take(1)[0] >>> latents = first_product[1] @@ -76,11 +76,11 @@ class MatrixFactorizationModel(JavaModelWrapper): >>> model = ALS.train(ratings, 1, nonnegative=True, seed=10) >>> model.predict(2,2) - 3.735... + 3.8... >>> model = ALS.trainImplicit(ratings, 1, nonnegative=True, seed=10) >>> model.predict(2,2) - 0.4473... + 0.43... """ def predict(self, user, product): return self._java_model.predict(int(user), int(product)) From 980764f3c0c065cc32454a036e8d0ead5a92037b Mon Sep 17 00:00:00 2001 From: "Joseph K. Bradley" Date: Mon, 2 Feb 2015 23:57:35 -0800 Subject: [PATCH 38/52] [SPARK-1405] [mllib] Latent Dirichlet Allocation (LDA) using EM MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit **This PR introduces an API + simple implementation for Latent Dirichlet Allocation (LDA).** The [design doc for this PR](https://docs.google.com/document/d/1kSsDqTeZMEB94Bs4GTd0mvdAmduvZSSkpoSfn-seAzo) has been updated since I initially posted it. In particular, see the API and Planning for the Future sections. * Settle on a public API which may eventually include: * more inference algorithms * more options / functionality * Have an initial easy-to-understand implementation which others may improve. * This is NOT intended to support every topic model out there. However, if there are suggestions for making this extensible or pluggable in the future, that could be nice, as long as it does not complicate the API or implementation too much. * This may not be very scalable currently. It will be important to check and improve accuracy. For correctness of the implementation, please check against the Asuncion et al. (2009) paper in the design doc. **Dependency: This makes MLlib depend on GraphX.** Files and classes: * LDA.scala (441 lines): * class LDA (main estimator class) * LDA.Document (text + document ID) * LDAModel.scala (266 lines) * abstract class LDAModel * class LocalLDAModel * class DistributedLDAModel * LDAExample.scala (245 lines): script to run LDA + a simple (private) Tokenizer * LDASuite.scala (144 lines) Data/model representation and algorithm: * Data/model: Uses GraphX, with term vertices + document vertices * Algorithm: EM, following [Asuncion, Welling, Smyth, and Teh. "On Smoothing and Inference for Topic Models." UAI, 2009.](http://arxiv-web3.library.cornell.edu/abs/1205.2662v1) * For more details, please see the description in the “DEVELOPERS NOTE” in LDA.scala Please refer to the JIRA for more discussion + the [design doc for this PR](https://docs.google.com/document/d/1kSsDqTeZMEB94Bs4GTd0mvdAmduvZSSkpoSfn-seAzo) Here, I list the main changes AFTER the design doc was posted. Design decisions: * logLikelihood() computes the log likelihood of the data and the current point estimate of parameters. This is different from the likelihood of the data given the hyperparameters, which would be harder to compute. I’d describe the current approach as more frequentist, whereas the harder approach would be more Bayesian. * The current API takes Documents as token count vectors. I believe there should be an extended API taking RDD[String] or RDD[Array[String]] in a future PR. I have sketched this out in the design doc (as well as handier versions of getTopics returning Strings). * Hyperparameters should be set differently for different inference/learning algorithms. See Asuncion et al. (2009) in the design doc for a good demonstration. I encourage good behavior via defaults and warning messages. Items planned for future PRs: * perplexity * API taking Strings * Should LDA be called LatentDirichletAllocation (and LDAModel be LatentDirichletAllocationModel)? * Pro: We may someday want LinearDiscriminantAnalysis. * Con: Very long names * Should LDA reside in clustering? Or do we want a sub-package? * mllib.topicmodel * mllib.clustering.topicmodel * Does the API seem reasonable and extensible? * Unit tests: * Should there be a test which checks a clustering results? E.g., train on a small, fake dataset with 2 very distinct topics/clusters, and ensure LDA finds those 2 topics/clusters. Does that sound useful or too flaky? This has not been tested much for scaling. I have run it on a laptop for 200 iterations on a 5MB dataset with 1000 terms and 5 topics. Running it for 500 iterations made it fail because of GC problems. I'm running larger scale tests & will put results here, but future PRs may need to improve the scaling. * dlwh for the initial implementation * + jegonzal for some code in the initial implementation * The many contributors towards topic model implementations in Spark which were referenced as a basis for this PR: akopich witgo yinxusen dlwh EntilZha jegonzal IlyaKozlov * Note: The plan is to include this full list in the authors if this PR gets merged. Please notify me if you prefer otherwise. CC: mengxr Authors: Joseph K. Bradley Joseph Gonzalez David Hall Guoqiang Li Xiangrui Meng Pedro Rodriguez Avanesov Valeriy Xusen Yin Closes #2388 Closes #4047 from jkbradley/davidhall-lda and squashes the following commits: 77e8814 [Joseph K. Bradley] small doc fix 5c74345 [Joseph K. Bradley] cleaned up doc based on code review 589728b [Joseph K. Bradley] Updates per code review. Main change was in LDAExample for faster vocab computation. Also updated PeriodicGraphCheckpointerSuite.scala to clean up checkpoint files at end e3980d2 [Joseph K. Bradley] cleaned up PeriodicGraphCheckpointerSuite.scala 74487e5 [Joseph K. Bradley] Merge remote-tracking branch 'upstream/master' into davidhall-lda 4ae2a7d [Joseph K. Bradley] removed duplicate graphx dependency in mllib/pom.xml e391474 [Joseph K. Bradley] Removed LDATiming. Added PeriodicGraphCheckpointerSuite.scala. Small LDA cleanups. e8d8acf [Joseph K. Bradley] Added catch for BreakIterator exception. Improved preprocessing to reduce passes over data 1a231b4 [Joseph K. Bradley] fixed scalastyle 91aadfe [Joseph K. Bradley] Added Java-friendly run method to LDA. Added Java test suite for LDA. Changed LDAModel.describeTopics to return Java-friendly type b75472d [Joseph K. Bradley] merged improvements from LDATiming into LDAExample. Will remove LDATiming after done testing 993ca56 [Joseph K. Bradley] * Removed Document type in favor of (Long, Vector) * Changed doc ID restriction to be: id must be nonnegative and unique in the doc (instead of 0,1,2,...) * Add checks for valid ranges of eta, alpha * Rename “LearningState” to “EMOptimizer” * Renamed params: termSmoothing -> topicConcentration, topicSmoothing -> docConcentration * Also added aliases alpha, beta cb5a319 [Joseph K. Bradley] Added checkpointing to LDA * new class PeriodicGraphCheckpointer * params checkpointDir, checkpointInterval to LDA 43c1c40 [Joseph K. Bradley] small cleanup 0b90393 [Joseph K. Bradley] renamed LDA LearningState.collectTopicTotals to globalTopicTotals 77a2c85 [Joseph K. Bradley] Moved auto term,topic smoothing computation to get*Smoothing methods. Changed word to term in some places. Updated LDAExample to use default smoothing amounts. fb1e7b5 [Xiangrui Meng] minor 08d59a3 [Xiangrui Meng] reset spacing 9fe0b95 [Xiangrui Meng] optimize aggregateMessages cec0a9c [Xiangrui Meng] * -> *= 6cb11b0 [Xiangrui Meng] optimize computePTopic 9eb3d02 [Xiangrui Meng] + -> += 892530c [Xiangrui Meng] use axpy 45cc7f2 [Xiangrui Meng] mapPart -> flatMap ce53be9 [Joseph K. Bradley] fixed example name 75749e7 [Joseph K. Bradley] scala style fix 9f2a492 [Joseph K. Bradley] Unit tests and fixes for LDA, now ready for PR 377ebd9 [Joseph K. Bradley] separated LDA models into own file. more cleanups before PR 2d40006 [Joseph K. Bradley] cleanups before PR 2891e89 [Joseph K. Bradley] Prepped LDA main class for PR, but some cleanups remain 0cb7187 [Joseph K. Bradley] Added 3 files from dlwh LDA implementation --- .../spark/examples/mllib/LDAExample.scala | 283 ++++++++++ .../apache/spark/mllib/clustering/LDA.scala | 519 ++++++++++++++++++ .../spark/mllib/clustering/LDAModel.scala | 351 ++++++++++++ .../impl/PeriodicGraphCheckpointer.scala | 179 ++++++ .../spark/mllib/clustering/JavaLDASuite.java | 119 ++++ .../spark/mllib/clustering/LDASuite.scala | 153 ++++++ .../impl/PeriodicGraphCheckpointerSuite.scala | 187 +++++++ 7 files changed, 1791 insertions(+) create mode 100644 examples/src/main/scala/org/apache/spark/examples/mllib/LDAExample.scala create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/impl/PeriodicGraphCheckpointer.scala create mode 100644 mllib/src/test/java/org/apache/spark/mllib/clustering/JavaLDASuite.java create mode 100644 mllib/src/test/scala/org/apache/spark/mllib/clustering/LDASuite.scala create mode 100644 mllib/src/test/scala/org/apache/spark/mllib/impl/PeriodicGraphCheckpointerSuite.scala diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/LDAExample.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/LDAExample.scala new file mode 100644 index 0000000000000..f4c545ad70e96 --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/LDAExample.scala @@ -0,0 +1,283 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.mllib + +import java.text.BreakIterator + +import scala.collection.mutable + +import scopt.OptionParser + +import org.apache.log4j.{Level, Logger} + +import org.apache.spark.{SparkContext, SparkConf} +import org.apache.spark.mllib.clustering.LDA +import org.apache.spark.mllib.linalg.{Vector, Vectors} +import org.apache.spark.rdd.RDD + + +/** + * An example Latent Dirichlet Allocation (LDA) app. Run with + * {{{ + * ./bin/run-example mllib.LDAExample [options] + * }}} + * If you use it as a template to create your own app, please use `spark-submit` to submit your app. + */ +object LDAExample { + + private case class Params( + input: Seq[String] = Seq.empty, + k: Int = 20, + maxIterations: Int = 10, + docConcentration: Double = -1, + topicConcentration: Double = -1, + vocabSize: Int = 10000, + stopwordFile: String = "", + checkpointDir: Option[String] = None, + checkpointInterval: Int = 10) extends AbstractParams[Params] + + def main(args: Array[String]) { + val defaultParams = Params() + + val parser = new OptionParser[Params]("LDAExample") { + head("LDAExample: an example LDA app for plain text data.") + opt[Int]("k") + .text(s"number of topics. default: ${defaultParams.k}") + .action((x, c) => c.copy(k = x)) + opt[Int]("maxIterations") + .text(s"number of iterations of learning. default: ${defaultParams.maxIterations}") + .action((x, c) => c.copy(maxIterations = x)) + opt[Double]("docConcentration") + .text(s"amount of topic smoothing to use (> 1.0) (-1=auto)." + + s" default: ${defaultParams.docConcentration}") + .action((x, c) => c.copy(docConcentration = x)) + opt[Double]("topicConcentration") + .text(s"amount of term (word) smoothing to use (> 1.0) (-1=auto)." + + s" default: ${defaultParams.topicConcentration}") + .action((x, c) => c.copy(topicConcentration = x)) + opt[Int]("vocabSize") + .text(s"number of distinct word types to use, chosen by frequency. (-1=all)" + + s" default: ${defaultParams.vocabSize}") + .action((x, c) => c.copy(vocabSize = x)) + opt[String]("stopwordFile") + .text(s"filepath for a list of stopwords. Note: This must fit on a single machine." + + s" default: ${defaultParams.stopwordFile}") + .action((x, c) => c.copy(stopwordFile = x)) + opt[String]("checkpointDir") + .text(s"Directory for checkpointing intermediate results." + + s" Checkpointing helps with recovery and eliminates temporary shuffle files on disk." + + s" default: ${defaultParams.checkpointDir}") + .action((x, c) => c.copy(checkpointDir = Some(x))) + opt[Int]("checkpointInterval") + .text(s"Iterations between each checkpoint. Only used if checkpointDir is set." + + s" default: ${defaultParams.checkpointInterval}") + .action((x, c) => c.copy(checkpointInterval = x)) + arg[String]("...") + .text("input paths (directories) to plain text corpora." + + " Each text file line should hold 1 document.") + .unbounded() + .required() + .action((x, c) => c.copy(input = c.input :+ x)) + } + + parser.parse(args, defaultParams).map { params => + run(params) + }.getOrElse { + parser.showUsageAsError + sys.exit(1) + } + } + + private def run(params: Params) { + val conf = new SparkConf().setAppName(s"LDAExample with $params") + val sc = new SparkContext(conf) + + Logger.getRootLogger.setLevel(Level.WARN) + + // Load documents, and prepare them for LDA. + val preprocessStart = System.nanoTime() + val (corpus, vocabArray, actualNumTokens) = + preprocess(sc, params.input, params.vocabSize, params.stopwordFile) + corpus.cache() + val actualCorpusSize = corpus.count() + val actualVocabSize = vocabArray.size + val preprocessElapsed = (System.nanoTime() - preprocessStart) / 1e9 + + println() + println(s"Corpus summary:") + println(s"\t Training set size: $actualCorpusSize documents") + println(s"\t Vocabulary size: $actualVocabSize terms") + println(s"\t Training set size: $actualNumTokens tokens") + println(s"\t Preprocessing time: $preprocessElapsed sec") + println() + + // Run LDA. + val lda = new LDA() + lda.setK(params.k) + .setMaxIterations(params.maxIterations) + .setDocConcentration(params.docConcentration) + .setTopicConcentration(params.topicConcentration) + .setCheckpointInterval(params.checkpointInterval) + if (params.checkpointDir.nonEmpty) { + lda.setCheckpointDir(params.checkpointDir.get) + } + val startTime = System.nanoTime() + val ldaModel = lda.run(corpus) + val elapsed = (System.nanoTime() - startTime) / 1e9 + + println(s"Finished training LDA model. Summary:") + println(s"\t Training time: $elapsed sec") + val avgLogLikelihood = ldaModel.logLikelihood / actualCorpusSize.toDouble + println(s"\t Training data average log likelihood: $avgLogLikelihood") + println() + + // Print the topics, showing the top-weighted terms for each topic. + val topicIndices = ldaModel.describeTopics(maxTermsPerTopic = 10) + val topics = topicIndices.map { case (terms, termWeights) => + terms.zip(termWeights).map { case (term, weight) => (vocabArray(term.toInt), weight) } + } + println(s"${params.k} topics:") + topics.zipWithIndex.foreach { case (topic, i) => + println(s"TOPIC $i") + topic.foreach { case (term, weight) => + println(s"$term\t$weight") + } + println() + } + + } + + /** + * Load documents, tokenize them, create vocabulary, and prepare documents as term count vectors. + * @return (corpus, vocabulary as array, total token count in corpus) + */ + private def preprocess( + sc: SparkContext, + paths: Seq[String], + vocabSize: Int, + stopwordFile: String): (RDD[(Long, Vector)], Array[String], Long) = { + + // Get dataset of document texts + // One document per line in each text file. + val textRDD: RDD[String] = sc.textFile(paths.mkString(",")) + + // Split text into words + val tokenizer = new SimpleTokenizer(sc, stopwordFile) + val tokenized: RDD[(Long, IndexedSeq[String])] = textRDD.zipWithIndex().map { case (text, id) => + id -> tokenizer.getWords(text) + } + tokenized.cache() + + // Counts words: RDD[(word, wordCount)] + val wordCounts: RDD[(String, Long)] = tokenized + .flatMap { case (_, tokens) => tokens.map(_ -> 1L) } + .reduceByKey(_ + _) + wordCounts.cache() + val fullVocabSize = wordCounts.count() + // Select vocab + // (vocab: Map[word -> id], total tokens after selecting vocab) + val (vocab: Map[String, Int], selectedTokenCount: Long) = { + val tmpSortedWC: Array[(String, Long)] = if (vocabSize == -1 || fullVocabSize <= vocabSize) { + // Use all terms + wordCounts.collect().sortBy(-_._2) + } else { + // Sort terms to select vocab + wordCounts.sortBy(_._2, ascending = false).take(vocabSize) + } + (tmpSortedWC.map(_._1).zipWithIndex.toMap, tmpSortedWC.map(_._2).sum) + } + + val documents = tokenized.map { case (id, tokens) => + // Filter tokens by vocabulary, and create word count vector representation of document. + val wc = new mutable.HashMap[Int, Int]() + tokens.foreach { term => + if (vocab.contains(term)) { + val termIndex = vocab(term) + wc(termIndex) = wc.getOrElse(termIndex, 0) + 1 + } + } + val indices = wc.keys.toArray.sorted + val values = indices.map(i => wc(i).toDouble) + + val sb = Vectors.sparse(vocab.size, indices, values) + (id, sb) + } + + val vocabArray = new Array[String](vocab.size) + vocab.foreach { case (term, i) => vocabArray(i) = term } + + (documents, vocabArray, selectedTokenCount) + } +} + +/** + * Simple Tokenizer. + * + * TODO: Formalize the interface, and make this a public class in mllib.feature + */ +private class SimpleTokenizer(sc: SparkContext, stopwordFile: String) extends Serializable { + + private val stopwords: Set[String] = if (stopwordFile.isEmpty) { + Set.empty[String] + } else { + val stopwordText = sc.textFile(stopwordFile).collect() + stopwordText.flatMap(_.stripMargin.split("\\s+")).toSet + } + + // Matches sequences of Unicode letters + private val allWordRegex = "^(\\p{L}*)$".r + + // Ignore words shorter than this length. + private val minWordLength = 3 + + def getWords(text: String): IndexedSeq[String] = { + + val words = new mutable.ArrayBuffer[String]() + + // Use Java BreakIterator to tokenize text into words. + val wb = BreakIterator.getWordInstance + wb.setText(text) + + // current,end index start,end of each word + var current = wb.first() + var end = wb.next() + while (end != BreakIterator.DONE) { + // Convert to lowercase + val word: String = text.substring(current, end).toLowerCase + // Remove short words and strings that aren't only letters + word match { + case allWordRegex(w) if w.length >= minWordLength && !stopwords.contains(w) => + words += w + case _ => + } + + current = end + try { + end = wb.next() + } catch { + case e: Exception => + // Ignore remaining text in line. + // This is a known bug in BreakIterator (for some Java versions), + // which fails when it sees certain characters. + end = BreakIterator.DONE + } + } + words + } + +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala new file mode 100644 index 0000000000000..d8f82867a09d2 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDA.scala @@ -0,0 +1,519 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.clustering + +import java.util.Random + +import breeze.linalg.{DenseVector => BDV, normalize, axpy => brzAxpy} + +import org.apache.spark.Logging +import org.apache.spark.annotation.Experimental +import org.apache.spark.api.java.JavaPairRDD +import org.apache.spark.graphx._ +import org.apache.spark.graphx.impl.GraphImpl +import org.apache.spark.mllib.impl.PeriodicGraphCheckpointer +import org.apache.spark.mllib.linalg.Vector +import org.apache.spark.rdd.RDD +import org.apache.spark.util.Utils + + +/** + * :: Experimental :: + * + * Latent Dirichlet Allocation (LDA), a topic model designed for text documents. + * + * Terminology: + * - "word" = "term": an element of the vocabulary + * - "token": instance of a term appearing in a document + * - "topic": multinomial distribution over words representing some concept + * + * Currently, the underlying implementation uses Expectation-Maximization (EM), implemented + * according to the Asuncion et al. (2009) paper referenced below. + * + * References: + * - Original LDA paper (journal version): + * Blei, Ng, and Jordan. "Latent Dirichlet Allocation." JMLR, 2003. + * - This class implements their "smoothed" LDA model. + * - Paper which clearly explains several algorithms, including EM: + * Asuncion, Welling, Smyth, and Teh. + * "On Smoothing and Inference for Topic Models." UAI, 2009. + */ +@Experimental +class LDA private ( + private var k: Int, + private var maxIterations: Int, + private var docConcentration: Double, + private var topicConcentration: Double, + private var seed: Long, + private var checkpointDir: Option[String], + private var checkpointInterval: Int) extends Logging { + + def this() = this(k = 10, maxIterations = 20, docConcentration = -1, topicConcentration = -1, + seed = Utils.random.nextLong(), checkpointDir = None, checkpointInterval = 10) + + /** + * Number of topics to infer. I.e., the number of soft cluster centers. + */ + def getK: Int = k + + /** + * Number of topics to infer. I.e., the number of soft cluster centers. + * (default = 10) + */ + def setK(k: Int): this.type = { + require(k > 0, s"LDA k (number of clusters) must be > 0, but was set to $k") + this.k = k + this + } + + /** + * Concentration parameter (commonly named "alpha") for the prior placed on documents' + * distributions over topics ("theta"). + * + * This is the parameter to a symmetric Dirichlet distribution. + */ + def getDocConcentration: Double = { + if (this.docConcentration == -1) { + (50.0 / k) + 1.0 + } else { + this.docConcentration + } + } + + /** + * Concentration parameter (commonly named "alpha") for the prior placed on documents' + * distributions over topics ("theta"). + * + * This is the parameter to a symmetric Dirichlet distribution. + * + * This value should be > 1.0, where larger values mean more smoothing (more regularization). + * If set to -1, then docConcentration is set automatically. + * (default = -1 = automatic) + * + * Automatic setting of parameter: + * - For EM: default = (50 / k) + 1. + * - The 50/k is common in LDA libraries. + * - The +1 follows Asuncion et al. (2009), who recommend a +1 adjustment for EM. + * + * Note: The restriction > 1.0 may be relaxed in the future (allowing sparse solutions), + * but values in (0,1) are not yet supported. + */ + def setDocConcentration(docConcentration: Double): this.type = { + require(docConcentration > 1.0 || docConcentration == -1.0, + s"LDA docConcentration must be > 1.0 (or -1 for auto), but was set to $docConcentration") + this.docConcentration = docConcentration + this + } + + /** Alias for [[getDocConcentration]] */ + def getAlpha: Double = getDocConcentration + + /** Alias for [[setDocConcentration()]] */ + def setAlpha(alpha: Double): this.type = setDocConcentration(alpha) + + /** + * Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics' + * distributions over terms. + * + * This is the parameter to a symmetric Dirichlet distribution. + * + * Note: The topics' distributions over terms are called "beta" in the original LDA paper + * by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009. + */ + def getTopicConcentration: Double = { + if (this.topicConcentration == -1) { + 1.1 + } else { + this.topicConcentration + } + } + + /** + * Concentration parameter (commonly named "beta" or "eta") for the prior placed on topics' + * distributions over terms. + * + * This is the parameter to a symmetric Dirichlet distribution. + * + * Note: The topics' distributions over terms are called "beta" in the original LDA paper + * by Blei et al., but are called "phi" in many later papers such as Asuncion et al., 2009. + * + * This value should be > 0.0. + * If set to -1, then topicConcentration is set automatically. + * (default = -1 = automatic) + * + * Automatic setting of parameter: + * - For EM: default = 0.1 + 1. + * - The 0.1 gives a small amount of smoothing. + * - The +1 follows Asuncion et al. (2009), who recommend a +1 adjustment for EM. + * + * Note: The restriction > 1.0 may be relaxed in the future (allowing sparse solutions), + * but values in (0,1) are not yet supported. + */ + def setTopicConcentration(topicConcentration: Double): this.type = { + require(topicConcentration > 1.0 || topicConcentration == -1.0, + s"LDA topicConcentration must be > 1.0 (or -1 for auto), but was set to $topicConcentration") + this.topicConcentration = topicConcentration + this + } + + /** Alias for [[getTopicConcentration]] */ + def getBeta: Double = getTopicConcentration + + /** Alias for [[setTopicConcentration()]] */ + def setBeta(beta: Double): this.type = setBeta(beta) + + /** + * Maximum number of iterations for learning. + */ + def getMaxIterations: Int = maxIterations + + /** + * Maximum number of iterations for learning. + * (default = 20) + */ + def setMaxIterations(maxIterations: Int): this.type = { + this.maxIterations = maxIterations + this + } + + /** Random seed */ + def getSeed: Long = seed + + /** Random seed */ + def setSeed(seed: Long): this.type = { + this.seed = seed + this + } + + /** + * Directory for storing checkpoint files during learning. + * This is not necessary, but checkpointing helps with recovery (when nodes fail). + * It also helps with eliminating temporary shuffle files on disk, which can be important when + * LDA is run for many iterations. + */ + def getCheckpointDir: Option[String] = checkpointDir + + /** + * Directory for storing checkpoint files during learning. + * This is not necessary, but checkpointing helps with recovery (when nodes fail). + * It also helps with eliminating temporary shuffle files on disk, which can be important when + * LDA is run for many iterations. + * + * NOTE: If the [[org.apache.spark.SparkContext.checkpointDir]] is already set, then the value + * given to LDA is ignored, and the existing directory is kept. + * + * (default = None) + */ + def setCheckpointDir(checkpointDir: String): this.type = { + this.checkpointDir = Some(checkpointDir) + this + } + + /** + * Clear the directory for storing checkpoint files during learning. + * If one is already set in the [[org.apache.spark.SparkContext]], then checkpointing will still + * occur; otherwise, no checkpointing will be used. + */ + def clearCheckpointDir(): this.type = { + this.checkpointDir = None + this + } + + /** + * Period (in iterations) between checkpoints. + * @see [[getCheckpointDir]] + */ + def getCheckpointInterval: Int = checkpointInterval + + /** + * Period (in iterations) between checkpoints. + * (default = 10) + * @see [[getCheckpointDir]] + */ + def setCheckpointInterval(checkpointInterval: Int): this.type = { + this.checkpointInterval = checkpointInterval + this + } + + /** + * Learn an LDA model using the given dataset. + * + * @param documents RDD of documents, which are term (word) count vectors paired with IDs. + * The term count vectors are "bags of words" with a fixed-size vocabulary + * (where the vocabulary size is the length of the vector). + * Document IDs must be unique and >= 0. + * @return Inferred LDA model + */ + def run(documents: RDD[(Long, Vector)]): DistributedLDAModel = { + val state = LDA.initialState(documents, k, getDocConcentration, getTopicConcentration, seed, + checkpointDir, checkpointInterval) + var iter = 0 + val iterationTimes = Array.fill[Double](maxIterations)(0) + while (iter < maxIterations) { + val start = System.nanoTime() + state.next() + val elapsedSeconds = (System.nanoTime() - start) / 1e9 + iterationTimes(iter) = elapsedSeconds + iter += 1 + } + state.graphCheckpointer.deleteAllCheckpoints() + new DistributedLDAModel(state, iterationTimes) + } + + /** Java-friendly version of [[run()]] */ + def run(documents: JavaPairRDD[java.lang.Long, Vector]): DistributedLDAModel = { + run(documents.rdd.asInstanceOf[RDD[(Long, Vector)]]) + } +} + + +private[clustering] object LDA { + + /* + DEVELOPERS NOTE: + + This implementation uses GraphX, where the graph is bipartite with 2 types of vertices: + - Document vertices + - indexed with unique indices >= 0 + - Store vectors of length k (# topics). + - Term vertices + - indexed {-1, -2, ..., -vocabSize} + - Store vectors of length k (# topics). + - Edges correspond to terms appearing in documents. + - Edges are directed Document -> Term. + - Edges are partitioned by documents. + + Info on EM implementation. + - We follow Section 2.2 from Asuncion et al., 2009. We use some of their notation. + - In this implementation, there is one edge for every unique term appearing in a document, + i.e., for every unique (document, term) pair. + - Notation: + - N_{wkj} = count of tokens of term w currently assigned to topic k in document j + - N_{*} where * is missing a subscript w/k/j is the count summed over missing subscript(s) + - gamma_{wjk} = P(z_i = k | x_i = w, d_i = j), + the probability of term x_i in document d_i having topic z_i. + - Data graph + - Document vertices store N_{kj} + - Term vertices store N_{wk} + - Edges store N_{wj}. + - Global data N_k + - Algorithm + - Initial state: + - Document and term vertices store random counts N_{wk}, N_{kj}. + - E-step: For each (document,term) pair i, compute P(z_i | x_i, d_i). + - Aggregate N_k from term vertices. + - Compute gamma_{wjk} for each possible topic k, from each triplet. + using inputs N_{wk}, N_{kj}, N_k. + - M-step: Compute sufficient statistics for hidden parameters phi and theta + (counts N_{wk}, N_{kj}, N_k). + - Document update: + - N_{kj} <- sum_w N_{wj} gamma_{wjk} + - N_j <- sum_k N_{kj} (only needed to output predictions) + - Term update: + - N_{wk} <- sum_j N_{wj} gamma_{wjk} + - N_k <- sum_w N_{wk} + + TODO: Add simplex constraints to allow alpha in (0,1). + See: Vorontsov and Potapenko. "Tutorial on Probabilistic Topic Modeling : Additive + Regularization for Stochastic Matrix Factorization." 2014. + */ + + /** + * Vector over topics (length k) of token counts. + * The meaning of these counts can vary, and it may or may not be normalized to be a distribution. + */ + type TopicCounts = BDV[Double] + + type TokenCount = Double + + /** Term vertex IDs are {-1, -2, ..., -vocabSize} */ + def term2index(term: Int): Long = -(1 + term.toLong) + + def index2term(termIndex: Long): Int = -(1 + termIndex).toInt + + def isDocumentVertex(v: (VertexId, _)): Boolean = v._1 >= 0 + + def isTermVertex(v: (VertexId, _)): Boolean = v._1 < 0 + + /** + * Optimizer for EM algorithm which stores data + parameter graph, plus algorithm parameters. + * + * @param graph EM graph, storing current parameter estimates in vertex descriptors and + * data (token counts) in edge descriptors. + * @param k Number of topics + * @param vocabSize Number of unique terms + * @param docConcentration "alpha" + * @param topicConcentration "beta" or "eta" + */ + class EMOptimizer( + var graph: Graph[TopicCounts, TokenCount], + val k: Int, + val vocabSize: Int, + val docConcentration: Double, + val topicConcentration: Double, + checkpointDir: Option[String], + checkpointInterval: Int) { + + private[LDA] val graphCheckpointer = new PeriodicGraphCheckpointer[TopicCounts, TokenCount]( + graph, checkpointDir, checkpointInterval) + + def next(): EMOptimizer = { + val eta = topicConcentration + val W = vocabSize + val alpha = docConcentration + + val N_k = globalTopicTotals + val sendMsg: EdgeContext[TopicCounts, TokenCount, (Boolean, TopicCounts)] => Unit = + (edgeContext) => { + // Compute N_{wj} gamma_{wjk} + val N_wj = edgeContext.attr + // E-STEP: Compute gamma_{wjk} (smoothed topic distributions), scaled by token count + // N_{wj}. + val scaledTopicDistribution: TopicCounts = + computePTopic(edgeContext.srcAttr, edgeContext.dstAttr, N_k, W, eta, alpha) *= N_wj + edgeContext.sendToDst((false, scaledTopicDistribution)) + edgeContext.sendToSrc((false, scaledTopicDistribution)) + } + // This is a hack to detect whether we could modify the values in-place. + // TODO: Add zero/seqOp/combOp option to aggregateMessages. (SPARK-5438) + val mergeMsg: ((Boolean, TopicCounts), (Boolean, TopicCounts)) => (Boolean, TopicCounts) = + (m0, m1) => { + val sum = + if (m0._1) { + m0._2 += m1._2 + } else if (m1._1) { + m1._2 += m0._2 + } else { + m0._2 + m1._2 + } + (true, sum) + } + // M-STEP: Aggregation computes new N_{kj}, N_{wk} counts. + val docTopicDistributions: VertexRDD[TopicCounts] = + graph.aggregateMessages[(Boolean, TopicCounts)](sendMsg, mergeMsg) + .mapValues(_._2) + // Update the vertex descriptors with the new counts. + val newGraph = GraphImpl.fromExistingRDDs(docTopicDistributions, graph.edges) + graph = newGraph + graphCheckpointer.updateGraph(newGraph) + globalTopicTotals = computeGlobalTopicTotals() + this + } + + /** + * Aggregate distributions over topics from all term vertices. + * + * Note: This executes an action on the graph RDDs. + */ + var globalTopicTotals: TopicCounts = computeGlobalTopicTotals() + + private def computeGlobalTopicTotals(): TopicCounts = { + val numTopics = k + graph.vertices.filter(isTermVertex).values.fold(BDV.zeros[Double](numTopics))(_ += _) + } + + } + + /** + * Compute gamma_{wjk}, a distribution over topics k. + */ + private def computePTopic( + docTopicCounts: TopicCounts, + termTopicCounts: TopicCounts, + totalTopicCounts: TopicCounts, + vocabSize: Int, + eta: Double, + alpha: Double): TopicCounts = { + val K = docTopicCounts.length + val N_j = docTopicCounts.data + val N_w = termTopicCounts.data + val N = totalTopicCounts.data + val eta1 = eta - 1.0 + val alpha1 = alpha - 1.0 + val Weta1 = vocabSize * eta1 + var sum = 0.0 + val gamma_wj = new Array[Double](K) + var k = 0 + while (k < K) { + val gamma_wjk = (N_w(k) + eta1) * (N_j(k) + alpha1) / (N(k) + Weta1) + gamma_wj(k) = gamma_wjk + sum += gamma_wjk + k += 1 + } + // normalize + BDV(gamma_wj) /= sum + } + + /** + * Compute bipartite term/doc graph. + */ + private def initialState( + docs: RDD[(Long, Vector)], + k: Int, + docConcentration: Double, + topicConcentration: Double, + randomSeed: Long, + checkpointDir: Option[String], + checkpointInterval: Int): EMOptimizer = { + // For each document, create an edge (Document -> Term) for each unique term in the document. + val edges: RDD[Edge[TokenCount]] = docs.flatMap { case (docID: Long, termCounts: Vector) => + // Add edges for terms with non-zero counts. + termCounts.toBreeze.activeIterator.filter(_._2 != 0.0).map { case (term, cnt) => + Edge(docID, term2index(term), cnt) + } + } + + val vocabSize = docs.take(1).head._2.size + + // Create vertices. + // Initially, we use random soft assignments of tokens to topics (random gamma). + val edgesWithGamma: RDD[(Edge[TokenCount], TopicCounts)] = + edges.mapPartitionsWithIndex { case (partIndex, partEdges) => + val random = new Random(partIndex + randomSeed) + partEdges.map { edge => + // Create a random gamma_{wjk} + (edge, normalize(BDV.fill[Double](k)(random.nextDouble()), 1.0)) + } + } + def createVertices(sendToWhere: Edge[TokenCount] => VertexId): RDD[(VertexId, TopicCounts)] = { + val verticesTMP: RDD[(VertexId, (TokenCount, TopicCounts))] = + edgesWithGamma.map { case (edge, gamma: TopicCounts) => + (sendToWhere(edge), (edge.attr, gamma)) + } + verticesTMP.aggregateByKey(BDV.zeros[Double](k))( + (sum, t) => { + brzAxpy(t._1, t._2, sum) + sum + }, + (sum0, sum1) => { + sum0 += sum1 + } + ) + } + val docVertices = createVertices(_.srcId) + val termVertices = createVertices(_.dstId) + + // Partition such that edges are grouped by document + val graph = Graph(docVertices ++ termVertices, edges) + .partitionBy(PartitionStrategy.EdgePartition1D) + + new EMOptimizer(graph, k, vocabSize, docConcentration, topicConcentration, checkpointDir, + checkpointInterval) + } + +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala new file mode 100644 index 0000000000000..19e8aab6eabd7 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/LDAModel.scala @@ -0,0 +1,351 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.clustering + +import breeze.linalg.{DenseMatrix => BDM, normalize, sum => brzSum} + +import org.apache.spark.annotation.Experimental +import org.apache.spark.graphx.{VertexId, EdgeContext, Graph} +import org.apache.spark.mllib.linalg.{Vectors, Vector, Matrices, Matrix} +import org.apache.spark.rdd.RDD +import org.apache.spark.util.BoundedPriorityQueue + +/** + * :: Experimental :: + * + * Latent Dirichlet Allocation (LDA) model. + * + * This abstraction permits for different underlying representations, + * including local and distributed data structures. + */ +@Experimental +abstract class LDAModel private[clustering] { + + /** Number of topics */ + def k: Int + + /** Vocabulary size (number of terms or terms in the vocabulary) */ + def vocabSize: Int + + /** + * Inferred topics, where each topic is represented by a distribution over terms. + * This is a matrix of size vocabSize x k, where each column is a topic. + * No guarantees are given about the ordering of the topics. + */ + def topicsMatrix: Matrix + + /** + * Return the topics described by weighted terms. + * + * This limits the number of terms per topic. + * This is approximate; it may not return exactly the top-weighted terms for each topic. + * To get a more precise set of top terms, increase maxTermsPerTopic. + * + * @param maxTermsPerTopic Maximum number of terms to collect for each topic. + * @return Array over topics. Each topic is represented as a pair of matching arrays: + * (term indices, term weights in topic). + * Each topic's terms are sorted in order of decreasing weight. + */ + def describeTopics(maxTermsPerTopic: Int): Array[(Array[Int], Array[Double])] + + /** + * Return the topics described by weighted terms. + * + * WARNING: If vocabSize and k are large, this can return a large object! + * + * @return Array over topics. Each topic is represented as a pair of matching arrays: + * (term indices, term weights in topic). + * Each topic's terms are sorted in order of decreasing weight. + */ + def describeTopics(): Array[(Array[Int], Array[Double])] = describeTopics(vocabSize) + + /* TODO (once LDA can be trained with Strings or given a dictionary) + * Return the topics described by weighted terms. + * + * This is similar to [[describeTopics()]] but returns String values for terms. + * If this model was trained using Strings or was given a dictionary, then this method returns + * terms as text. Otherwise, this method returns terms as term indices. + * + * This limits the number of terms per topic. + * This is approximate; it may not return exactly the top-weighted terms for each topic. + * To get a more precise set of top terms, increase maxTermsPerTopic. + * + * @param maxTermsPerTopic Maximum number of terms to collect for each topic. + * @return Array over topics. Each topic is represented as a pair of matching arrays: + * (terms, term weights in topic) where terms are either the actual term text + * (if available) or the term indices. + * Each topic's terms are sorted in order of decreasing weight. + */ + // def describeTopicsAsStrings(maxTermsPerTopic: Int): Array[(Array[Double], Array[String])] + + /* TODO (once LDA can be trained with Strings or given a dictionary) + * Return the topics described by weighted terms. + * + * This is similar to [[describeTopics()]] but returns String values for terms. + * If this model was trained using Strings or was given a dictionary, then this method returns + * terms as text. Otherwise, this method returns terms as term indices. + * + * WARNING: If vocabSize and k are large, this can return a large object! + * + * @return Array over topics. Each topic is represented as a pair of matching arrays: + * (terms, term weights in topic) where terms are either the actual term text + * (if available) or the term indices. + * Each topic's terms are sorted in order of decreasing weight. + */ + // def describeTopicsAsStrings(): Array[(Array[Double], Array[String])] = + // describeTopicsAsStrings(vocabSize) + + /* TODO + * Compute the log likelihood of the observed tokens, given the current parameter estimates: + * log P(docs | topics, topic distributions for docs, alpha, eta) + * + * Note: + * - This excludes the prior. + * - Even with the prior, this is NOT the same as the data log likelihood given the + * hyperparameters. + * + * @param documents RDD of documents, which are term (word) count vectors paired with IDs. + * The term count vectors are "bags of words" with a fixed-size vocabulary + * (where the vocabulary size is the length of the vector). + * This must use the same vocabulary (ordering of term counts) as in training. + * Document IDs must be unique and >= 0. + * @return Estimated log likelihood of the data under this model + */ + // def logLikelihood(documents: RDD[(Long, Vector)]): Double + + /* TODO + * Compute the estimated topic distribution for each document. + * This is often called “theta” in the literature. + * + * @param documents RDD of documents, which are term (word) count vectors paired with IDs. + * The term count vectors are "bags of words" with a fixed-size vocabulary + * (where the vocabulary size is the length of the vector). + * This must use the same vocabulary (ordering of term counts) as in training. + * Document IDs must be unique and >= 0. + * @return Estimated topic distribution for each document. + * The returned RDD may be zipped with the given RDD, where each returned vector + * is a multinomial distribution over topics. + */ + // def topicDistributions(documents: RDD[(Long, Vector)]): RDD[(Long, Vector)] + +} + +/** + * :: Experimental :: + * + * Local LDA model. + * This model stores only the inferred topics. + * It may be used for computing topics for new documents, but it may give less accurate answers + * than the [[DistributedLDAModel]]. + * + * @param topics Inferred topics (vocabSize x k matrix). + */ +@Experimental +class LocalLDAModel private[clustering] ( + private val topics: Matrix) extends LDAModel with Serializable { + + override def k: Int = topics.numCols + + override def vocabSize: Int = topics.numRows + + override def topicsMatrix: Matrix = topics + + override def describeTopics(maxTermsPerTopic: Int): Array[(Array[Int], Array[Double])] = { + val brzTopics = topics.toBreeze.toDenseMatrix + Range(0, k).map { topicIndex => + val topic = normalize(brzTopics(::, topicIndex), 1.0) + val (termWeights, terms) = + topic.toArray.zipWithIndex.sortBy(-_._1).take(maxTermsPerTopic).unzip + (terms.toArray, termWeights.toArray) + }.toArray + } + + // TODO + // override def logLikelihood(documents: RDD[(Long, Vector)]): Double = ??? + + // TODO: + // override def topicDistributions(documents: RDD[(Long, Vector)]): RDD[(Long, Vector)] = ??? + +} + +/** + * :: Experimental :: + * + * Distributed LDA model. + * This model stores the inferred topics, the full training dataset, and the topic distributions. + * When computing topics for new documents, it may give more accurate answers + * than the [[LocalLDAModel]]. + */ +@Experimental +class DistributedLDAModel private ( + private val graph: Graph[LDA.TopicCounts, LDA.TokenCount], + private val globalTopicTotals: LDA.TopicCounts, + val k: Int, + val vocabSize: Int, + private val docConcentration: Double, + private val topicConcentration: Double, + private[spark] val iterationTimes: Array[Double]) extends LDAModel { + + import LDA._ + + private[clustering] def this(state: LDA.EMOptimizer, iterationTimes: Array[Double]) = { + this(state.graph, state.globalTopicTotals, state.k, state.vocabSize, state.docConcentration, + state.topicConcentration, iterationTimes) + } + + /** + * Convert model to a local model. + * The local model stores the inferred topics but not the topic distributions for training + * documents. + */ + def toLocal: LocalLDAModel = new LocalLDAModel(topicsMatrix) + + /** + * Inferred topics, where each topic is represented by a distribution over terms. + * This is a matrix of size vocabSize x k, where each column is a topic. + * No guarantees are given about the ordering of the topics. + * + * WARNING: This matrix is collected from an RDD. Beware memory usage when vocabSize, k are large. + */ + override lazy val topicsMatrix: Matrix = { + // Collect row-major topics + val termTopicCounts: Array[(Int, TopicCounts)] = + graph.vertices.filter(_._1 < 0).map { case (termIndex, cnts) => + (index2term(termIndex), cnts) + }.collect() + // Convert to Matrix + val brzTopics = BDM.zeros[Double](vocabSize, k) + termTopicCounts.foreach { case (term, cnts) => + var j = 0 + while (j < k) { + brzTopics(term, j) = cnts(j) + j += 1 + } + } + Matrices.fromBreeze(brzTopics) + } + + override def describeTopics(maxTermsPerTopic: Int): Array[(Array[Int], Array[Double])] = { + val numTopics = k + // Note: N_k is not needed to find the top terms, but it is needed to normalize weights + // to a distribution over terms. + val N_k: TopicCounts = globalTopicTotals + val topicsInQueues: Array[BoundedPriorityQueue[(Double, Int)]] = + graph.vertices.filter(isTermVertex) + .mapPartitions { termVertices => + // For this partition, collect the most common terms for each topic in queues: + // queues(topic) = queue of (term weight, term index). + // Term weights are N_{wk} / N_k. + val queues = + Array.fill(numTopics)(new BoundedPriorityQueue[(Double, Int)](maxTermsPerTopic)) + for ((termId, n_wk) <- termVertices) { + var topic = 0 + while (topic < numTopics) { + queues(topic) += (n_wk(topic) / N_k(topic) -> index2term(termId.toInt)) + topic += 1 + } + } + Iterator(queues) + }.reduce { (q1, q2) => + q1.zip(q2).foreach { case (a, b) => a ++= b} + q1 + } + topicsInQueues.map { q => + val (termWeights, terms) = q.toArray.sortBy(-_._1).unzip + (terms.toArray, termWeights.toArray) + } + } + + // TODO + // override def logLikelihood(documents: RDD[(Long, Vector)]): Double = ??? + + /** + * Log likelihood of the observed tokens in the training set, + * given the current parameter estimates: + * log P(docs | topics, topic distributions for docs, alpha, eta) + * + * Note: + * - This excludes the prior; for that, use [[logPrior]]. + * - Even with [[logPrior]], this is NOT the same as the data log likelihood given the + * hyperparameters. + */ + lazy val logLikelihood: Double = { + val eta = topicConcentration + val alpha = docConcentration + assert(eta > 1.0) + assert(alpha > 1.0) + val N_k = globalTopicTotals + val smoothed_N_k: TopicCounts = N_k + (vocabSize * (eta - 1.0)) + // Edges: Compute token log probability from phi_{wk}, theta_{kj}. + val sendMsg: EdgeContext[TopicCounts, TokenCount, Double] => Unit = (edgeContext) => { + val N_wj = edgeContext.attr + val smoothed_N_wk: TopicCounts = edgeContext.dstAttr + (eta - 1.0) + val smoothed_N_kj: TopicCounts = edgeContext.srcAttr + (alpha - 1.0) + val phi_wk: TopicCounts = smoothed_N_wk :/ smoothed_N_k + val theta_kj: TopicCounts = normalize(smoothed_N_kj, 1.0) + val tokenLogLikelihood = N_wj * math.log(phi_wk.dot(theta_kj)) + edgeContext.sendToDst(tokenLogLikelihood) + } + graph.aggregateMessages[Double](sendMsg, _ + _) + .map(_._2).fold(0.0)(_ + _) + } + + /** + * Log probability of the current parameter estimate: + * log P(topics, topic distributions for docs | alpha, eta) + */ + lazy val logPrior: Double = { + val eta = topicConcentration + val alpha = docConcentration + // Term vertices: Compute phi_{wk}. Use to compute prior log probability. + // Doc vertex: Compute theta_{kj}. Use to compute prior log probability. + val N_k = globalTopicTotals + val smoothed_N_k: TopicCounts = N_k + (vocabSize * (eta - 1.0)) + val seqOp: (Double, (VertexId, TopicCounts)) => Double = { + case (sumPrior: Double, vertex: (VertexId, TopicCounts)) => + if (isTermVertex(vertex)) { + val N_wk = vertex._2 + val smoothed_N_wk: TopicCounts = N_wk + (eta - 1.0) + val phi_wk: TopicCounts = smoothed_N_wk :/ smoothed_N_k + (eta - 1.0) * brzSum(phi_wk.map(math.log)) + } else { + val N_kj = vertex._2 + val smoothed_N_kj: TopicCounts = N_kj + (alpha - 1.0) + val theta_kj: TopicCounts = normalize(smoothed_N_kj, 1.0) + (alpha - 1.0) * brzSum(theta_kj.map(math.log)) + } + } + graph.vertices.aggregate(0.0)(seqOp, _ + _) + } + + /** + * For each document in the training set, return the distribution over topics for that document + * (i.e., "theta_doc"). + * + * @return RDD of (document ID, topic distribution) pairs + */ + def topicDistributions: RDD[(Long, Vector)] = { + graph.vertices.filter(LDA.isDocumentVertex).map { case (docID, topicCounts) => + (docID.toLong, Vectors.fromBreeze(normalize(topicCounts, 1.0))) + } + } + + // TODO: + // override def topicDistributions(documents: RDD[(Long, Vector)]): RDD[(Long, Vector)] = ??? + +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/impl/PeriodicGraphCheckpointer.scala b/mllib/src/main/scala/org/apache/spark/mllib/impl/PeriodicGraphCheckpointer.scala new file mode 100644 index 0000000000000..76672fe51e834 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/impl/PeriodicGraphCheckpointer.scala @@ -0,0 +1,179 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.impl + +import scala.collection.mutable + +import org.apache.hadoop.fs.{Path, FileSystem} + +import org.apache.spark.Logging +import org.apache.spark.graphx.Graph +import org.apache.spark.storage.StorageLevel + + +/** + * This class helps with persisting and checkpointing Graphs. + * Specifically, it automatically handles persisting and (optionally) checkpointing, as well as + * unpersisting and removing checkpoint files. + * + * Users should call [[PeriodicGraphCheckpointer.updateGraph()]] when a new graph has been created, + * before the graph has been materialized. After updating [[PeriodicGraphCheckpointer]], users are + * responsible for materializing the graph to ensure that persisting and checkpointing actually + * occur. + * + * When [[PeriodicGraphCheckpointer.updateGraph()]] is called, this does the following: + * - Persist new graph (if not yet persisted), and put in queue of persisted graphs. + * - Unpersist graphs from queue until there are at most 3 persisted graphs. + * - If using checkpointing and the checkpoint interval has been reached, + * - Checkpoint the new graph, and put in a queue of checkpointed graphs. + * - Remove older checkpoints. + * + * WARNINGS: + * - This class should NOT be copied (since copies may conflict on which Graphs should be + * checkpointed). + * - This class removes checkpoint files once later graphs have been checkpointed. + * However, references to the older graphs will still return isCheckpointed = true. + * + * Example usage: + * {{{ + * val (graph1, graph2, graph3, ...) = ... + * val cp = new PeriodicGraphCheckpointer(graph1, dir, 2) + * graph1.vertices.count(); graph1.edges.count() + * // persisted: graph1 + * cp.updateGraph(graph2) + * graph2.vertices.count(); graph2.edges.count() + * // persisted: graph1, graph2 + * // checkpointed: graph2 + * cp.updateGraph(graph3) + * graph3.vertices.count(); graph3.edges.count() + * // persisted: graph1, graph2, graph3 + * // checkpointed: graph2 + * cp.updateGraph(graph4) + * graph4.vertices.count(); graph4.edges.count() + * // persisted: graph2, graph3, graph4 + * // checkpointed: graph4 + * cp.updateGraph(graph5) + * graph5.vertices.count(); graph5.edges.count() + * // persisted: graph3, graph4, graph5 + * // checkpointed: graph4 + * }}} + * + * @param currentGraph Initial graph + * @param checkpointDir The directory for storing checkpoint files + * @param checkpointInterval Graphs will be checkpointed at this interval + * @tparam VD Vertex descriptor type + * @tparam ED Edge descriptor type + * + * TODO: Generalize this for Graphs and RDDs, and move it out of MLlib. + */ +private[mllib] class PeriodicGraphCheckpointer[VD, ED]( + var currentGraph: Graph[VD, ED], + val checkpointDir: Option[String], + val checkpointInterval: Int) extends Logging { + + /** FIFO queue of past checkpointed RDDs */ + private val checkpointQueue = mutable.Queue[Graph[VD, ED]]() + + /** FIFO queue of past persisted RDDs */ + private val persistedQueue = mutable.Queue[Graph[VD, ED]]() + + /** Number of times [[updateGraph()]] has been called */ + private var updateCount = 0 + + /** + * Spark Context for the Graphs given to this checkpointer. + * NOTE: This code assumes that only one SparkContext is used for the given graphs. + */ + private val sc = currentGraph.vertices.sparkContext + + // If a checkpoint directory is given, and there's no prior checkpoint directory, + // then set the checkpoint directory with the given one. + if (checkpointDir.nonEmpty && sc.getCheckpointDir.isEmpty) { + sc.setCheckpointDir(checkpointDir.get) + } + + updateGraph(currentGraph) + + /** + * Update [[currentGraph]] with a new graph. Handle persistence and checkpointing as needed. + * Since this handles persistence and checkpointing, this should be called before the graph + * has been materialized. + * + * @param newGraph New graph created from previous graphs in the lineage. + */ + def updateGraph(newGraph: Graph[VD, ED]): Unit = { + if (newGraph.vertices.getStorageLevel == StorageLevel.NONE) { + newGraph.persist() + } + persistedQueue.enqueue(newGraph) + // We try to maintain 2 Graphs in persistedQueue to support the semantics of this class: + // Users should call [[updateGraph()]] when a new graph has been created, + // before the graph has been materialized. + while (persistedQueue.size > 3) { + val graphToUnpersist = persistedQueue.dequeue() + graphToUnpersist.unpersist(blocking = false) + } + updateCount += 1 + + // Handle checkpointing (after persisting) + if ((updateCount % checkpointInterval) == 0 && sc.getCheckpointDir.nonEmpty) { + // Add new checkpoint before removing old checkpoints. + newGraph.checkpoint() + checkpointQueue.enqueue(newGraph) + // Remove checkpoints before the latest one. + var canDelete = true + while (checkpointQueue.size > 1 && canDelete) { + // Delete the oldest checkpoint only if the next checkpoint exists. + if (checkpointQueue.get(1).get.isCheckpointed) { + removeCheckpointFile() + } else { + canDelete = false + } + } + } + } + + /** + * Call this at the end to delete any remaining checkpoint files. + */ + def deleteAllCheckpoints(): Unit = { + while (checkpointQueue.size > 0) { + removeCheckpointFile() + } + } + + /** + * Dequeue the oldest checkpointed Graph, and remove its checkpoint files. + * This prints a warning but does not fail if the files cannot be removed. + */ + private def removeCheckpointFile(): Unit = { + val old = checkpointQueue.dequeue() + // Since the old checkpoint is not deleted by Spark, we manually delete it. + val fs = FileSystem.get(sc.hadoopConfiguration) + old.getCheckpointFiles.foreach { checkpointFile => + try { + fs.delete(new Path(checkpointFile), true) + } catch { + case e: Exception => + logWarning("PeriodicGraphCheckpointer could not remove old checkpoint file: " + + checkpointFile) + } + } + } + +} diff --git a/mllib/src/test/java/org/apache/spark/mllib/clustering/JavaLDASuite.java b/mllib/src/test/java/org/apache/spark/mllib/clustering/JavaLDASuite.java new file mode 100644 index 0000000000000..dc10aa67c7c1f --- /dev/null +++ b/mllib/src/test/java/org/apache/spark/mllib/clustering/JavaLDASuite.java @@ -0,0 +1,119 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.clustering; + +import java.io.Serializable; +import java.util.ArrayList; + +import org.apache.spark.api.java.JavaRDD; +import scala.Tuple2; + +import org.junit.After; +import static org.junit.Assert.assertEquals; +import static org.junit.Assert.assertArrayEquals; +import org.junit.Before; +import org.junit.Test; + +import org.apache.spark.api.java.JavaPairRDD; +import org.apache.spark.api.java.JavaSparkContext; +import org.apache.spark.mllib.linalg.Matrix; +import org.apache.spark.mllib.linalg.Vector; + + +public class JavaLDASuite implements Serializable { + private transient JavaSparkContext sc; + + @Before + public void setUp() { + sc = new JavaSparkContext("local", "JavaLDA"); + ArrayList> tinyCorpus = new ArrayList>(); + for (int i = 0; i < LDASuite$.MODULE$.tinyCorpus().length; i++) { + tinyCorpus.add(new Tuple2((Long)LDASuite$.MODULE$.tinyCorpus()[i]._1(), + LDASuite$.MODULE$.tinyCorpus()[i]._2())); + } + JavaRDD> tmpCorpus = sc.parallelize(tinyCorpus, 2); + corpus = JavaPairRDD.fromJavaRDD(tmpCorpus); + } + + @After + public void tearDown() { + sc.stop(); + sc = null; + } + + @Test + public void localLDAModel() { + LocalLDAModel model = new LocalLDAModel(LDASuite$.MODULE$.tinyTopics()); + + // Check: basic parameters + assertEquals(model.k(), tinyK); + assertEquals(model.vocabSize(), tinyVocabSize); + assertEquals(model.topicsMatrix(), tinyTopics); + + // Check: describeTopics() with all terms + Tuple2[] fullTopicSummary = model.describeTopics(); + assertEquals(fullTopicSummary.length, tinyK); + for (int i = 0; i < fullTopicSummary.length; i++) { + assertArrayEquals(fullTopicSummary[i]._1(), tinyTopicDescription[i]._1()); + assertArrayEquals(fullTopicSummary[i]._2(), tinyTopicDescription[i]._2(), 1e-5); + } + } + + @Test + public void distributedLDAModel() { + int k = 3; + double topicSmoothing = 1.2; + double termSmoothing = 1.2; + + // Train a model + LDA lda = new LDA(); + lda.setK(k) + .setDocConcentration(topicSmoothing) + .setTopicConcentration(termSmoothing) + .setMaxIterations(5) + .setSeed(12345); + + DistributedLDAModel model = lda.run(corpus); + + // Check: basic parameters + LocalLDAModel localModel = model.toLocal(); + assertEquals(model.k(), k); + assertEquals(localModel.k(), k); + assertEquals(model.vocabSize(), tinyVocabSize); + assertEquals(localModel.vocabSize(), tinyVocabSize); + assertEquals(model.topicsMatrix(), localModel.topicsMatrix()); + + // Check: topic summaries + Tuple2[] roundedTopicSummary = model.describeTopics(); + assertEquals(roundedTopicSummary.length, k); + Tuple2[] roundedLocalTopicSummary = localModel.describeTopics(); + assertEquals(roundedLocalTopicSummary.length, k); + + // Check: log probabilities + assert(model.logLikelihood() < 0.0); + assert(model.logPrior() < 0.0); + } + + private static int tinyK = LDASuite$.MODULE$.tinyK(); + private static int tinyVocabSize = LDASuite$.MODULE$.tinyVocabSize(); + private static Matrix tinyTopics = LDASuite$.MODULE$.tinyTopics(); + private static Tuple2[] tinyTopicDescription = + LDASuite$.MODULE$.tinyTopicDescription(); + JavaPairRDD corpus; + +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/clustering/LDASuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/clustering/LDASuite.scala new file mode 100644 index 0000000000000..302d751eb8a94 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/clustering/LDASuite.scala @@ -0,0 +1,153 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.clustering + +import org.scalatest.FunSuite + +import org.apache.spark.mllib.linalg.{DenseMatrix, Matrix, Vectors} +import org.apache.spark.mllib.util.MLlibTestSparkContext +import org.apache.spark.mllib.util.TestingUtils._ + +class LDASuite extends FunSuite with MLlibTestSparkContext { + + import LDASuite._ + + test("LocalLDAModel") { + val model = new LocalLDAModel(tinyTopics) + + // Check: basic parameters + assert(model.k === tinyK) + assert(model.vocabSize === tinyVocabSize) + assert(model.topicsMatrix === tinyTopics) + + // Check: describeTopics() with all terms + val fullTopicSummary = model.describeTopics() + assert(fullTopicSummary.size === tinyK) + fullTopicSummary.zip(tinyTopicDescription).foreach { + case ((algTerms, algTermWeights), (terms, termWeights)) => + assert(algTerms === terms) + assert(algTermWeights === termWeights) + } + + // Check: describeTopics() with some terms + val smallNumTerms = 3 + val smallTopicSummary = model.describeTopics(maxTermsPerTopic = smallNumTerms) + smallTopicSummary.zip(tinyTopicDescription).foreach { + case ((algTerms, algTermWeights), (terms, termWeights)) => + assert(algTerms === terms.slice(0, smallNumTerms)) + assert(algTermWeights === termWeights.slice(0, smallNumTerms)) + } + } + + test("running and DistributedLDAModel") { + val k = 3 + val topicSmoothing = 1.2 + val termSmoothing = 1.2 + + // Train a model + val lda = new LDA() + lda.setK(k) + .setDocConcentration(topicSmoothing) + .setTopicConcentration(termSmoothing) + .setMaxIterations(5) + .setSeed(12345) + val corpus = sc.parallelize(tinyCorpus, 2) + + val model: DistributedLDAModel = lda.run(corpus) + + // Check: basic parameters + val localModel = model.toLocal + assert(model.k === k) + assert(localModel.k === k) + assert(model.vocabSize === tinyVocabSize) + assert(localModel.vocabSize === tinyVocabSize) + assert(model.topicsMatrix === localModel.topicsMatrix) + + // Check: topic summaries + // The odd decimal formatting and sorting is a hack to do a robust comparison. + val roundedTopicSummary = model.describeTopics().map { case (terms, termWeights) => + // cut values to 3 digits after the decimal place + terms.zip(termWeights).map { case (term, weight) => + ("%.3f".format(weight).toDouble, term.toInt) + } + }.sortBy(_.mkString("")) + val roundedLocalTopicSummary = localModel.describeTopics().map { case (terms, termWeights) => + // cut values to 3 digits after the decimal place + terms.zip(termWeights).map { case (term, weight) => + ("%.3f".format(weight).toDouble, term.toInt) + } + }.sortBy(_.mkString("")) + roundedTopicSummary.zip(roundedLocalTopicSummary).foreach { case (t1, t2) => + assert(t1 === t2) + } + + // Check: per-doc topic distributions + val topicDistributions = model.topicDistributions.collect() + // Ensure all documents are covered. + assert(topicDistributions.size === tinyCorpus.size) + assert(tinyCorpus.map(_._1).toSet === topicDistributions.map(_._1).toSet) + // Ensure we have proper distributions + topicDistributions.foreach { case (docId, topicDistribution) => + assert(topicDistribution.size === tinyK) + assert(topicDistribution.toArray.sum ~== 1.0 absTol 1e-5) + } + + // Check: log probabilities + assert(model.logLikelihood < 0.0) + assert(model.logPrior < 0.0) + } + + test("vertex indexing") { + // Check vertex ID indexing and conversions. + val docIds = Array(0, 1, 2) + val docVertexIds = docIds + val termIds = Array(0, 1, 2) + val termVertexIds = Array(-1, -2, -3) + assert(docVertexIds.forall(i => !LDA.isTermVertex((i.toLong, 0)))) + assert(termIds.map(LDA.term2index) === termVertexIds) + assert(termVertexIds.map(i => LDA.index2term(i.toLong)) === termIds) + assert(termVertexIds.forall(i => LDA.isTermVertex((i.toLong, 0)))) + } +} + +private[clustering] object LDASuite { + + def tinyK: Int = 3 + def tinyVocabSize: Int = 5 + def tinyTopicsAsArray: Array[Array[Double]] = Array( + Array[Double](0.1, 0.2, 0.3, 0.4, 0.0), // topic 0 + Array[Double](0.5, 0.05, 0.05, 0.1, 0.3), // topic 1 + Array[Double](0.2, 0.2, 0.05, 0.05, 0.5) // topic 2 + ) + def tinyTopics: Matrix = new DenseMatrix(numRows = tinyVocabSize, numCols = tinyK, + values = tinyTopicsAsArray.fold(Array.empty[Double])(_ ++ _)) + def tinyTopicDescription: Array[(Array[Int], Array[Double])] = tinyTopicsAsArray.map { topic => + val (termWeights, terms) = topic.zipWithIndex.sortBy(-_._1).unzip + (terms.toArray, termWeights.toArray) + } + + def tinyCorpus = Array( + Vectors.dense(1, 3, 0, 2, 8), + Vectors.dense(0, 2, 1, 0, 4), + Vectors.dense(2, 3, 12, 3, 1), + Vectors.dense(0, 3, 1, 9, 8), + Vectors.dense(1, 1, 4, 2, 6) + ).zipWithIndex.map { case (wordCounts, docId) => (docId.toLong, wordCounts) } + assert(tinyCorpus.forall(_._2.size == tinyVocabSize)) // sanity check for test data + +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/impl/PeriodicGraphCheckpointerSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/impl/PeriodicGraphCheckpointerSuite.scala new file mode 100644 index 0000000000000..dac28a369b5b2 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/impl/PeriodicGraphCheckpointerSuite.scala @@ -0,0 +1,187 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.impl + +import org.scalatest.FunSuite + +import org.apache.hadoop.fs.{FileSystem, Path} + +import org.apache.spark.SparkContext +import org.apache.spark.graphx.{Edge, Graph} +import org.apache.spark.mllib.util.MLlibTestSparkContext +import org.apache.spark.storage.StorageLevel +import org.apache.spark.util.Utils + + +class PeriodicGraphCheckpointerSuite extends FunSuite with MLlibTestSparkContext { + + import PeriodicGraphCheckpointerSuite._ + + // TODO: Do I need to call count() on the graphs' RDDs? + + test("Persisting") { + var graphsToCheck = Seq.empty[GraphToCheck] + + val graph1 = createGraph(sc) + val checkpointer = new PeriodicGraphCheckpointer(graph1, None, 10) + graphsToCheck = graphsToCheck :+ GraphToCheck(graph1, 1) + checkPersistence(graphsToCheck, 1) + + var iteration = 2 + while (iteration < 9) { + val graph = createGraph(sc) + checkpointer.updateGraph(graph) + graphsToCheck = graphsToCheck :+ GraphToCheck(graph, iteration) + checkPersistence(graphsToCheck, iteration) + iteration += 1 + } + } + + test("Checkpointing") { + val tempDir = Utils.createTempDir() + val path = tempDir.toURI.toString + val checkpointInterval = 2 + var graphsToCheck = Seq.empty[GraphToCheck] + + val graph1 = createGraph(sc) + val checkpointer = new PeriodicGraphCheckpointer(graph1, Some(path), checkpointInterval) + graph1.edges.count() + graph1.vertices.count() + graphsToCheck = graphsToCheck :+ GraphToCheck(graph1, 1) + checkCheckpoint(graphsToCheck, 1, checkpointInterval) + + var iteration = 2 + while (iteration < 9) { + val graph = createGraph(sc) + checkpointer.updateGraph(graph) + graph.vertices.count() + graph.edges.count() + graphsToCheck = graphsToCheck :+ GraphToCheck(graph, iteration) + checkCheckpoint(graphsToCheck, iteration, checkpointInterval) + iteration += 1 + } + + checkpointer.deleteAllCheckpoints() + graphsToCheck.foreach { graph => + confirmCheckpointRemoved(graph.graph) + } + + Utils.deleteRecursively(tempDir) + } +} + +private object PeriodicGraphCheckpointerSuite { + + case class GraphToCheck(graph: Graph[Double, Double], gIndex: Int) + + val edges = Seq( + Edge[Double](0, 1, 0), + Edge[Double](1, 2, 0), + Edge[Double](2, 3, 0), + Edge[Double](3, 4, 0)) + + def createGraph(sc: SparkContext): Graph[Double, Double] = { + Graph.fromEdges[Double, Double](sc.parallelize(edges), 0) + } + + def checkPersistence(graphs: Seq[GraphToCheck], iteration: Int): Unit = { + graphs.foreach { g => + checkPersistence(g.graph, g.gIndex, iteration) + } + } + + /** + * Check storage level of graph. + * @param gIndex Index of graph in order inserted into checkpointer (from 1). + * @param iteration Total number of graphs inserted into checkpointer. + */ + def checkPersistence(graph: Graph[_, _], gIndex: Int, iteration: Int): Unit = { + try { + if (gIndex + 2 < iteration) { + assert(graph.vertices.getStorageLevel == StorageLevel.NONE) + assert(graph.edges.getStorageLevel == StorageLevel.NONE) + } else { + assert(graph.vertices.getStorageLevel != StorageLevel.NONE) + assert(graph.edges.getStorageLevel != StorageLevel.NONE) + } + } catch { + case _: AssertionError => + throw new Exception(s"PeriodicGraphCheckpointerSuite.checkPersistence failed with:\n" + + s"\t gIndex = $gIndex\n" + + s"\t iteration = $iteration\n" + + s"\t graph.vertices.getStorageLevel = ${graph.vertices.getStorageLevel}\n" + + s"\t graph.edges.getStorageLevel = ${graph.edges.getStorageLevel}\n") + } + } + + def checkCheckpoint(graphs: Seq[GraphToCheck], iteration: Int, checkpointInterval: Int): Unit = { + graphs.reverse.foreach { g => + checkCheckpoint(g.graph, g.gIndex, iteration, checkpointInterval) + } + } + + def confirmCheckpointRemoved(graph: Graph[_, _]): Unit = { + // Note: We cannot check graph.isCheckpointed since that value is never updated. + // Instead, we check for the presence of the checkpoint files. + // This test should continue to work even after this graph.isCheckpointed issue + // is fixed (though it can then be simplified and not look for the files). + val fs = FileSystem.get(graph.vertices.sparkContext.hadoopConfiguration) + graph.getCheckpointFiles.foreach { checkpointFile => + assert(!fs.exists(new Path(checkpointFile)), + "Graph checkpoint file should have been removed") + } + } + + /** + * Check checkpointed status of graph. + * @param gIndex Index of graph in order inserted into checkpointer (from 1). + * @param iteration Total number of graphs inserted into checkpointer. + */ + def checkCheckpoint( + graph: Graph[_, _], + gIndex: Int, + iteration: Int, + checkpointInterval: Int): Unit = { + try { + if (gIndex % checkpointInterval == 0) { + // We allow 2 checkpoint intervals since we perform an action (checkpointing a second graph) + // only AFTER PeriodicGraphCheckpointer decides whether to remove the previous checkpoint. + if (iteration - 2 * checkpointInterval < gIndex && gIndex <= iteration) { + assert(graph.isCheckpointed, "Graph should be checkpointed") + assert(graph.getCheckpointFiles.length == 2, "Graph should have 2 checkpoint files") + } else { + confirmCheckpointRemoved(graph) + } + } else { + // Graph should never be checkpointed + assert(!graph.isCheckpointed, "Graph should never have been checkpointed") + assert(graph.getCheckpointFiles.length == 0, "Graph should not have any checkpoint files") + } + } catch { + case e: AssertionError => + throw new Exception(s"PeriodicGraphCheckpointerSuite.checkCheckpoint failed with:\n" + + s"\t gIndex = $gIndex\n" + + s"\t iteration = $iteration\n" + + s"\t checkpointInterval = $checkpointInterval\n" + + s"\t graph.isCheckpointed = ${graph.isCheckpointed}\n" + + s"\t graph.getCheckpointFiles = ${graph.getCheckpointFiles.mkString(", ")}\n" + + s" AssertionError message: ${e.getMessage}") + } + } + +} From 659329f9ee51ca8ae6232e07c45b5d9144d49667 Mon Sep 17 00:00:00 2001 From: Xiangrui Meng Date: Tue, 3 Feb 2015 00:14:43 -0800 Subject: [PATCH 39/52] [minor] update streaming linear algorithms Author: Xiangrui Meng Closes #4329 from mengxr/streaming-lr and squashes the following commits: 78731e1 [Xiangrui Meng] update streaming linear algorithms --- .../StreamingLogisticRegressionWithSGD.scala | 3 +- .../regression/StreamingLinearAlgorithm.scala | 41 ++++++++++--------- .../StreamingLinearRegressionWithSGD.scala | 2 +- 3 files changed, 24 insertions(+), 22 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala b/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala index eabd2162e287f..6a3893d0e41d2 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/classification/StreamingLogisticRegressionWithSGD.scala @@ -88,8 +88,7 @@ class StreamingLogisticRegressionWithSGD private[mllib] ( /** Set the initial weights. Default: [0.0, 0.0]. */ def setInitialWeights(initialWeights: Vector): this.type = { - this.model = Option(algorithm.createModel(initialWeights, 0.0)) + this.model = Some(algorithm.createModel(initialWeights, 0.0)) this } - } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala index 39a0dee931d3d..44a8dbb994cfb 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearAlgorithm.scala @@ -21,7 +21,7 @@ import scala.reflect.ClassTag import org.apache.spark.Logging import org.apache.spark.annotation.DeveloperApi -import org.apache.spark.mllib.linalg.Vector +import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.streaming.dstream.DStream /** @@ -58,7 +58,7 @@ abstract class StreamingLinearAlgorithm[ A <: GeneralizedLinearAlgorithm[M]] extends Logging { /** The model to be updated and used for prediction. */ - protected var model: Option[M] = null + protected var model: Option[M] = None /** The algorithm to use for updating. */ protected val algorithm: A @@ -77,18 +77,25 @@ abstract class StreamingLinearAlgorithm[ * @param data DStream containing labeled data */ def trainOn(data: DStream[LabeledPoint]) { - if (Option(model) == None) { - logError("Model must be initialized before starting training") - throw new IllegalArgumentException + if (model.isEmpty) { + throw new IllegalArgumentException("Model must be initialized before starting training.") } data.foreachRDD { (rdd, time) => - model = Option(algorithm.run(rdd, model.get.weights)) - logInfo("Model updated at time %s".format(time.toString)) - val display = model.get.weights.size match { - case x if x > 100 => model.get.weights.toArray.take(100).mkString("[", ",", "...") - case _ => model.get.weights.toArray.mkString("[", ",", "]") + val initialWeights = + model match { + case Some(m) => + m.weights + case None => + val numFeatures = rdd.first().features.size + Vectors.dense(numFeatures) } - logInfo("Current model: weights, %s".format (display)) + model = Some(algorithm.run(rdd, initialWeights)) + logInfo("Model updated at time %s".format(time.toString)) + val display = model.get.weights.size match { + case x if x > 100 => model.get.weights.toArray.take(100).mkString("[", ",", "...") + case _ => model.get.weights.toArray.mkString("[", ",", "]") + } + logInfo("Current model: weights, %s".format (display)) } } @@ -99,10 +106,8 @@ abstract class StreamingLinearAlgorithm[ * @return DStream containing predictions */ def predictOn(data: DStream[Vector]): DStream[Double] = { - if (Option(model) == None) { - val msg = "Model must be initialized before starting prediction" - logError(msg) - throw new IllegalArgumentException(msg) + if (model.isEmpty) { + throw new IllegalArgumentException("Model must be initialized before starting prediction.") } data.map(model.get.predict) } @@ -114,10 +119,8 @@ abstract class StreamingLinearAlgorithm[ * @return DStream containing the input keys and the predictions as values */ def predictOnValues[K: ClassTag](data: DStream[(K, Vector)]): DStream[(K, Double)] = { - if (Option(model) == None) { - val msg = "Model must be initialized before starting prediction" - logError(msg) - throw new IllegalArgumentException(msg) + if (model.isEmpty) { + throw new IllegalArgumentException("Model must be initialized before starting prediction") } data.mapValues(model.get.predict) } diff --git a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala index c0625b4880953..e5e6301127a28 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/regression/StreamingLinearRegressionWithSGD.scala @@ -79,7 +79,7 @@ class StreamingLinearRegressionWithSGD private[mllib] ( /** Set the initial weights. Default: [0.0, 0.0]. */ def setInitialWeights(initialWeights: Vector): this.type = { - this.model = Option(algorithm.createModel(initialWeights, 0.0)) + this.model = Some(algorithm.createModel(initialWeights, 0.0)) this } From 37df330135e6a3e62c580e5706eade5f1eaf5b13 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Tue, 3 Feb 2015 00:29:04 -0800 Subject: [PATCH 40/52] [SQL][DataFrame] Remove DataFrameApi, ExpressionApi, and GroupedDataFrameApi They were there mostly for code review and easier check of the API. I don't think they need to be there anymore. Author: Reynold Xin Closes #4328 from rxin/remove-df-api and squashes the following commits: 723d600 [Reynold Xin] [SQL][DataFrame] Remove DataFrameApi and ColumnApi. --- .../scala/org/apache/spark/sql/Column.scala | 118 +++---- .../org/apache/spark/sql/DataFrame.scala | 110 +++--- .../org/apache/spark/sql/DataFrameImpl.scala | 8 +- .../apache/spark/sql/GroupedDataFrame.scala | 19 +- .../scala/org/apache/spark/sql/RDDApi.scala | 63 ++++ .../main/scala/org/apache/spark/sql/api.scala | 326 ------------------ 6 files changed, 200 insertions(+), 444 deletions(-) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/RDDApi.scala delete mode 100644 sql/core/src/main/scala/org/apache/spark/sql/api.scala diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala index 6f48d7c3fe1b6..0d6055ff232b1 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala @@ -56,7 +56,7 @@ private[sql] object Column { * */ // TODO: Improve documentation. -trait Column extends DataFrame with ExpressionApi { +trait Column extends DataFrame { protected[sql] def expr: Expression @@ -101,7 +101,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( -df("amount") ) * }}} */ - override def unary_- : Column = constructColumn(null) { UnaryMinus(expr) } + def unary_- : Column = constructColumn(null) { UnaryMinus(expr) } /** * Bitwise NOT. @@ -110,7 +110,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( ~df("flags") ) * }}} */ - override def unary_~ : Column = constructColumn(null) { BitwiseNot(expr) } + def unary_~ : Column = constructColumn(null) { BitwiseNot(expr) } /** * Inversion of boolean expression, i.e. NOT. @@ -119,7 +119,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( !df("isActive") ) * }} */ - override def unary_! : Column = constructColumn(null) { Not(expr) } + def unary_! : Column = constructColumn(null) { Not(expr) } /** @@ -130,7 +130,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( df("colA".equalTo(df("colB")) ) * }}} */ - override def === (other: Column): Column = constructColumn(other) { + def === (other: Column): Column = constructColumn(other) { EqualTo(expr, other.expr) } @@ -142,7 +142,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( df("colA".equalTo("Zaharia") ) * }}} */ - override def === (literal: Any): Column = this === lit(literal) + def === (literal: Any): Column = this === lit(literal) /** * Equality test with an expression. @@ -152,7 +152,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( df("colA".equalTo(df("colB")) ) * }}} */ - override def equalTo(other: Column): Column = this === other + def equalTo(other: Column): Column = this === other /** * Equality test with a literal value. @@ -162,7 +162,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( df("colA".equalTo("Zaharia") ) * }}} */ - override def equalTo(literal: Any): Column = this === literal + def equalTo(literal: Any): Column = this === literal /** * Inequality test with an expression. @@ -172,7 +172,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( !(df("colA") === df("colB")) ) * }}} */ - override def !== (other: Column): Column = constructColumn(other) { + def !== (other: Column): Column = constructColumn(other) { Not(EqualTo(expr, other.expr)) } @@ -184,7 +184,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select( !(df("colA") === 15) ) * }}} */ - override def !== (literal: Any): Column = this !== lit(literal) + def !== (literal: Any): Column = this !== lit(literal) /** * Greater than an expression. @@ -193,7 +193,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("age") > Literal(21) ) * }}} */ - override def > (other: Column): Column = constructColumn(other) { + def > (other: Column): Column = constructColumn(other) { GreaterThan(expr, other.expr) } @@ -204,7 +204,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("age") > 21 ) * }}} */ - override def > (literal: Any): Column = this > lit(literal) + def > (literal: Any): Column = this > lit(literal) /** * Less than an expression. @@ -213,7 +213,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("age") < Literal(21) ) * }}} */ - override def < (other: Column): Column = constructColumn(other) { + def < (other: Column): Column = constructColumn(other) { LessThan(expr, other.expr) } @@ -224,7 +224,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("age") < 21 ) * }}} */ - override def < (literal: Any): Column = this < lit(literal) + def < (literal: Any): Column = this < lit(literal) /** * Less than or equal to an expression. @@ -233,7 +233,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("age") <= Literal(21) ) * }}} */ - override def <= (other: Column): Column = constructColumn(other) { + def <= (other: Column): Column = constructColumn(other) { LessThanOrEqual(expr, other.expr) } @@ -244,7 +244,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("age") <= 21 ) * }}} */ - override def <= (literal: Any): Column = this <= lit(literal) + def <= (literal: Any): Column = this <= lit(literal) /** * Greater than or equal to an expression. @@ -253,7 +253,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("age") >= Literal(21) ) * }}} */ - override def >= (other: Column): Column = constructColumn(other) { + def >= (other: Column): Column = constructColumn(other) { GreaterThanOrEqual(expr, other.expr) } @@ -264,12 +264,12 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("age") >= 21 ) * }}} */ - override def >= (literal: Any): Column = this >= lit(literal) + def >= (literal: Any): Column = this >= lit(literal) /** * Equality test with an expression that is safe for null values. */ - override def <=> (other: Column): Column = constructColumn(other) { + def <=> (other: Column): Column = constructColumn(other) { other match { case null => EqualNullSafe(expr, lit(null).expr) case _ => EqualNullSafe(expr, other.expr) @@ -279,17 +279,17 @@ trait Column extends DataFrame with ExpressionApi { /** * Equality test with a literal value that is safe for null values. */ - override def <=> (literal: Any): Column = this <=> lit(literal) + def <=> (literal: Any): Column = this <=> lit(literal) /** * True if the current expression is null. */ - override def isNull: Column = constructColumn(null) { IsNull(expr) } + def isNull: Column = constructColumn(null) { IsNull(expr) } /** * True if the current expression is NOT null. */ - override def isNotNull: Column = constructColumn(null) { IsNotNull(expr) } + def isNotNull: Column = constructColumn(null) { IsNotNull(expr) } /** * Boolean OR with an expression. @@ -298,7 +298,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("inSchool") || people("isEmployed") ) * }}} */ - override def || (other: Column): Column = constructColumn(other) { + def || (other: Column): Column = constructColumn(other) { Or(expr, other.expr) } @@ -309,7 +309,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("inSchool") || true ) * }}} */ - override def || (literal: Boolean): Column = this || lit(literal) + def || (literal: Boolean): Column = this || lit(literal) /** * Boolean AND with an expression. @@ -318,7 +318,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("inSchool") && people("isEmployed") ) * }}} */ - override def && (other: Column): Column = constructColumn(other) { + def && (other: Column): Column = constructColumn(other) { And(expr, other.expr) } @@ -329,43 +329,43 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("inSchool") && true ) * }}} */ - override def && (literal: Boolean): Column = this && lit(literal) + def && (literal: Boolean): Column = this && lit(literal) /** * Bitwise AND with an expression. */ - override def & (other: Column): Column = constructColumn(other) { + def & (other: Column): Column = constructColumn(other) { BitwiseAnd(expr, other.expr) } /** * Bitwise AND with a literal value. */ - override def & (literal: Any): Column = this & lit(literal) + def & (literal: Any): Column = this & lit(literal) /** * Bitwise OR with an expression. */ - override def | (other: Column): Column = constructColumn(other) { + def | (other: Column): Column = constructColumn(other) { BitwiseOr(expr, other.expr) } /** * Bitwise OR with a literal value. */ - override def | (literal: Any): Column = this | lit(literal) + def | (literal: Any): Column = this | lit(literal) /** * Bitwise XOR with an expression. */ - override def ^ (other: Column): Column = constructColumn(other) { + def ^ (other: Column): Column = constructColumn(other) { BitwiseXor(expr, other.expr) } /** * Bitwise XOR with a literal value. */ - override def ^ (literal: Any): Column = this ^ lit(literal) + def ^ (literal: Any): Column = this ^ lit(literal) /** * Sum of this expression and another expression. @@ -374,7 +374,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("height") + people("weight") ) * }}} */ - override def + (other: Column): Column = constructColumn(other) { + def + (other: Column): Column = constructColumn(other) { Add(expr, other.expr) } @@ -385,7 +385,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("height") + 10 ) * }}} */ - override def + (literal: Any): Column = this + lit(literal) + def + (literal: Any): Column = this + lit(literal) /** * Subtraction. Subtract the other expression from this expression. @@ -394,7 +394,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("height") - people("weight") ) * }}} */ - override def - (other: Column): Column = constructColumn(other) { + def - (other: Column): Column = constructColumn(other) { Subtract(expr, other.expr) } @@ -405,7 +405,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("height") - 10 ) * }}} */ - override def - (literal: Any): Column = this - lit(literal) + def - (literal: Any): Column = this - lit(literal) /** * Multiplication of this expression and another expression. @@ -414,7 +414,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("height") * people("weight") ) * }}} */ - override def * (other: Column): Column = constructColumn(other) { + def * (other: Column): Column = constructColumn(other) { Multiply(expr, other.expr) } @@ -425,7 +425,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("height") * 10 ) * }}} */ - override def * (literal: Any): Column = this * lit(literal) + def * (literal: Any): Column = this * lit(literal) /** * Division this expression by another expression. @@ -434,7 +434,7 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("height") / people("weight") ) * }}} */ - override def / (other: Column): Column = constructColumn(other) { + def / (other: Column): Column = constructColumn(other) { Divide(expr, other.expr) } @@ -445,19 +445,19 @@ trait Column extends DataFrame with ExpressionApi { * people.select( people("height") / 10 ) * }}} */ - override def / (literal: Any): Column = this / lit(literal) + def / (literal: Any): Column = this / lit(literal) /** * Modulo (a.k.a. remainder) expression. */ - override def % (other: Column): Column = constructColumn(other) { + def % (other: Column): Column = constructColumn(other) { Remainder(expr, other.expr) } /** * Modulo (a.k.a. remainder) expression. */ - override def % (literal: Any): Column = this % lit(literal) + def % (literal: Any): Column = this % lit(literal) /** @@ -465,29 +465,29 @@ trait Column extends DataFrame with ExpressionApi { * by the evaluated values of the arguments. */ @scala.annotation.varargs - override def in(list: Column*): Column = { + def in(list: Column*): Column = { new IncomputableColumn(In(expr, list.map(_.expr))) } - override def like(literal: String): Column = constructColumn(null) { + def like(literal: String): Column = constructColumn(null) { Like(expr, lit(literal).expr) } - override def rlike(literal: String): Column = constructColumn(null) { + def rlike(literal: String): Column = constructColumn(null) { RLike(expr, lit(literal).expr) } /** * An expression that gets an item at position `ordinal` out of an array. */ - override def getItem(ordinal: Int): Column = constructColumn(null) { + def getItem(ordinal: Int): Column = constructColumn(null) { GetItem(expr, Literal(ordinal)) } /** * An expression that gets a field by name in a [[StructField]]. */ - override def getField(fieldName: String): Column = constructColumn(null) { + def getField(fieldName: String): Column = constructColumn(null) { GetField(expr, fieldName) } @@ -496,7 +496,7 @@ trait Column extends DataFrame with ExpressionApi { * @param startPos expression for the starting position. * @param len expression for the length of the substring. */ - override def substr(startPos: Column, len: Column): Column = { + def substr(startPos: Column, len: Column): Column = { new IncomputableColumn(Substring(expr, startPos.expr, len.expr)) } @@ -505,25 +505,25 @@ trait Column extends DataFrame with ExpressionApi { * @param startPos starting position. * @param len length of the substring. */ - override def substr(startPos: Int, len: Int): Column = this.substr(lit(startPos), lit(len)) + def substr(startPos: Int, len: Int): Column = this.substr(lit(startPos), lit(len)) - override def contains(other: Column): Column = constructColumn(other) { + def contains(other: Column): Column = constructColumn(other) { Contains(expr, other.expr) } - override def contains(literal: Any): Column = this.contains(lit(literal)) + def contains(literal: Any): Column = this.contains(lit(literal)) - override def startsWith(other: Column): Column = constructColumn(other) { + def startsWith(other: Column): Column = constructColumn(other) { StartsWith(expr, other.expr) } - override def startsWith(literal: String): Column = this.startsWith(lit(literal)) + def startsWith(literal: String): Column = this.startsWith(lit(literal)) - override def endsWith(other: Column): Column = constructColumn(other) { + def endsWith(other: Column): Column = constructColumn(other) { EndsWith(expr, other.expr) } - override def endsWith(literal: String): Column = this.endsWith(lit(literal)) + def endsWith(literal: String): Column = this.endsWith(lit(literal)) /** * Gives the column an alias. @@ -545,7 +545,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select(df("colA").cast("int")) * }}} */ - override def cast(to: DataType): Column = constructColumn(null) { Cast(expr, to) } + def cast(to: DataType): Column = constructColumn(null) { Cast(expr, to) } /** * Casts the column to a different data type, using the canonical string representation @@ -556,7 +556,7 @@ trait Column extends DataFrame with ExpressionApi { * df.select(df("colA").cast("int")) * }}} */ - override def cast(to: String): Column = constructColumn(null) { + def cast(to: String): Column = constructColumn(null) { Cast(expr, to.toLowerCase match { case "string" => StringType case "boolean" => BooleanType @@ -573,9 +573,9 @@ trait Column extends DataFrame with ExpressionApi { }) } - override def desc: Column = constructColumn(null) { SortOrder(expr, Descending) } + def desc: Column = constructColumn(null) { SortOrder(expr, Descending) } - override def asc: Column = constructColumn(null) { SortOrder(expr, Ascending) } + def asc: Column = constructColumn(null) { SortOrder(expr, Ascending) } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 4cbfb6af5de94..5920852e8c178 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -71,7 +71,7 @@ private[sql] object DataFrame { * }}} */ // TODO: Improve documentation. -trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { +trait DataFrame extends RDDApi[Row] { val sqlContext: SQLContext @@ -80,7 +80,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { protected[sql] def logicalPlan: LogicalPlan - /** Left here for compatibility reasons. */ + /** Left here for backward compatibility. */ @deprecated("1.3.0", "use toDataFrame") def toSchemaRDD: DataFrame = this @@ -102,16 +102,16 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { def toDataFrame(colName: String, colNames: String*): DataFrame /** Returns the schema of this [[DataFrame]]. */ - override def schema: StructType + def schema: StructType /** Returns all column names and their data types as an array. */ - override def dtypes: Array[(String, String)] + def dtypes: Array[(String, String)] /** Returns all column names as an array. */ - override def columns: Array[String] = schema.fields.map(_.name) + def columns: Array[String] = schema.fields.map(_.name) /** Prints the schema to the console in a nice tree format. */ - override def printSchema(): Unit + def printSchema(): Unit /** * Cartesian join with another [[DataFrame]]. @@ -120,7 +120,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * * @param right Right side of the join operation. */ - override def join(right: DataFrame): DataFrame + def join(right: DataFrame): DataFrame /** * Inner join with another [[DataFrame]], using the given join expression. @@ -131,7 +131,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * df1.join(df2).where($"df1Key" === $"df2Key") * }}} */ - override def join(right: DataFrame, joinExprs: Column): DataFrame + def join(right: DataFrame, joinExprs: Column): DataFrame /** * Join with another [[DataFrame]], usin g the given join expression. The following performs @@ -145,7 +145,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * @param joinExprs Join expression. * @param joinType One of: `inner`, `outer`, `left_outer`, `right_outer`, `semijoin`. */ - override def join(right: DataFrame, joinExprs: Column, joinType: String): DataFrame + def join(right: DataFrame, joinExprs: Column, joinType: String): DataFrame /** * Returns a new [[DataFrame]] sorted by the specified column, all in ascending order. @@ -157,7 +157,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * }}} */ @scala.annotation.varargs - override def sort(sortCol: String, sortCols: String*): DataFrame + def sort(sortCol: String, sortCols: String*): DataFrame /** * Returns a new [[DataFrame]] sorted by the given expressions. For example: @@ -166,26 +166,26 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * }}} */ @scala.annotation.varargs - override def sort(sortExpr: Column, sortExprs: Column*): DataFrame + def sort(sortExpr: Column, sortExprs: Column*): DataFrame /** * Returns a new [[DataFrame]] sorted by the given expressions. * This is an alias of the `sort` function. */ @scala.annotation.varargs - override def orderBy(sortCol: String, sortCols: String*): DataFrame + def orderBy(sortCol: String, sortCols: String*): DataFrame /** * Returns a new [[DataFrame]] sorted by the given expressions. * This is an alias of the `sort` function. */ @scala.annotation.varargs - override def orderBy(sortExpr: Column, sortExprs: Column*): DataFrame + def orderBy(sortExpr: Column, sortExprs: Column*): DataFrame /** * Selects column based on the column name and return it as a [[Column]]. */ - override def apply(colName: String): Column + def apply(colName: String): Column /** * Selects a set of expressions, wrapped in a Product. @@ -195,12 +195,12 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * df.select($"colA", $"colB" + 1) * }}} */ - override def apply(projection: Product): DataFrame + def apply(projection: Product): DataFrame /** * Returns a new [[DataFrame]] with an alias set. */ - override def as(name: String): DataFrame + def as(name: String): DataFrame /** * Selects a set of expressions. @@ -209,7 +209,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * }}} */ @scala.annotation.varargs - override def select(cols: Column*): DataFrame + def select(cols: Column*): DataFrame /** * Selects a set of columns. This is a variant of `select` that can only select @@ -222,7 +222,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * }}} */ @scala.annotation.varargs - override def select(col: String, cols: String*): DataFrame + def select(col: String, cols: String*): DataFrame /** * Filters rows using the given condition. @@ -233,7 +233,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * peopleDf($"age" > 15) * }}} */ - override def filter(condition: Column): DataFrame + def filter(condition: Column): DataFrame /** * Filters rows using the given condition. This is an alias for `filter`. @@ -244,7 +244,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * peopleDf($"age" > 15) * }}} */ - override def where(condition: Column): DataFrame + def where(condition: Column): DataFrame /** * Filters rows using the given condition. This is a shorthand meant for Scala. @@ -255,7 +255,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * peopleDf($"age" > 15) * }}} */ - override def apply(condition: Column): DataFrame + def apply(condition: Column): DataFrame /** * Groups the [[DataFrame]] using the specified columns, so we can run aggregation on them. @@ -273,7 +273,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * }}} */ @scala.annotation.varargs - override def groupBy(cols: Column*): GroupedDataFrame + def groupBy(cols: Column*): GroupedDataFrame /** * Groups the [[DataFrame]] using the specified columns, so we can run aggregation on them. @@ -294,7 +294,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * }}} */ @scala.annotation.varargs - override def groupBy(col1: String, cols: String*): GroupedDataFrame + def groupBy(col1: String, cols: String*): GroupedDataFrame /** * Aggregates on the entire [[DataFrame]] without groups. @@ -304,7 +304,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * df.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) * }} */ - override def agg(exprs: Map[String, String]): DataFrame + def agg(exprs: Map[String, String]): DataFrame /** * Aggregates on the entire [[DataFrame]] without groups. @@ -314,7 +314,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * df.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) * }} */ - override def agg(exprs: java.util.Map[String, String]): DataFrame + def agg(exprs: java.util.Map[String, String]): DataFrame /** * Aggregates on the entire [[DataFrame]] without groups. @@ -325,31 +325,31 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * }} */ @scala.annotation.varargs - override def agg(expr: Column, exprs: Column*): DataFrame + def agg(expr: Column, exprs: Column*): DataFrame /** * Returns a new [[DataFrame]] by taking the first `n` rows. The difference between this function * and `head` is that `head` returns an array while `limit` returns a new [[DataFrame]]. */ - override def limit(n: Int): DataFrame + def limit(n: Int): DataFrame /** * Returns a new [[DataFrame]] containing union of rows in this frame and another frame. * This is equivalent to `UNION ALL` in SQL. */ - override def unionAll(other: DataFrame): DataFrame + def unionAll(other: DataFrame): DataFrame /** * Returns a new [[DataFrame]] containing rows only in both this frame and another frame. * This is equivalent to `INTERSECT` in SQL. */ - override def intersect(other: DataFrame): DataFrame + def intersect(other: DataFrame): DataFrame /** * Returns a new [[DataFrame]] containing rows in this frame but not in another frame. * This is equivalent to `EXCEPT` in SQL. */ - override def except(other: DataFrame): DataFrame + def except(other: DataFrame): DataFrame /** * Returns a new [[DataFrame]] by sampling a fraction of rows. @@ -358,7 +358,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * @param fraction Fraction of rows to generate. * @param seed Seed for sampling. */ - override def sample(withReplacement: Boolean, fraction: Double, seed: Long): DataFrame + def sample(withReplacement: Boolean, fraction: Double, seed: Long): DataFrame /** * Returns a new [[DataFrame]] by sampling a fraction of rows, using a random seed. @@ -366,24 +366,24 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * @param withReplacement Sample with replacement or not. * @param fraction Fraction of rows to generate. */ - override def sample(withReplacement: Boolean, fraction: Double): DataFrame + def sample(withReplacement: Boolean, fraction: Double): DataFrame ///////////////////////////////////////////////////////////////////////////// /** * Returns a new [[DataFrame]] by adding a column. */ - override def addColumn(colName: String, col: Column): DataFrame + def addColumn(colName: String, col: Column): DataFrame /** * Returns the first `n` rows. */ - override def head(n: Int): Array[Row] + def head(n: Int): Array[Row] /** * Returns the first row. */ - override def head(): Row + def head(): Row /** * Returns the first row. Alias for head(). @@ -453,7 +453,17 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { /** * Returns the content of the [[DataFrame]] as an [[RDD]] of [[Row]]s. */ - override def rdd: RDD[Row] + def rdd: RDD[Row] + + /** + * Returns the content of the [[DataFrame]] as a [[JavaRDD]] of [[Row]]s. + */ + def toJavaRDD: JavaRDD[Row] = rdd.toJavaRDD() + + /** + * Returns the content of the [[DataFrame]] as a [[JavaRDD]] of [[Row]]s. + */ + def javaRDD: JavaRDD[Row] = toJavaRDD /** * Registers this RDD as a temporary table using the given name. The lifetime of this temporary @@ -461,14 +471,14 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * * @group schema */ - override def registerTempTable(tableName: String): Unit + def registerTempTable(tableName: String): Unit /** * Saves the contents of this [[DataFrame]] as a parquet file, preserving the schema. * Files that are written out using this method can be read back in as a [[DataFrame]] * using the `parquetFile` function in [[SQLContext]]. */ - override def saveAsParquetFile(path: String): Unit + def saveAsParquetFile(path: String): Unit /** * :: Experimental :: @@ -481,7 +491,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * be the target of an `insertInto`. */ @Experimental - override def saveAsTable(tableName: String): Unit + def saveAsTable(tableName: String): Unit /** * :: Experimental :: @@ -494,7 +504,7 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * be the target of an `insertInto`. */ @Experimental - override def saveAsTable( + def saveAsTable( tableName: String, dataSourceName: String, option: (String, String), @@ -511,22 +521,22 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * be the target of an `insertInto`. */ @Experimental - override def saveAsTable( + def saveAsTable( tableName: String, dataSourceName: String, options: java.util.Map[String, String]): Unit @Experimental - override def save(path: String): Unit + def save(path: String): Unit @Experimental - override def save( + def save( dataSourceName: String, option: (String, String), options: (String, String)*): Unit @Experimental - override def save( + def save( dataSourceName: String, options: java.util.Map[String, String]): Unit @@ -535,12 +545,20 @@ trait DataFrame extends DataFrameSpecificApi with RDDApi[Row] { * Adds the rows from this RDD to the specified table, optionally overwriting the existing data. */ @Experimental - override def insertInto(tableName: String, overwrite: Boolean): Unit + def insertInto(tableName: String, overwrite: Boolean): Unit + + /** + * :: Experimental :: + * Adds the rows from this RDD to the specified table. + * Throws an exception if the table already exists. + */ + @Experimental + def insertInto(tableName: String): Unit = insertInto(tableName, overwrite = false) /** * Returns the content of the [[DataFrame]] as a RDD of JSON strings. */ - override def toJSON: RDD[String] + def toJSON: RDD[String] //////////////////////////////////////////////////////////////////////////// // for Python API diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala index f84dbf32fa5b2..49fd131534bb5 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala @@ -17,8 +17,6 @@ package org.apache.spark.sql -import java.util.{List => JList} - import scala.language.implicitConversions import scala.reflect.ClassTag import scala.collection.JavaConversions._ @@ -42,13 +40,17 @@ import org.apache.spark.util.Utils /** - * See [[DataFrame]] for documentation. + * Internal implementation of [[DataFrame]]. Users of the API should use [[DataFrame]] directly. */ private[sql] class DataFrameImpl protected[sql]( override val sqlContext: SQLContext, val queryExecution: SQLContext#QueryExecution) extends DataFrame { + /** + * A constructor that automatically analyzes the logical plan. This reports error eagerly + * as the [[DataFrame]] is constructed. + */ def this(sqlContext: SQLContext, logicalPlan: LogicalPlan) = { this(sqlContext, { val qe = sqlContext.executePlan(logicalPlan) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala index d3acd41bbf3eb..6d0f3e8ce37cc 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala @@ -30,8 +30,7 @@ import org.apache.spark.sql.catalyst.plans.logical.Aggregate /** * A set of methods for aggregations on a [[DataFrame]], created by [[DataFrame.groupBy]]. */ -class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expression]) - extends GroupedDataFrameApi { +class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expression]) { private[this] implicit def toDataFrame(aggExprs: Seq[NamedExpression]): DataFrame = { val namedGroupingExprs = groupingExprs.map { @@ -72,7 +71,7 @@ class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expr * )) * }}} */ - override def agg(exprs: Map[String, String]): DataFrame = { + def agg(exprs: Map[String, String]): DataFrame = { exprs.map { case (colName, expr) => val a = strToExpr(expr)(df(colName).expr) Alias(a, a.toString)() @@ -109,7 +108,7 @@ class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expr * }}} */ @scala.annotation.varargs - override def agg(expr: Column, exprs: Column*): DataFrame = { + def agg(expr: Column, exprs: Column*): DataFrame = { val aggExprs = (expr +: exprs).map(_.expr).map { case expr: NamedExpression => expr case expr: Expression => Alias(expr, expr.toString)() @@ -121,35 +120,35 @@ class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expr * Count the number of rows for each group. * The resulting [[DataFrame]] will also contain the grouping columns. */ - override def count(): DataFrame = Seq(Alias(Count(LiteralExpr(1)), "count")()) + def count(): DataFrame = Seq(Alias(Count(LiteralExpr(1)), "count")()) /** * Compute the average value for each numeric columns for each group. This is an alias for `avg`. * The resulting [[DataFrame]] will also contain the grouping columns. */ - override def mean(): DataFrame = aggregateNumericColumns(Average) + def mean(): DataFrame = aggregateNumericColumns(Average) /** * Compute the max value for each numeric columns for each group. * The resulting [[DataFrame]] will also contain the grouping columns. */ - override def max(): DataFrame = aggregateNumericColumns(Max) + def max(): DataFrame = aggregateNumericColumns(Max) /** * Compute the mean value for each numeric columns for each group. * The resulting [[DataFrame]] will also contain the grouping columns. */ - override def avg(): DataFrame = aggregateNumericColumns(Average) + def avg(): DataFrame = aggregateNumericColumns(Average) /** * Compute the min value for each numeric column for each group. * The resulting [[DataFrame]] will also contain the grouping columns. */ - override def min(): DataFrame = aggregateNumericColumns(Min) + def min(): DataFrame = aggregateNumericColumns(Min) /** * Compute the sum for each numeric columns for each group. * The resulting [[DataFrame]] will also contain the grouping columns. */ - override def sum(): DataFrame = aggregateNumericColumns(Sum) + def sum(): DataFrame = aggregateNumericColumns(Sum) } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/RDDApi.scala b/sql/core/src/main/scala/org/apache/spark/sql/RDDApi.scala new file mode 100644 index 0000000000000..38e6382f171d5 --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/RDDApi.scala @@ -0,0 +1,63 @@ +/* +* Licensed to the Apache Software Foundation (ASF) under one or more +* contributor license agreements. See the NOTICE file distributed with +* this work for additional information regarding copyright ownership. +* The ASF licenses this file to You under the Apache License, Version 2.0 +* (the "License"); you may not use this file except in compliance with +* the License. You may obtain a copy of the License at +* +* http://www.apache.org/licenses/LICENSE-2.0 +* +* Unless required by applicable law or agreed to in writing, software +* distributed under the License is distributed on an "AS IS" BASIS, +* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +* See the License for the specific language governing permissions and +* limitations under the License. +*/ + +package org.apache.spark.sql + +import scala.reflect.ClassTag + +import org.apache.spark.rdd.RDD +import org.apache.spark.storage.StorageLevel + + +/** + * An internal interface defining the RDD-like methods for [[DataFrame]]. + * Please use [[DataFrame]] directly, and do NOT use this. + */ +private[sql] trait RDDApi[T] { + + def cache(): this.type = persist() + + def persist(): this.type + + def persist(newLevel: StorageLevel): this.type + + def unpersist(): this.type = unpersist(blocking = false) + + def unpersist(blocking: Boolean): this.type + + def map[R: ClassTag](f: T => R): RDD[R] + + def flatMap[R: ClassTag](f: T => TraversableOnce[R]): RDD[R] + + def mapPartitions[R: ClassTag](f: Iterator[T] => Iterator[R]): RDD[R] + + def foreach(f: T => Unit): Unit + + def foreachPartition(f: Iterator[T] => Unit): Unit + + def take(n: Int): Array[T] + + def collect(): Array[T] + + def collectAsList(): java.util.List[T] + + def count(): Long + + def first(): T + + def repartition(numPartitions: Int): DataFrame +} diff --git a/sql/core/src/main/scala/org/apache/spark/sql/api.scala b/sql/core/src/main/scala/org/apache/spark/sql/api.scala deleted file mode 100644 index c4a00cdb20408..0000000000000 --- a/sql/core/src/main/scala/org/apache/spark/sql/api.scala +++ /dev/null @@ -1,326 +0,0 @@ -/* -* Licensed to the Apache Software Foundation (ASF) under one or more -* contributor license agreements. See the NOTICE file distributed with -* this work for additional information regarding copyright ownership. -* The ASF licenses this file to You under the Apache License, Version 2.0 -* (the "License"); you may not use this file except in compliance with -* the License. You may obtain a copy of the License at -* -* http://www.apache.org/licenses/LICENSE-2.0 -* -* Unless required by applicable law or agreed to in writing, software -* distributed under the License is distributed on an "AS IS" BASIS, -* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -* See the License for the specific language governing permissions and -* limitations under the License. -*/ - -package org.apache.spark.sql - -import scala.reflect.ClassTag - -import org.apache.spark.annotation.Experimental -import org.apache.spark.api.java.JavaRDD -import org.apache.spark.rdd.RDD -import org.apache.spark.sql.types.{DataType, StructType} -import org.apache.spark.storage.StorageLevel - - -/** - * An internal interface defining the RDD-like methods for [[DataFrame]]. - * Please use [[DataFrame]] directly, and do NOT use this. - */ -private[sql] trait RDDApi[T] { - - def cache(): this.type = persist() - - def persist(): this.type - - def persist(newLevel: StorageLevel): this.type - - def unpersist(): this.type = unpersist(blocking = false) - - def unpersist(blocking: Boolean): this.type - - def map[R: ClassTag](f: T => R): RDD[R] - - def flatMap[R: ClassTag](f: T => TraversableOnce[R]): RDD[R] - - def mapPartitions[R: ClassTag](f: Iterator[T] => Iterator[R]): RDD[R] - - def foreach(f: T => Unit): Unit - - def foreachPartition(f: Iterator[T] => Unit): Unit - - def take(n: Int): Array[T] - - def collect(): Array[T] - - def collectAsList(): java.util.List[T] - - def count(): Long - - def first(): T - - def repartition(numPartitions: Int): DataFrame -} - - -/** - * An internal interface defining data frame related methods in [[DataFrame]]. - * Please use [[DataFrame]] directly, and do NOT use this. - */ -private[sql] trait DataFrameSpecificApi { - - def schema: StructType - - def printSchema(): Unit - - def dtypes: Array[(String, String)] - - def columns: Array[String] - - def head(): Row - - def head(n: Int): Array[Row] - - ///////////////////////////////////////////////////////////////////////////// - // Relational operators - ///////////////////////////////////////////////////////////////////////////// - def apply(colName: String): Column - - def apply(projection: Product): DataFrame - - @scala.annotation.varargs - def select(cols: Column*): DataFrame - - @scala.annotation.varargs - def select(col: String, cols: String*): DataFrame - - def apply(condition: Column): DataFrame - - def as(name: String): DataFrame - - def filter(condition: Column): DataFrame - - def where(condition: Column): DataFrame - - @scala.annotation.varargs - def groupBy(cols: Column*): GroupedDataFrame - - @scala.annotation.varargs - def groupBy(col1: String, cols: String*): GroupedDataFrame - - def agg(exprs: Map[String, String]): DataFrame - - def agg(exprs: java.util.Map[String, String]): DataFrame - - @scala.annotation.varargs - def agg(expr: Column, exprs: Column*): DataFrame - - @scala.annotation.varargs - def sort(sortExpr: Column, sortExprs: Column*): DataFrame - - @scala.annotation.varargs - def sort(sortCol: String, sortCols: String*): DataFrame - - @scala.annotation.varargs - def orderBy(sortExpr: Column, sortExprs: Column*): DataFrame - - @scala.annotation.varargs - def orderBy(sortCol: String, sortCols: String*): DataFrame - - def join(right: DataFrame): DataFrame - - def join(right: DataFrame, joinExprs: Column): DataFrame - - def join(right: DataFrame, joinExprs: Column, joinType: String): DataFrame - - def limit(n: Int): DataFrame - - def unionAll(other: DataFrame): DataFrame - - def intersect(other: DataFrame): DataFrame - - def except(other: DataFrame): DataFrame - - def sample(withReplacement: Boolean, fraction: Double, seed: Long): DataFrame - - def sample(withReplacement: Boolean, fraction: Double): DataFrame - - ///////////////////////////////////////////////////////////////////////////// - // Column mutation - ///////////////////////////////////////////////////////////////////////////// - def addColumn(colName: String, col: Column): DataFrame - - ///////////////////////////////////////////////////////////////////////////// - // I/O and interaction with other frameworks - ///////////////////////////////////////////////////////////////////////////// - - def rdd: RDD[Row] - - def toJavaRDD: JavaRDD[Row] = rdd.toJavaRDD() - - def toJSON: RDD[String] - - def registerTempTable(tableName: String): Unit - - def saveAsParquetFile(path: String): Unit - - @Experimental - def saveAsTable(tableName: String): Unit - - @Experimental - def saveAsTable( - tableName: String, - dataSourceName: String, - option: (String, String), - options: (String, String)*): Unit - - @Experimental - def saveAsTable( - tableName: String, - dataSourceName: String, - options: java.util.Map[String, String]): Unit - - @Experimental - def save(path: String): Unit - - @Experimental - def save( - dataSourceName: String, - option: (String, String), - options: (String, String)*): Unit - - @Experimental - def save( - dataSourceName: String, - options: java.util.Map[String, String]): Unit - - @Experimental - def insertInto(tableName: String, overwrite: Boolean): Unit - - @Experimental - def insertInto(tableName: String): Unit = insertInto(tableName, overwrite = false) - - ///////////////////////////////////////////////////////////////////////////// - // Stat functions - ///////////////////////////////////////////////////////////////////////////// -// def describe(): Unit -// -// def mean(): Unit -// -// def max(): Unit -// -// def min(): Unit -} - - -/** - * An internal interface defining expression APIs for [[DataFrame]]. - * Please use [[DataFrame]] and [[Column]] directly, and do NOT use this. - */ -private[sql] trait ExpressionApi { - - def isComputable: Boolean - - def unary_- : Column - def unary_! : Column - def unary_~ : Column - - def + (other: Column): Column - def + (other: Any): Column - def - (other: Column): Column - def - (other: Any): Column - def * (other: Column): Column - def * (other: Any): Column - def / (other: Column): Column - def / (other: Any): Column - def % (other: Column): Column - def % (other: Any): Column - def & (other: Column): Column - def & (other: Any): Column - def | (other: Column): Column - def | (other: Any): Column - def ^ (other: Column): Column - def ^ (other: Any): Column - - def && (other: Column): Column - def && (other: Boolean): Column - def || (other: Column): Column - def || (other: Boolean): Column - - def < (other: Column): Column - def < (other: Any): Column - def <= (other: Column): Column - def <= (other: Any): Column - def > (other: Column): Column - def > (other: Any): Column - def >= (other: Column): Column - def >= (other: Any): Column - def === (other: Column): Column - def === (other: Any): Column - def equalTo(other: Column): Column - def equalTo(other: Any): Column - def <=> (other: Column): Column - def <=> (other: Any): Column - def !== (other: Column): Column - def !== (other: Any): Column - - @scala.annotation.varargs - def in(list: Column*): Column - - def like(other: String): Column - def rlike(other: String): Column - - def contains(other: Column): Column - def contains(other: Any): Column - def startsWith(other: Column): Column - def startsWith(other: String): Column - def endsWith(other: Column): Column - def endsWith(other: String): Column - - def substr(startPos: Column, len: Column): Column - def substr(startPos: Int, len: Int): Column - - def isNull: Column - def isNotNull: Column - - def getItem(ordinal: Int): Column - def getField(fieldName: String): Column - - def cast(to: DataType): Column - def cast(to: String): Column - - def asc: Column - def desc: Column - - def as(alias: String): Column -} - - -/** - * An internal interface defining aggregation APIs for [[DataFrame]]. - * Please use [[DataFrame]] and [[GroupedDataFrame]] directly, and do NOT use this. - */ -private[sql] trait GroupedDataFrameApi { - - def agg(exprs: Map[String, String]): DataFrame - - @scala.annotation.varargs - def agg(expr: Column, exprs: Column*): DataFrame - - def avg(): DataFrame - - def mean(): DataFrame - - def min(): DataFrame - - def max(): DataFrame - - def sum(): DataFrame - - def count(): DataFrame - - // TODO: Add var, std -} From 523a93523d0f9fc12de1ba2dc1acc360cdbc7027 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Tue, 3 Feb 2015 00:29:23 -0800 Subject: [PATCH 41/52] [SPARK-5551][SQL] Create type alias for SchemaRDD for source backward compatibility Author: Reynold Xin Closes #4327 from rxin/schemarddTypeAlias and squashes the following commits: e5a8ff3 [Reynold Xin] [SPARK-5551][SQL] Create type alias for SchemaRDD for source backward compatibility --- sql/core/src/main/scala/org/apache/spark/sql/package.scala | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/package.scala b/sql/core/src/main/scala/org/apache/spark/sql/package.scala index 7c49b5220d607..02e5b015e8ec2 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/package.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/package.scala @@ -38,4 +38,10 @@ package object sql { */ @DeveloperApi protected[sql] type Strategy = org.apache.spark.sql.catalyst.planning.GenericStrategy[SparkPlan] + + /** + * Type alias for [[DataFrame]]. Kept here for backward source compatibility for Scala. + */ + @deprecated("1.3.0", "use DataFrame") + type SchemaRDD = DataFrame } From bebf4c42bef3e75d31ffce9bfdb331c16f34ddb1 Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Tue, 3 Feb 2015 00:46:04 -0800 Subject: [PATCH 42/52] [SPARK-5549] Define TaskContext interface in Scala. So the interface documentation shows up in ScalaDoc. Author: Reynold Xin Closes #4324 from rxin/TaskContext-scala and squashes the following commits: 2480a17 [Reynold Xin] comment 573756f [Reynold Xin] style fixes and javadoc fixes. 87dd537 [Reynold Xin] [SPARK-5549] Define TaskContext interface in Scala. --- .../java/org/apache/spark/TaskContext.java | 126 ---------------- .../scala/org/apache/spark/TaskContext.scala | 136 ++++++++++++++++++ .../org/apache/spark/TaskContextImpl.scala | 8 +- .../JavaTaskCompletionListenerImpl.java | 3 +- .../spark/JavaTaskContextCompileCheck.java | 41 ++++++ 5 files changed, 183 insertions(+), 131 deletions(-) delete mode 100644 core/src/main/java/org/apache/spark/TaskContext.java create mode 100644 core/src/main/scala/org/apache/spark/TaskContext.scala rename core/src/test/java/{org/apache/spark/util => test/org/apache/spark}/JavaTaskCompletionListenerImpl.java (93%) create mode 100644 core/src/test/java/test/org/apache/spark/JavaTaskContextCompileCheck.java diff --git a/core/src/main/java/org/apache/spark/TaskContext.java b/core/src/main/java/org/apache/spark/TaskContext.java deleted file mode 100644 index 095f9fb94fdf0..0000000000000 --- a/core/src/main/java/org/apache/spark/TaskContext.java +++ /dev/null @@ -1,126 +0,0 @@ -/* - * Licensed to the Apache Software Foundation (ASF) under one or more - * contributor license agreements. See the NOTICE file distributed with - * this work for additional information regarding copyright ownership. - * The ASF licenses this file to You under the Apache License, Version 2.0 - * (the "License"); you may not use this file except in compliance with - * the License. You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -package org.apache.spark; - -import java.io.Serializable; - -import scala.Function0; -import scala.Function1; -import scala.Unit; - -import org.apache.spark.annotation.DeveloperApi; -import org.apache.spark.executor.TaskMetrics; -import org.apache.spark.util.TaskCompletionListener; - -/** - * Contextual information about a task which can be read or mutated during - * execution. To access the TaskContext for a running task use - * TaskContext.get(). - */ -public abstract class TaskContext implements Serializable { - /** - * Return the currently active TaskContext. This can be called inside of - * user functions to access contextual information about running tasks. - */ - public static TaskContext get() { - return taskContext.get(); - } - - private static ThreadLocal taskContext = - new ThreadLocal(); - - static void setTaskContext(TaskContext tc) { - taskContext.set(tc); - } - - static void unset() { - taskContext.remove(); - } - - /** - * Whether the task has completed. - */ - public abstract boolean isCompleted(); - - /** - * Whether the task has been killed. - */ - public abstract boolean isInterrupted(); - - /** @deprecated use {@link #isRunningLocally()} */ - @Deprecated - public abstract boolean runningLocally(); - - public abstract boolean isRunningLocally(); - - /** - * Add a (Java friendly) listener to be executed on task completion. - * This will be called in all situation - success, failure, or cancellation. - * An example use is for HadoopRDD to register a callback to close the input stream. - */ - public abstract TaskContext addTaskCompletionListener(TaskCompletionListener listener); - - /** - * Add a listener in the form of a Scala closure to be executed on task completion. - * This will be called in all situations - success, failure, or cancellation. - * An example use is for HadoopRDD to register a callback to close the input stream. - */ - public abstract TaskContext addTaskCompletionListener(final Function1 f); - - /** - * Add a callback function to be executed on task completion. An example use - * is for HadoopRDD to register a callback to close the input stream. - * Will be called in any situation - success, failure, or cancellation. - * - * @deprecated use {@link #addTaskCompletionListener(scala.Function1)} - * - * @param f Callback function. - */ - @Deprecated - public abstract void addOnCompleteCallback(final Function0 f); - - /** - * The ID of the stage that this task belong to. - */ - public abstract int stageId(); - - /** - * The ID of the RDD partition that is computed by this task. - */ - public abstract int partitionId(); - - /** - * How many times this task has been attempted. The first task attempt will be assigned - * attemptNumber = 0, and subsequent attempts will have increasing attempt numbers. - */ - public abstract int attemptNumber(); - - /** @deprecated use {@link #taskAttemptId()}; it was renamed to avoid ambiguity. */ - @Deprecated - public abstract long attemptId(); - - /** - * An ID that is unique to this task attempt (within the same SparkContext, no two task attempts - * will share the same attempt ID). This is roughly equivalent to Hadoop's TaskAttemptID. - */ - public abstract long taskAttemptId(); - - /** ::DeveloperApi:: */ - @DeveloperApi - public abstract TaskMetrics taskMetrics(); -} diff --git a/core/src/main/scala/org/apache/spark/TaskContext.scala b/core/src/main/scala/org/apache/spark/TaskContext.scala new file mode 100644 index 0000000000000..af9c138f97877 --- /dev/null +++ b/core/src/main/scala/org/apache/spark/TaskContext.scala @@ -0,0 +1,136 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark + +import java.io.Serializable + +import org.apache.spark.annotation.DeveloperApi +import org.apache.spark.executor.TaskMetrics +import org.apache.spark.util.TaskCompletionListener + + +object TaskContext { + /** + * Return the currently active TaskContext. This can be called inside of + * user functions to access contextual information about running tasks. + */ + def get(): TaskContext = taskContext.get + + private val taskContext: ThreadLocal[TaskContext] = new ThreadLocal[TaskContext] + + // Note: protected[spark] instead of private[spark] to prevent the following two from + // showing up in JavaDoc. + /** + * Set the thread local TaskContext. Internal to Spark. + */ + protected[spark] def setTaskContext(tc: TaskContext): Unit = taskContext.set(tc) + + /** + * Unset the thread local TaskContext. Internal to Spark. + */ + protected[spark] def unset(): Unit = taskContext.remove() +} + + +/** + * Contextual information about a task which can be read or mutated during + * execution. To access the TaskContext for a running task, use: + * {{{ + * org.apache.spark.TaskContext.get() + * }}} + */ +abstract class TaskContext extends Serializable { + // Note: TaskContext must NOT define a get method. Otherwise it will prevent the Scala compiler + // from generating a static get method (based on the companion object's get method). + + // Note: Update JavaTaskContextCompileCheck when new methods are added to this class. + + // Note: getters in this class are defined with parentheses to maintain backward compatibility. + + /** + * Returns true if the task has completed. + */ + def isCompleted(): Boolean + + /** + * Returns true if the task has been killed. + */ + def isInterrupted(): Boolean + + @deprecated("1.2.0", "use isRunningLocally") + def runningLocally(): Boolean + + /** + * Returns true if the task is running locally in the driver program. + * @return + */ + def isRunningLocally(): Boolean + + /** + * Adds a (Java friendly) listener to be executed on task completion. + * This will be called in all situation - success, failure, or cancellation. + * An example use is for HadoopRDD to register a callback to close the input stream. + */ + def addTaskCompletionListener(listener: TaskCompletionListener): TaskContext + + /** + * Adds a listener in the form of a Scala closure to be executed on task completion. + * This will be called in all situations - success, failure, or cancellation. + * An example use is for HadoopRDD to register a callback to close the input stream. + */ + def addTaskCompletionListener(f: (TaskContext) => Unit): TaskContext + + /** + * Adds a callback function to be executed on task completion. An example use + * is for HadoopRDD to register a callback to close the input stream. + * Will be called in any situation - success, failure, or cancellation. + * + * @param f Callback function. + */ + @deprecated("1.2.0", "use addTaskCompletionListener") + def addOnCompleteCallback(f: () => Unit) + + /** + * The ID of the stage that this task belong to. + */ + def stageId(): Int + + /** + * The ID of the RDD partition that is computed by this task. + */ + def partitionId(): Int + + /** + * How many times this task has been attempted. The first task attempt will be assigned + * attemptNumber = 0, and subsequent attempts will have increasing attempt numbers. + */ + def attemptNumber(): Int + + @deprecated("1.3.0", "use attemptNumber") + def attemptId(): Long + + /** + * An ID that is unique to this task attempt (within the same SparkContext, no two task attempts + * will share the same attempt ID). This is roughly equivalent to Hadoop's TaskAttemptID. + */ + def taskAttemptId(): Long + + /** ::DeveloperApi:: */ + @DeveloperApi + def taskMetrics(): TaskMetrics +} diff --git a/core/src/main/scala/org/apache/spark/TaskContextImpl.scala b/core/src/main/scala/org/apache/spark/TaskContextImpl.scala index 9bb0c61e441f8..337c8e4ebebcd 100644 --- a/core/src/main/scala/org/apache/spark/TaskContextImpl.scala +++ b/core/src/main/scala/org/apache/spark/TaskContextImpl.scala @@ -33,7 +33,7 @@ private[spark] class TaskContextImpl( with Logging { // For backwards-compatibility; this method is now deprecated as of 1.3.0. - override def attemptId: Long = taskAttemptId + override def attemptId(): Long = taskAttemptId // List of callback functions to execute when the task completes. @transient private val onCompleteCallbacks = new ArrayBuffer[TaskCompletionListener] @@ -87,10 +87,10 @@ private[spark] class TaskContextImpl( interrupted = true } - override def isCompleted: Boolean = completed + override def isCompleted(): Boolean = completed - override def isRunningLocally: Boolean = runningLocally + override def isRunningLocally(): Boolean = runningLocally - override def isInterrupted: Boolean = interrupted + override def isInterrupted(): Boolean = interrupted } diff --git a/core/src/test/java/org/apache/spark/util/JavaTaskCompletionListenerImpl.java b/core/src/test/java/test/org/apache/spark/JavaTaskCompletionListenerImpl.java similarity index 93% rename from core/src/test/java/org/apache/spark/util/JavaTaskCompletionListenerImpl.java rename to core/src/test/java/test/org/apache/spark/JavaTaskCompletionListenerImpl.java index e9ec700e32e15..e38bc38949d7c 100644 --- a/core/src/test/java/org/apache/spark/util/JavaTaskCompletionListenerImpl.java +++ b/core/src/test/java/test/org/apache/spark/JavaTaskCompletionListenerImpl.java @@ -15,9 +15,10 @@ * limitations under the License. */ -package org.apache.spark.util; +package test.org.apache.spark; import org.apache.spark.TaskContext; +import org.apache.spark.util.TaskCompletionListener; /** diff --git a/core/src/test/java/test/org/apache/spark/JavaTaskContextCompileCheck.java b/core/src/test/java/test/org/apache/spark/JavaTaskContextCompileCheck.java new file mode 100644 index 0000000000000..4a918f725dc91 --- /dev/null +++ b/core/src/test/java/test/org/apache/spark/JavaTaskContextCompileCheck.java @@ -0,0 +1,41 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package test.org.apache.spark; + +import org.apache.spark.TaskContext; + +/** + * Something to make sure that TaskContext can be used in Java. + */ +public class JavaTaskContextCompileCheck { + + public static void test() { + TaskContext tc = TaskContext.get(); + + tc.isCompleted(); + tc.isInterrupted(); + tc.isRunningLocally(); + + tc.addTaskCompletionListener(new JavaTaskCompletionListenerImpl()); + + tc.attemptNumber(); + tc.partitionId(); + tc.stageId(); + tc.taskAttemptId(); + } +} From f7948f3f5718b7c4a2d35634815670c4cbbe70fd Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Tue, 3 Feb 2015 10:34:16 -0800 Subject: [PATCH 43/52] Minor: Fix TaskContext deprecated annotations. Made a mistake in https://github.com/apache/spark/pull/4324 Author: Reynold Xin Closes #4333 from rxin/taskcontext-deprecate and squashes the following commits: 61c44ee [Reynold Xin] Minor: Fix TaskContext deprecated annotations. --- core/src/main/scala/org/apache/spark/TaskContext.scala | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/core/src/main/scala/org/apache/spark/TaskContext.scala b/core/src/main/scala/org/apache/spark/TaskContext.scala index af9c138f97877..7d7fe1a446313 100644 --- a/core/src/main/scala/org/apache/spark/TaskContext.scala +++ b/core/src/main/scala/org/apache/spark/TaskContext.scala @@ -72,7 +72,7 @@ abstract class TaskContext extends Serializable { */ def isInterrupted(): Boolean - @deprecated("1.2.0", "use isRunningLocally") + @deprecated("use isRunningLocally", "1.2.0") def runningLocally(): Boolean /** @@ -102,7 +102,7 @@ abstract class TaskContext extends Serializable { * * @param f Callback function. */ - @deprecated("1.2.0", "use addTaskCompletionListener") + @deprecated("use addTaskCompletionListener", "1.2.0") def addOnCompleteCallback(f: () => Unit) /** @@ -121,7 +121,7 @@ abstract class TaskContext extends Serializable { */ def attemptNumber(): Int - @deprecated("1.3.0", "use attemptNumber") + @deprecated("use attemptNumber", "1.3.0") def attemptId(): Long /** From 4204a1271d5bff4dd64f46eed9ee80b30081f9dc Mon Sep 17 00:00:00 2001 From: Reynold Xin Date: Tue, 3 Feb 2015 10:34:56 -0800 Subject: [PATCH 44/52] [SQL] DataFrame API update 1. Added Java-friendly version of the expression operators (i.e. gt, geq) 2. Added JavaDoc for most operators 3. Simplified expression operators by having only one version of the function (that accepts Any). Previously we had two methods for each expression operator, one accepting Any and another accepting Column. 4. agg function now accepts varargs of (String, String). Author: Reynold Xin Closes #4332 from rxin/df-update and squashes the following commits: ab0aa69 [Reynold Xin] Added Java friendly expression methods. Added JavaDoc. For each expression operator, have only one version of the function (that accepts Any). Previously we had two methods for each expression operator, one accepting Any and another accepting Column. 576d07a [Reynold Xin] random commit. --- .../scala/org/apache/spark/sql/Column.scala | 439 ++++++++++-------- .../org/apache/spark/sql/DataFrame.scala | 45 +- .../org/apache/spark/sql/DataFrameImpl.scala | 19 +- .../main/scala/org/apache/spark/sql/Dsl.scala | 87 +++- .../apache/spark/sql/GroupedDataFrame.scala | 46 +- .../apache/spark/sql/IncomputableColumn.scala | 10 +- 6 files changed, 376 insertions(+), 270 deletions(-) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala index 0d6055ff232b1..4aa37219e13a6 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala @@ -65,7 +65,15 @@ trait Column extends DataFrame { */ def isComputable: Boolean - private def constructColumn(other: Column)(newExpr: Expression): Column = { + private def computableCol(baseCol: ComputableColumn, expr: Expression) = { + val plan = Project(Seq(expr match { + case named: NamedExpression => named + case unnamed: Expression => Alias(unnamed, "col")() + }), baseCol.plan) + Column(baseCol.sqlContext, plan, expr) + } + + private def constructColumn(otherValue: Any)(newExpr: Column => Expression): Column = { // Removes all the top level projection and subquery so we can get to the underlying plan. @tailrec def stripProject(p: LogicalPlan): LogicalPlan = p match { case Project(_, child) => stripProject(child) @@ -73,392 +81,423 @@ trait Column extends DataFrame { case _ => p } - def computableCol(baseCol: ComputableColumn, expr: Expression) = { - val plan = Project(Seq(expr match { - case named: NamedExpression => named - case unnamed: Expression => Alias(unnamed, "col")() - }), baseCol.plan) - Column(baseCol.sqlContext, plan, expr) - } - - (this, other) match { + (this, lit(otherValue)) match { case (left: ComputableColumn, right: ComputableColumn) => if (stripProject(left.plan).sameResult(stripProject(right.plan))) { - computableCol(right, newExpr) + computableCol(right, newExpr(right)) } else { - Column(newExpr) + Column(newExpr(right)) } - case (left: ComputableColumn, _) => computableCol(left, newExpr) - case (_, right: ComputableColumn) => computableCol(right, newExpr) - case (_, _) => Column(newExpr) + case (left: ComputableColumn, right) => computableCol(left, newExpr(right)) + case (_, right: ComputableColumn) => computableCol(right, newExpr(right)) + case (_, right) => Column(newExpr(right)) + } + } + + /** Creates a column based on the given expression. */ + private def exprToColumn(newExpr: Expression, computable: Boolean = true): Column = { + this match { + case c: ComputableColumn if computable => computableCol(c, newExpr) + case _ => Column(newExpr) } } /** * Unary minus, i.e. negate the expression. * {{{ - * // Select the amount column and negates all values. + * // Scala: select the amount column and negates all values. * df.select( -df("amount") ) + * + * // Java: + * import static org.apache.spark.sql.Dsl.*; + * df.select( negate(col("amount") ); * }}} */ - def unary_- : Column = constructColumn(null) { UnaryMinus(expr) } + def unary_- : Column = exprToColumn(UnaryMinus(expr)) /** * Bitwise NOT. * {{{ - * // Select the flags column and negate every bit. + * // Scala: select the flags column and negate every bit. * df.select( ~df("flags") ) * }}} */ - def unary_~ : Column = constructColumn(null) { BitwiseNot(expr) } + def unary_~ : Column = exprToColumn(BitwiseNot(expr)) /** * Inversion of boolean expression, i.e. NOT. * {{ - * // Select rows that are not active (isActive === false) - * df.select( !df("isActive") ) + * // Scala: select rows that are not active (isActive === false) + * df.filter( !df("isActive") ) + * + * // Java: + * import static org.apache.spark.sql.Dsl.*; + * df.filter( not(df.col("isActive")) ); * }} */ - def unary_! : Column = constructColumn(null) { Not(expr) } + def unary_! : Column = exprToColumn(Not(expr)) /** - * Equality test with an expression. + * Equality test. * {{{ - * // The following two both select rows in which colA equals colB. - * df.select( df("colA") === df("colB") ) - * df.select( df("colA".equalTo(df("colB")) ) + * // Scala: + * df.filter( df("colA") === df("colB") ) + * + * // Java + * import static org.apache.spark.sql.Dsl.*; + * df.filter( col("colA").equalTo(col("colB")) ); * }}} */ - def === (other: Column): Column = constructColumn(other) { - EqualTo(expr, other.expr) + def === (other: Any): Column = constructColumn(other) { o => + EqualTo(expr, o.expr) } /** - * Equality test with a literal value. - * {{{ - * // The following two both select rows in which colA is "Zaharia". - * df.select( df("colA") === "Zaharia") - * df.select( df("colA".equalTo("Zaharia") ) - * }}} - */ - def === (literal: Any): Column = this === lit(literal) - - /** - * Equality test with an expression. - * {{{ - * // The following two both select rows in which colA equals colB. - * df.select( df("colA") === df("colB") ) - * df.select( df("colA".equalTo(df("colB")) ) - * }}} - */ - def equalTo(other: Column): Column = this === other - - /** - * Equality test with a literal value. + * Equality test. * {{{ - * // The following two both select rows in which colA is "Zaharia". - * df.select( df("colA") === "Zaharia") - * df.select( df("colA".equalTo("Zaharia") ) + * // Scala: + * df.filter( df("colA") === df("colB") ) + * + * // Java + * import static org.apache.spark.sql.Dsl.*; + * df.filter( col("colA").equalTo(col("colB")) ); * }}} */ - def equalTo(literal: Any): Column = this === literal + def equalTo(other: Any): Column = this === other /** - * Inequality test with an expression. + * Inequality test. * {{{ - * // The following two both select rows in which colA does not equal colB. + * // Scala: * df.select( df("colA") !== df("colB") ) * df.select( !(df("colA") === df("colB")) ) + * + * // Java: + * import static org.apache.spark.sql.Dsl.*; + * df.filter( not(col("colA").equalTo(col("colB"))) ); * }}} */ - def !== (other: Column): Column = constructColumn(other) { - Not(EqualTo(expr, other.expr)) + def !== (other: Any): Column = constructColumn(other) { o => + Not(EqualTo(expr, o.expr)) } /** - * Inequality test with a literal value. - * {{{ - * // The following two both select rows in which colA does not equal equal 15. - * df.select( df("colA") !== 15 ) - * df.select( !(df("colA") === 15) ) - * }}} - */ - def !== (literal: Any): Column = this !== lit(literal) - - /** - * Greater than an expression. + * Greater than. * {{{ - * // The following selects people older than 21. - * people.select( people("age") > Literal(21) ) + * // Scala: The following selects people older than 21. + * people.select( people("age") > 21 ) + * + * // Java: + * import static org.apache.spark.sql.Dsl.*; + * people.select( people("age").gt(21) ); * }}} */ - def > (other: Column): Column = constructColumn(other) { - GreaterThan(expr, other.expr) + def > (other: Any): Column = constructColumn(other) { o => + GreaterThan(expr, o.expr) } /** - * Greater than a literal value. + * Greater than. * {{{ - * // The following selects people older than 21. - * people.select( people("age") > 21 ) + * // Scala: The following selects people older than 21. + * people.select( people("age") > lit(21) ) + * + * // Java: + * import static org.apache.spark.sql.Dsl.*; + * people.select( people("age").gt(21) ); * }}} */ - def > (literal: Any): Column = this > lit(literal) + def gt(other: Any): Column = this > other /** - * Less than an expression. + * Less than. * {{{ - * // The following selects people younger than 21. - * people.select( people("age") < Literal(21) ) + * // Scala: The following selects people younger than 21. + * people.select( people("age") < 21 ) + * + * // Java: + * people.select( people("age").lt(21) ); * }}} */ - def < (other: Column): Column = constructColumn(other) { - LessThan(expr, other.expr) + def < (other: Any): Column = constructColumn(other) { o => + LessThan(expr, o.expr) } /** - * Less than a literal value. + * Less than. * {{{ - * // The following selects people younger than 21. + * // Scala: The following selects people younger than 21. * people.select( people("age") < 21 ) + * + * // Java: + * people.select( people("age").lt(21) ); * }}} */ - def < (literal: Any): Column = this < lit(literal) + def lt(other: Any): Column = this < other /** - * Less than or equal to an expression. + * Less than or equal to. * {{{ - * // The following selects people age 21 or younger than 21. - * people.select( people("age") <= Literal(21) ) + * // Scala: The following selects people age 21 or younger than 21. + * people.select( people("age") <= 21 ) + * + * // Java: + * people.select( people("age").leq(21) ); * }}} */ - def <= (other: Column): Column = constructColumn(other) { - LessThanOrEqual(expr, other.expr) + def <= (other: Any): Column = constructColumn(other) { o => + LessThanOrEqual(expr, o.expr) } /** - * Less than or equal to a literal value. + * Less than or equal to. * {{{ - * // The following selects people age 21 or younger than 21. + * // Scala: The following selects people age 21 or younger than 21. * people.select( people("age") <= 21 ) + * + * // Java: + * people.select( people("age").leq(21) ); * }}} */ - def <= (literal: Any): Column = this <= lit(literal) + def leq(other: Any): Column = this <= other /** * Greater than or equal to an expression. * {{{ - * // The following selects people age 21 or older than 21. - * people.select( people("age") >= Literal(21) ) + * // Scala: The following selects people age 21 or older than 21. + * people.select( people("age") >= 21 ) + * + * // Java: + * people.select( people("age").geq(21) ) * }}} */ - def >= (other: Column): Column = constructColumn(other) { - GreaterThanOrEqual(expr, other.expr) + def >= (other: Any): Column = constructColumn(other) { o => + GreaterThanOrEqual(expr, o.expr) } /** - * Greater than or equal to a literal value. + * Greater than or equal to an expression. * {{{ - * // The following selects people age 21 or older than 21. + * // Scala: The following selects people age 21 or older than 21. * people.select( people("age") >= 21 ) + * + * // Java: + * people.select( people("age").geq(21) ) * }}} */ - def >= (literal: Any): Column = this >= lit(literal) + def geq(other: Any): Column = this >= other /** - * Equality test with an expression that is safe for null values. + * Equality test that is safe for null values. */ - def <=> (other: Column): Column = constructColumn(other) { - other match { - case null => EqualNullSafe(expr, lit(null).expr) - case _ => EqualNullSafe(expr, other.expr) - } + def <=> (other: Any): Column = constructColumn(other) { o => + EqualNullSafe(expr, o.expr) } /** - * Equality test with a literal value that is safe for null values. + * Equality test that is safe for null values. */ - def <=> (literal: Any): Column = this <=> lit(literal) + def eqNullSafe(other: Any): Column = this <=> other /** * True if the current expression is null. */ - def isNull: Column = constructColumn(null) { IsNull(expr) } + def isNull: Column = exprToColumn(IsNull(expr)) /** * True if the current expression is NOT null. */ - def isNotNull: Column = constructColumn(null) { IsNotNull(expr) } + def isNotNull: Column = exprToColumn(IsNotNull(expr)) /** - * Boolean OR with an expression. + * Boolean OR. * {{{ - * // The following selects people that are in school or employed. - * people.select( people("inSchool") || people("isEmployed") ) + * // Scala: The following selects people that are in school or employed. + * people.filter( people("inSchool") || people("isEmployed") ) + * + * // Java: + * people.filter( people("inSchool").or(people("isEmployed")) ); * }}} */ - def || (other: Column): Column = constructColumn(other) { - Or(expr, other.expr) + def || (other: Any): Column = constructColumn(other) { o => + Or(expr, o.expr) } /** - * Boolean OR with a literal value. + * Boolean OR. * {{{ - * // The following selects everything. - * people.select( people("inSchool") || true ) + * // Scala: The following selects people that are in school or employed. + * people.filter( people("inSchool") || people("isEmployed") ) + * + * // Java: + * people.filter( people("inSchool").or(people("isEmployed")) ); * }}} */ - def || (literal: Boolean): Column = this || lit(literal) + def or(other: Column): Column = this || other /** - * Boolean AND with an expression. + * Boolean AND. * {{{ - * // The following selects people that are in school and employed at the same time. + * // Scala: The following selects people that are in school and employed at the same time. * people.select( people("inSchool") && people("isEmployed") ) + * + * // Java: + * people.select( people("inSchool").and(people("isEmployed")) ); * }}} */ - def && (other: Column): Column = constructColumn(other) { - And(expr, other.expr) + def && (other: Any): Column = constructColumn(other) { o => + And(expr, o.expr) } /** - * Boolean AND with a literal value. + * Boolean AND. * {{{ - * // The following selects people that are in school. - * people.select( people("inSchool") && true ) + * // Scala: The following selects people that are in school and employed at the same time. + * people.select( people("inSchool") && people("isEmployed") ) + * + * // Java: + * people.select( people("inSchool").and(people("isEmployed")) ); * }}} */ - def && (literal: Boolean): Column = this && lit(literal) + def and(other: Column): Column = this && other /** - * Bitwise AND with an expression. + * Bitwise AND. */ - def & (other: Column): Column = constructColumn(other) { - BitwiseAnd(expr, other.expr) + def & (other: Any): Column = constructColumn(other) { o => + BitwiseAnd(expr, o.expr) } - /** - * Bitwise AND with a literal value. - */ - def & (literal: Any): Column = this & lit(literal) - /** * Bitwise OR with an expression. */ - def | (other: Column): Column = constructColumn(other) { - BitwiseOr(expr, other.expr) + def | (other: Any): Column = constructColumn(other) { o => + BitwiseOr(expr, o.expr) } - /** - * Bitwise OR with a literal value. - */ - def | (literal: Any): Column = this | lit(literal) - /** * Bitwise XOR with an expression. */ - def ^ (other: Column): Column = constructColumn(other) { - BitwiseXor(expr, other.expr) + def ^ (other: Any): Column = constructColumn(other) { o => + BitwiseXor(expr, o.expr) } - /** - * Bitwise XOR with a literal value. - */ - def ^ (literal: Any): Column = this ^ lit(literal) - /** * Sum of this expression and another expression. * {{{ - * // The following selects the sum of a person's height and weight. + * // Scala: The following selects the sum of a person's height and weight. * people.select( people("height") + people("weight") ) + * + * // Java: + * people.select( people("height").plus(people("weight")) ); * }}} */ - def + (other: Column): Column = constructColumn(other) { - Add(expr, other.expr) + def + (other: Any): Column = constructColumn(other) { o => + Add(expr, o.expr) } /** * Sum of this expression and another expression. * {{{ - * // The following selects the sum of a person's height and 10. - * people.select( people("height") + 10 ) + * // Scala: The following selects the sum of a person's height and weight. + * people.select( people("height") + people("weight") ) + * + * // Java: + * people.select( people("height").plus(people("weight")) ); * }}} */ - def + (literal: Any): Column = this + lit(literal) + def plus(other: Any): Column = this + other /** * Subtraction. Subtract the other expression from this expression. * {{{ - * // The following selects the difference between people's height and their weight. + * // Scala: The following selects the difference between people's height and their weight. * people.select( people("height") - people("weight") ) + * + * // Java: + * people.select( people("height").minus(people("weight")) ); * }}} */ - def - (other: Column): Column = constructColumn(other) { - Subtract(expr, other.expr) + def - (other: Any): Column = constructColumn(other) { o => + Subtract(expr, o.expr) } /** - * Subtraction. Subtract a literal value from this expression. + * Subtraction. Subtract the other expression from this expression. * {{{ - * // The following selects a person's height and subtract it by 10. - * people.select( people("height") - 10 ) + * // Scala: The following selects the difference between people's height and their weight. + * people.select( people("height") - people("weight") ) + * + * // Java: + * people.select( people("height").minus(people("weight")) ); * }}} */ - def - (literal: Any): Column = this - lit(literal) + def minus(other: Any): Column = this - other /** * Multiplication of this expression and another expression. * {{{ - * // The following multiplies a person's height by their weight. + * // Scala: The following multiplies a person's height by their weight. * people.select( people("height") * people("weight") ) + * + * // Java: + * people.select( people("height").multiply(people("weight")) ); * }}} */ - def * (other: Column): Column = constructColumn(other) { - Multiply(expr, other.expr) + def * (other: Any): Column = constructColumn(other) { o => + Multiply(expr, o.expr) } /** - * Multiplication this expression and a literal value. + * Multiplication of this expression and another expression. * {{{ - * // The following multiplies a person's height by 10. - * people.select( people("height") * 10 ) + * // Scala: The following multiplies a person's height by their weight. + * people.select( people("height") * people("weight") ) + * + * // Java: + * people.select( people("height").multiply(people("weight")) ); * }}} */ - def * (literal: Any): Column = this * lit(literal) + def multiply(other: Any): Column = this * other /** * Division this expression by another expression. * {{{ - * // The following divides a person's height by their weight. + * // Scala: The following divides a person's height by their weight. * people.select( people("height") / people("weight") ) + * + * // Java: + * people.select( people("height").divide(people("weight")) ); * }}} */ - def / (other: Column): Column = constructColumn(other) { - Divide(expr, other.expr) + def / (other: Any): Column = constructColumn(other) { o => + Divide(expr, o.expr) } /** - * Division this expression by a literal value. + * Division this expression by another expression. * {{{ - * // The following divides a person's height by 10. - * people.select( people("height") / 10 ) + * // Scala: The following divides a person's height by their weight. + * people.select( people("height") / people("weight") ) + * + * // Java: + * people.select( people("height").divide(people("weight")) ); * }}} */ - def / (literal: Any): Column = this / lit(literal) + def divide(other: Any): Column = this / other /** * Modulo (a.k.a. remainder) expression. */ - def % (other: Column): Column = constructColumn(other) { - Remainder(expr, other.expr) + def % (other: Any): Column = constructColumn(other) { o => + Remainder(expr, o.expr) } /** * Modulo (a.k.a. remainder) expression. */ - def % (literal: Any): Column = this % lit(literal) - + def mod(other: Any): Column = this % other /** * A boolean expression that is evaluated to true if the value of this expression is contained @@ -469,27 +508,19 @@ trait Column extends DataFrame { new IncomputableColumn(In(expr, list.map(_.expr))) } - def like(literal: String): Column = constructColumn(null) { - Like(expr, lit(literal).expr) - } + def like(literal: String): Column = exprToColumn(Like(expr, lit(literal).expr)) - def rlike(literal: String): Column = constructColumn(null) { - RLike(expr, lit(literal).expr) - } + def rlike(literal: String): Column = exprToColumn(RLike(expr, lit(literal).expr)) /** * An expression that gets an item at position `ordinal` out of an array. */ - def getItem(ordinal: Int): Column = constructColumn(null) { - GetItem(expr, Literal(ordinal)) - } + def getItem(ordinal: Int): Column = exprToColumn(GetItem(expr, Literal(ordinal))) /** * An expression that gets a field by name in a [[StructField]]. */ - def getField(fieldName: String): Column = constructColumn(null) { - GetField(expr, fieldName) - } + def getField(fieldName: String): Column = exprToColumn(GetField(expr, fieldName)) /** * An expression that returns a substring. @@ -507,20 +538,18 @@ trait Column extends DataFrame { */ def substr(startPos: Int, len: Int): Column = this.substr(lit(startPos), lit(len)) - def contains(other: Column): Column = constructColumn(other) { - Contains(expr, other.expr) + def contains(other: Any): Column = constructColumn(other) { o => + Contains(expr, o.expr) } - def contains(literal: Any): Column = this.contains(lit(literal)) - - def startsWith(other: Column): Column = constructColumn(other) { - StartsWith(expr, other.expr) + def startsWith(other: Column): Column = constructColumn(other) { o => + StartsWith(expr, o.expr) } def startsWith(literal: String): Column = this.startsWith(lit(literal)) - def endsWith(other: Column): Column = constructColumn(other) { - EndsWith(expr, other.expr) + def endsWith(other: Column): Column = constructColumn(other) { o => + EndsWith(expr, o.expr) } def endsWith(literal: String): Column = this.endsWith(lit(literal)) @@ -532,7 +561,7 @@ trait Column extends DataFrame { * df.select($"colA".as("colB")) * }}} */ - override def as(alias: String): Column = constructColumn(null) { Alias(expr, alias)() } + override def as(alias: String): Column = exprToColumn(Alias(expr, alias)()) /** * Casts the column to a different data type. @@ -545,7 +574,7 @@ trait Column extends DataFrame { * df.select(df("colA").cast("int")) * }}} */ - def cast(to: DataType): Column = constructColumn(null) { Cast(expr, to) } + def cast(to: DataType): Column = exprToColumn(Cast(expr, to)) /** * Casts the column to a different data type, using the canonical string representation @@ -556,7 +585,7 @@ trait Column extends DataFrame { * df.select(df("colA").cast("int")) * }}} */ - def cast(to: String): Column = constructColumn(null) { + def cast(to: String): Column = exprToColumn( Cast(expr, to.toLowerCase match { case "string" => StringType case "boolean" => BooleanType @@ -571,11 +600,11 @@ trait Column extends DataFrame { case "timestamp" => TimestampType case _ => throw new RuntimeException(s"""Unsupported cast type: "$to"""") }) - } + ) - def desc: Column = constructColumn(null) { SortOrder(expr, Descending) } + def desc: Column = exprToColumn(SortOrder(expr, Descending), computable = false) - def asc: Column = constructColumn(null) { SortOrder(expr, Ascending) } + def asc: Column = exprToColumn(SortOrder(expr, Ascending), computable = false) } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala index 5920852e8c178..f3bc07ae5238c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrame.scala @@ -25,6 +25,7 @@ import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel import org.apache.spark.sql.catalyst.plans.logical._ import org.apache.spark.sql.types.StructType +import org.apache.spark.util.Utils private[sql] object DataFrame { @@ -138,7 +139,13 @@ trait DataFrame extends RDDApi[Row] { * a full outer join between `df1` and `df2`. * * {{{ + * // Scala: + * import org.apache.spark.sql.dsl._ * df1.join(df2, "outer", $"df1Key" === $"df2Key") + * + * // Java: + * import static org.apache.spark.sql.Dsl.*; + * df1.join(df2, "outer", col("df1Key") === col("df2Key")); * }}} * * @param right Right side of the join. @@ -185,7 +192,12 @@ trait DataFrame extends RDDApi[Row] { /** * Selects column based on the column name and return it as a [[Column]]. */ - def apply(colName: String): Column + def apply(colName: String): Column = col(colName) + + /** + * Selects column based on the column name and return it as a [[Column]]. + */ + def col(colName: String): Column /** * Selects a set of expressions, wrapped in a Product. @@ -297,24 +309,41 @@ trait DataFrame extends RDDApi[Row] { def groupBy(col1: String, cols: String*): GroupedDataFrame /** - * Aggregates on the entire [[DataFrame]] without groups. + * (Scala-specific) Compute aggregates by specifying a map from column name to + * aggregate methods. The resulting [[DataFrame]] will also contain the grouping columns. + * + * The available aggregate methods are `avg`, `max`, `min`, `sum`, `count`. + * {{{ + * // Selects the age of the oldest employee and the aggregate expense for each department + * df.groupBy("department").agg( + * "age" -> "max", + * "expense" -> "sum" + * ) + * }}} + */ + def agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame = { + groupBy().agg(aggExpr, aggExprs :_*) + } + + /** + * (Scala-specific) Aggregates on the entire [[DataFrame]] without groups. * {{ * // df.agg(...) is a shorthand for df.groupBy().agg(...) * df.agg(Map("age" -> "max", "salary" -> "avg")) * df.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) * }} */ - def agg(exprs: Map[String, String]): DataFrame + def agg(exprs: Map[String, String]): DataFrame = groupBy().agg(exprs) /** - * Aggregates on the entire [[DataFrame]] without groups. + * (Java-specific) Aggregates on the entire [[DataFrame]] without groups. * {{ * // df.agg(...) is a shorthand for df.groupBy().agg(...) * df.agg(Map("age" -> "max", "salary" -> "avg")) * df.groupBy().agg(Map("age" -> "max", "salary" -> "avg")) * }} */ - def agg(exprs: java.util.Map[String, String]): DataFrame + def agg(exprs: java.util.Map[String, String]): DataFrame = groupBy().agg(exprs) /** * Aggregates on the entire [[DataFrame]] without groups. @@ -325,7 +354,7 @@ trait DataFrame extends RDDApi[Row] { * }} */ @scala.annotation.varargs - def agg(expr: Column, exprs: Column*): DataFrame + def agg(expr: Column, exprs: Column*): DataFrame = groupBy().agg(expr, exprs :_*) /** * Returns a new [[DataFrame]] by taking the first `n` rows. The difference between this function @@ -366,7 +395,9 @@ trait DataFrame extends RDDApi[Row] { * @param withReplacement Sample with replacement or not. * @param fraction Fraction of rows to generate. */ - def sample(withReplacement: Boolean, fraction: Double): DataFrame + def sample(withReplacement: Boolean, fraction: Double): DataFrame = { + sample(withReplacement, fraction, Utils.random.nextLong) + } ///////////////////////////////////////////////////////////////////////////// diff --git a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala index 49fd131534bb5..0b0623dc1fe75 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/DataFrameImpl.scala @@ -36,7 +36,6 @@ import org.apache.spark.sql.execution.{LogicalRDD, EvaluatePython} import org.apache.spark.sql.json.JsonRDD import org.apache.spark.sql.sources.{ResolvedDataSource, CreateTableUsingAsLogicalPlan} import org.apache.spark.sql.types.{NumericType, StructType} -import org.apache.spark.util.Utils /** @@ -148,7 +147,7 @@ private[sql] class DataFrameImpl protected[sql]( sort(sortExpr, sortExprs :_*) } - override def apply(colName: String): Column = colName match { + override def col(colName: String): Column = colName match { case "*" => Column(ResolvedStar(schema.fieldNames.map(resolve))) case _ => @@ -201,18 +200,6 @@ private[sql] class DataFrameImpl protected[sql]( new GroupedDataFrame(this, colNames.map(colName => resolve(colName))) } - override def agg(exprs: Map[String, String]): DataFrame = { - groupBy().agg(exprs) - } - - override def agg(exprs: java.util.Map[String, String]): DataFrame = { - agg(exprs.toMap) - } - - override def agg(expr: Column, exprs: Column*): DataFrame = { - groupBy().agg(expr, exprs :_*) - } - override def limit(n: Int): DataFrame = { Limit(Literal(n), logicalPlan) } @@ -233,10 +220,6 @@ private[sql] class DataFrameImpl protected[sql]( Sample(fraction, withReplacement, seed, logicalPlan) } - override def sample(withReplacement: Boolean, fraction: Double): DataFrame = { - sample(withReplacement, fraction, Utils.random.nextLong) - } - ///////////////////////////////////////////////////////////////////////////// override def addColumn(colName: String, col: Column): DataFrame = { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Dsl.scala b/sql/core/src/main/scala/org/apache/spark/sql/Dsl.scala index b4279a32ffa21..71365c776d559 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Dsl.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Dsl.scala @@ -36,21 +36,6 @@ object Dsl { /** An implicit conversion that turns a Scala `Symbol` into a [[Column]]. */ implicit def symbolToColumn(s: Symbol): ColumnName = new ColumnName(s.name) - // /** - // * An implicit conversion that turns a RDD of product into a [[DataFrame]]. - // * - // * This method requires an implicit SQLContext in scope. For example: - // * {{{ - // * implicit val sqlContext: SQLContext = ... - // * val rdd: RDD[(Int, String)] = ... - // * rdd.toDataFrame // triggers the implicit here - // * }}} - // */ - // implicit def rddToDataFrame[A <: Product: TypeTag](rdd: RDD[A])(implicit context: SQLContext) - // : DataFrame = { - // context.createDataFrame(rdd) - // } - /** Converts $"col name" into an [[Column]]. */ implicit class StringToColumn(val sc: StringContext) extends AnyVal { def $(args: Any*): ColumnName = { @@ -72,10 +57,16 @@ object Dsl { /** * Creates a [[Column]] of literal value. + * + * The passed in object is returned directly if it is already a [[Column]]. + * If the object is a Scala Symbol, it is converted into a [[Column]] also. + * Otherwise, a new [[Column]] is created to represent the literal value. */ def lit(literal: Any): Column = { - if (literal.isInstanceOf[Symbol]) { - return new ColumnName(literal.asInstanceOf[Symbol].name) + literal match { + case c: Column => return c + case s: Symbol => return new ColumnName(literal.asInstanceOf[Symbol].name) + case _ => // continue } val literalExpr = literal match { @@ -100,27 +91,82 @@ object Dsl { Column(literalExpr) } + ////////////////////////////////////////////////////////////////////////////////////////////// + ////////////////////////////////////////////////////////////////////////////////////////////// + + /** Aggregate function: returns the sum of all values in the expression. */ def sum(e: Column): Column = Sum(e.expr) + + /** Aggregate function: returns the sum of distinct values in the expression. */ def sumDistinct(e: Column): Column = SumDistinct(e.expr) + + /** Aggregate function: returns the number of items in a group. */ def count(e: Column): Column = Count(e.expr) + /** Aggregate function: returns the number of distinct items in a group. */ @scala.annotation.varargs def countDistinct(expr: Column, exprs: Column*): Column = CountDistinct((expr +: exprs).map(_.expr)) + /** Aggregate function: returns the approximate number of distinct items in a group. */ def approxCountDistinct(e: Column): Column = ApproxCountDistinct(e.expr) - def approxCountDistinct(e: Column, rsd: Double): Column = - ApproxCountDistinct(e.expr, rsd) + /** Aggregate function: returns the approximate number of distinct items in a group. */ + def approxCountDistinct(e: Column, rsd: Double): Column = ApproxCountDistinct(e.expr, rsd) + + /** Aggregate function: returns the average of the values in a group. */ def avg(e: Column): Column = Average(e.expr) + + /** Aggregate function: returns the first value in a group. */ def first(e: Column): Column = First(e.expr) + + /** Aggregate function: returns the last value in a group. */ def last(e: Column): Column = Last(e.expr) + + /** Aggregate function: returns the minimum value of the expression in a group. */ def min(e: Column): Column = Min(e.expr) + + /** Aggregate function: returns the maximum value of the expression in a group. */ def max(e: Column): Column = Max(e.expr) + ////////////////////////////////////////////////////////////////////////////////////////////// + ////////////////////////////////////////////////////////////////////////////////////////////// + + /** + * Unary minus, i.e. negate the expression. + * {{{ + * // Select the amount column and negates all values. + * // Scala: + * df.select( -df("amount") ) + * + * // Java: + * df.select( negate(df.col("amount")) ); + * }}} + */ + def negate(e: Column): Column = -e + + /** + * Inversion of boolean expression, i.e. NOT. + * {{ + * // Scala: select rows that are not active (isActive === false) + * df.filter( !df("isActive") ) + * + * // Java: + * df.filter( not(df.col("isActive")) ); + * }} + */ + def not(e: Column): Column = !e + + /** Converts a string expression to upper case. */ def upper(e: Column): Column = Upper(e.expr) + + /** Converts a string exprsesion to lower case. */ def lower(e: Column): Column = Lower(e.expr) + + /** Computes the square root of the specified float value. */ def sqrt(e: Column): Column = Sqrt(e.expr) + + /** Computes the absolutle value. */ def abs(e: Column): Column = Abs(e.expr) /** @@ -131,6 +177,9 @@ object Dsl { cols.toList.toSeq } + ////////////////////////////////////////////////////////////////////////////////////////////// + ////////////////////////////////////////////////////////////////////////////////////////////// + // scalastyle:off /* Use the following code to generate: diff --git a/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala b/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala index 6d0f3e8ce37cc..7963cb03126ba 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/GroupedDataFrame.scala @@ -17,8 +17,6 @@ package org.apache.spark.sql -import java.util.{List => JList} - import scala.language.implicitConversions import scala.collection.JavaConversions._ @@ -59,15 +57,32 @@ class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expr } /** - * Compute aggregates by specifying a map from column name to aggregate methods. The resulting - * [[DataFrame]] will also contain the grouping columns. + * (Scala-specific) Compute aggregates by specifying a map from column name to + * aggregate methods. The resulting [[DataFrame]] will also contain the grouping columns. + * + * The available aggregate methods are `avg`, `max`, `min`, `sum`, `count`. + * {{{ + * // Selects the age of the oldest employee and the aggregate expense for each department + * df.groupBy("department").agg( + * "age" -> "max", + * "expense" -> "sum" + * ) + * }}} + */ + def agg(aggExpr: (String, String), aggExprs: (String, String)*): DataFrame = { + agg((aggExpr +: aggExprs).toMap) + } + + /** + * (Scala-specific) Compute aggregates by specifying a map from column name to + * aggregate methods. The resulting [[DataFrame]] will also contain the grouping columns. * * The available aggregate methods are `avg`, `max`, `min`, `sum`, `count`. * {{{ * // Selects the age of the oldest employee and the aggregate expense for each department * df.groupBy("department").agg(Map( - * "age" -> "max" - * "sum" -> "expense" + * "age" -> "max", + * "expense" -> "sum" * )) * }}} */ @@ -79,16 +94,17 @@ class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expr } /** - * Compute aggregates by specifying a map from column name to aggregate methods. The resulting - * [[DataFrame]] will also contain the grouping columns. + * (Java-specific) Compute aggregates by specifying a map from column name to + * aggregate methods. The resulting [[DataFrame]] will also contain the grouping columns. * * The available aggregate methods are `avg`, `max`, `min`, `sum`, `count`. * {{{ * // Selects the age of the oldest employee and the aggregate expense for each department - * df.groupBy("department").agg(Map( - * "age" -> "max" - * "sum" -> "expense" - * )) + * import com.google.common.collect.ImmutableMap; + * df.groupBy("department").agg(ImmutableMap.builder() + * .put("age", "max") + * .put("expense", "sum") + * .build()); * }}} */ def agg(exprs: java.util.Map[String, String]): DataFrame = { @@ -103,8 +119,14 @@ class GroupedDataFrame protected[sql](df: DataFrameImpl, groupingExprs: Seq[Expr * * {{{ * // Selects the age of the oldest employee and the aggregate expense for each department + * + * // Scala: * import org.apache.spark.sql.dsl._ * df.groupBy("department").agg($"department", max($"age"), sum($"expense")) + * + * // Java: + * import static org.apache.spark.sql.Dsl.*; + * df.groupBy("department").agg(col("department"), max(col("age")), sum(col("expense"))); * }}} */ @scala.annotation.varargs diff --git a/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala b/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala index 9b051de68feb8..ba5c7355b4b70 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/IncomputableColumn.scala @@ -72,7 +72,7 @@ private[sql] class IncomputableColumn(protected[sql] val expr: Expression) exten override def orderBy(sortExpr: Column, sortExprs: Column*): DataFrame = err() - override def apply(colName: String): Column = err() + override def col(colName: String): Column = err() override def apply(projection: Product): DataFrame = err() @@ -90,12 +90,6 @@ private[sql] class IncomputableColumn(protected[sql] val expr: Expression) exten override def groupBy(col1: String, cols: String*): GroupedDataFrame = err() - override def agg(exprs: Map[String, String]): DataFrame = err() - - override def agg(exprs: java.util.Map[String, String]): DataFrame = err() - - override def agg(expr: Column, exprs: Column*): DataFrame = err() - override def limit(n: Int): DataFrame = err() override def unionAll(other: DataFrame): DataFrame = err() @@ -106,8 +100,6 @@ private[sql] class IncomputableColumn(protected[sql] val expr: Expression) exten override def sample(withReplacement: Boolean, fraction: Double, seed: Long): DataFrame = err() - override def sample(withReplacement: Boolean, fraction: Double): DataFrame = err() - ///////////////////////////////////////////////////////////////////////////// override def addColumn(colName: String, col: Column): DataFrame = err() From 0c20ce69fb4bcb1cec5313a9d072826c5588cbbc Mon Sep 17 00:00:00 2001 From: Daoyuan Wang Date: Tue, 3 Feb 2015 12:06:06 -0800 Subject: [PATCH 45/52] [SPARK-4987] [SQL] parquet timestamp type support Author: Daoyuan Wang Closes #3820 from adrian-wang/parquettimestamp and squashes the following commits: b1e2a0d [Daoyuan Wang] fix for nanos 4dadef1 [Daoyuan Wang] fix wrong read 93f438d [Daoyuan Wang] parquet timestamp support --- docs/sql-programming-guide.md | 9 ++ pom.xml | 1 + sql/core/pom.xml | 5 + .../scala/org/apache/spark/sql/SQLConf.scala | 7 ++ .../spark/sql/parquet/ParquetConverter.scala | 94 ++++++++++++++++++- .../spark/sql/parquet/ParquetRelation.scala | 4 +- .../sql/parquet/ParquetTableSupport.scala | 13 ++- .../spark/sql/parquet/ParquetTestData.scala | 8 +- .../spark/sql/parquet/ParquetTypes.scala | 52 ++++++---- .../apache/spark/sql/parquet/newParquet.scala | 3 +- .../sql/parquet/timestamp/NanoTime.scala | 69 ++++++++++++++ 11 files changed, 239 insertions(+), 26 deletions(-) create mode 100644 sql/core/src/main/scala/org/apache/spark/sql/parquet/timestamp/NanoTime.scala diff --git a/docs/sql-programming-guide.md b/docs/sql-programming-guide.md index be8c5c2c1522e..22664b419f5cb 100644 --- a/docs/sql-programming-guide.md +++ b/docs/sql-programming-guide.md @@ -580,6 +580,15 @@ Configuration of Parquet can be done using the `setConf` method on SQLContext or flag tells Spark SQL to interpret binary data as a string to provide compatibility with these systems. + + + + + diff --git a/pom.xml b/pom.xml index e25eced877578..542efbaf06eb0 100644 --- a/pom.xml +++ b/pom.xml @@ -149,6 +149,7 @@ 2.10${scala.version}org.scala-lang + 3.6.31.8.81.1.1.6 diff --git a/sql/core/pom.xml b/sql/core/pom.xml index 1a0c77d282307..03a5c9e7c24a0 100644 --- a/sql/core/pom.xml +++ b/sql/core/pom.xml @@ -66,6 +66,11 @@ jackson-databind2.3.0 + + org.jodd + jodd-core + ${jodd.version} + junit junit diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala index 561a91d2d60ee..7fe17944a734e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLConf.scala @@ -33,6 +33,7 @@ private[spark] object SQLConf { val DIALECT = "spark.sql.dialect" val PARQUET_BINARY_AS_STRING = "spark.sql.parquet.binaryAsString" + val PARQUET_INT96_AS_TIMESTAMP = "spark.sql.parquet.int96AsTimestamp" val PARQUET_CACHE_METADATA = "spark.sql.parquet.cacheMetadata" val PARQUET_COMPRESSION = "spark.sql.parquet.compression.codec" val PARQUET_FILTER_PUSHDOWN_ENABLED = "spark.sql.parquet.filterPushdown" @@ -143,6 +144,12 @@ private[sql] class SQLConf extends Serializable { private[spark] def isParquetBinaryAsString: Boolean = getConf(PARQUET_BINARY_AS_STRING, "false").toBoolean + /** + * When set to true, we always treat INT96Values in Parquet files as timestamp. + */ + private[spark] def isParquetINT96AsTimestamp: Boolean = + getConf(PARQUET_INT96_AS_TIMESTAMP, "true").toBoolean + /** * When set to true, partition pruning for in-memory columnar tables is enabled. */ diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetConverter.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetConverter.scala index 10df8c3310092..d87ddfeabda77 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetConverter.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetConverter.scala @@ -17,8 +17,12 @@ package org.apache.spark.sql.parquet +import java.sql.Timestamp +import java.util.{TimeZone, Calendar} + import scala.collection.mutable.{Buffer, ArrayBuffer, HashMap} +import jodd.datetime.JDateTime import parquet.column.Dictionary import parquet.io.api.{PrimitiveConverter, GroupConverter, Binary, Converter} import parquet.schema.MessageType @@ -26,6 +30,7 @@ import parquet.schema.MessageType import org.apache.spark.sql.catalyst.expressions._ import org.apache.spark.sql.parquet.CatalystConverter.FieldType import org.apache.spark.sql.types._ +import org.apache.spark.sql.parquet.timestamp.NanoTime /** * Collection of converters of Parquet types (group and primitive types) that @@ -123,6 +128,12 @@ private[sql] object CatalystConverter { parent.updateDecimal(fieldIndex, value, d) } } + case TimestampType => { + new CatalystPrimitiveConverter(parent, fieldIndex) { + override def addBinary(value: Binary): Unit = + parent.updateTimestamp(fieldIndex, value) + } + } // All other primitive types use the default converter case ctype: PrimitiveType => { // note: need the type tag here! new CatalystPrimitiveConverter(parent, fieldIndex) @@ -197,9 +208,11 @@ private[parquet] abstract class CatalystConverter extends GroupConverter { protected[parquet] def updateString(fieldIndex: Int, value: String): Unit = updateField(fieldIndex, value) - protected[parquet] def updateDecimal(fieldIndex: Int, value: Binary, ctype: DecimalType): Unit = { + protected[parquet] def updateTimestamp(fieldIndex: Int, value: Binary): Unit = + updateField(fieldIndex, readTimestamp(value)) + + protected[parquet] def updateDecimal(fieldIndex: Int, value: Binary, ctype: DecimalType): Unit = updateField(fieldIndex, readDecimal(new Decimal(), value, ctype)) - } protected[parquet] def isRootConverter: Boolean = parent == null @@ -232,6 +245,13 @@ private[parquet] abstract class CatalystConverter extends GroupConverter { unscaled = (unscaled << (64 - numBits)) >> (64 - numBits) dest.set(unscaled, precision, scale) } + + /** + * Read a Timestamp value from a Parquet Int96Value + */ + protected[parquet] def readTimestamp(value: Binary): Timestamp = { + CatalystTimestampConverter.convertToTimestamp(value) + } } /** @@ -384,6 +404,9 @@ private[parquet] class CatalystPrimitiveRowConverter( override protected[parquet] def updateString(fieldIndex: Int, value: String): Unit = current.setString(fieldIndex, value) + override protected[parquet] def updateTimestamp(fieldIndex: Int, value: Binary): Unit = + current.update(fieldIndex, readTimestamp(value)) + override protected[parquet] def updateDecimal( fieldIndex: Int, value: Binary, ctype: DecimalType): Unit = { var decimal = current(fieldIndex).asInstanceOf[Decimal] @@ -454,6 +477,73 @@ private[parquet] object CatalystArrayConverter { val INITIAL_ARRAY_SIZE = 20 } +private[parquet] object CatalystTimestampConverter { + // TODO most part of this comes from Hive-0.14 + // Hive code might have some issues, so we need to keep an eye on it. + // Also we use NanoTime and Int96Values from parquet-examples. + // We utilize jodd to convert between NanoTime and Timestamp + val parquetTsCalendar = new ThreadLocal[Calendar] + def getCalendar = { + // this is a cache for the calendar instance. + if (parquetTsCalendar.get == null) { + parquetTsCalendar.set(Calendar.getInstance(TimeZone.getTimeZone("GMT"))) + } + parquetTsCalendar.get + } + val NANOS_PER_SECOND: Long = 1000000000 + val SECONDS_PER_MINUTE: Long = 60 + val MINUTES_PER_HOUR: Long = 60 + val NANOS_PER_MILLI: Long = 1000000 + + def convertToTimestamp(value: Binary): Timestamp = { + val nt = NanoTime.fromBinary(value) + val timeOfDayNanos = nt.getTimeOfDayNanos + val julianDay = nt.getJulianDay + val jDateTime = new JDateTime(julianDay.toDouble) + val calendar = getCalendar + calendar.set(Calendar.YEAR, jDateTime.getYear) + calendar.set(Calendar.MONTH, jDateTime.getMonth - 1) + calendar.set(Calendar.DAY_OF_MONTH, jDateTime.getDay) + + // written in command style + var remainder = timeOfDayNanos + calendar.set( + Calendar.HOUR_OF_DAY, + (remainder / (NANOS_PER_SECOND * SECONDS_PER_MINUTE * MINUTES_PER_HOUR)).toInt) + remainder = remainder % (NANOS_PER_SECOND * SECONDS_PER_MINUTE * MINUTES_PER_HOUR) + calendar.set( + Calendar.MINUTE, (remainder / (NANOS_PER_SECOND * SECONDS_PER_MINUTE)).toInt) + remainder = remainder % (NANOS_PER_SECOND * SECONDS_PER_MINUTE) + calendar.set(Calendar.SECOND, (remainder / NANOS_PER_SECOND).toInt) + val nanos = remainder % NANOS_PER_SECOND + val ts = new Timestamp(calendar.getTimeInMillis) + ts.setNanos(nanos.toInt) + ts + } + + def convertFromTimestamp(ts: Timestamp): Binary = { + val calendar = getCalendar + calendar.setTime(ts) + val jDateTime = new JDateTime(calendar.get(Calendar.YEAR), + calendar.get(Calendar.MONTH) + 1, calendar.get(Calendar.DAY_OF_MONTH)) + // Hive-0.14 didn't set hour before get day number, while the day number should + // has something to do with hour, since julian day number grows at 12h GMT + // here we just follow what hive does. + val julianDay = jDateTime.getJulianDayNumber + + val hour = calendar.get(Calendar.HOUR_OF_DAY) + val minute = calendar.get(Calendar.MINUTE) + val second = calendar.get(Calendar.SECOND) + val nanos = ts.getNanos + // Hive-0.14 would use hours directly, that might be wrong, since the day starts + // from 12h in Julian. here we just follow what hive does. + val nanosOfDay = nanos + second * NANOS_PER_SECOND + + minute * NANOS_PER_SECOND * SECONDS_PER_MINUTE + + hour * NANOS_PER_SECOND * SECONDS_PER_MINUTE * MINUTES_PER_HOUR + NanoTime(julianDay, nanosOfDay).toBinary + } +} + /** * A `parquet.io.api.GroupConverter` that converts a single-element groups that * match the characteristics of an array (see diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetRelation.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetRelation.scala index a54485e719dad..b0db9943a506c 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetRelation.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetRelation.scala @@ -65,8 +65,8 @@ private[sql] case class ParquetRelation( ParquetTypesConverter.readSchemaFromFile( new Path(path.split(",").head), conf, - sqlContext.conf.isParquetBinaryAsString) - + sqlContext.conf.isParquetBinaryAsString, + sqlContext.conf.isParquetINT96AsTimestamp) lazy val attributeMap = AttributeMap(output.map(o => o -> o)) override def newInstance() = ParquetRelation(path, conf, sqlContext).asInstanceOf[this.type] diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala index fd63ad8144064..3fb1cc410521e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTableSupport.scala @@ -83,7 +83,8 @@ private[parquet] class RowReadSupport extends ReadSupport[Row] with Logging { // TODO: Why it can be null? if (schema == null) { log.debug("falling back to Parquet read schema") - schema = ParquetTypesConverter.convertToAttributes(parquetSchema, false) + schema = ParquetTypesConverter.convertToAttributes( + parquetSchema, false, true) } log.debug(s"list of attributes that will be read: $schema") new RowRecordMaterializer(parquetSchema, schema) @@ -184,12 +185,12 @@ private[parquet] class RowWriteSupport extends WriteSupport[Row] with Logging { case t @ StructType(_) => writeStruct( t, value.asInstanceOf[CatalystConverter.StructScalaType[_]]) - case _ => writePrimitive(schema.asInstanceOf[PrimitiveType], value) + case _ => writePrimitive(schema.asInstanceOf[NativeType], value) } } } - private[parquet] def writePrimitive(schema: PrimitiveType, value: Any): Unit = { + private[parquet] def writePrimitive(schema: DataType, value: Any): Unit = { if (value != null) { schema match { case StringType => writer.addBinary( @@ -202,6 +203,7 @@ private[parquet] class RowWriteSupport extends WriteSupport[Row] with Logging { case IntegerType => writer.addInteger(value.asInstanceOf[Int]) case ShortType => writer.addInteger(value.asInstanceOf[Short]) case LongType => writer.addLong(value.asInstanceOf[Long]) + case TimestampType => writeTimestamp(value.asInstanceOf[java.sql.Timestamp]) case ByteType => writer.addInteger(value.asInstanceOf[Byte]) case DoubleType => writer.addDouble(value.asInstanceOf[Double]) case FloatType => writer.addFloat(value.asInstanceOf[Float]) @@ -307,6 +309,10 @@ private[parquet] class RowWriteSupport extends WriteSupport[Row] with Logging { writer.addBinary(Binary.fromByteArray(scratchBytes, 0, numBytes)) } + private[parquet] def writeTimestamp(ts: java.sql.Timestamp): Unit = { + val binaryNanoTime = CatalystTimestampConverter.convertFromTimestamp(ts) + writer.addBinary(binaryNanoTime) + } } // Optimized for non-nested rows @@ -351,6 +357,7 @@ private[parquet] class MutableRowWriteSupport extends RowWriteSupport { case DoubleType => writer.addDouble(record.getDouble(index)) case FloatType => writer.addFloat(record.getFloat(index)) case BooleanType => writer.addBoolean(record.getBoolean(index)) + case TimestampType => writeTimestamp(record(index).asInstanceOf[java.sql.Timestamp]) case d: DecimalType => if (d.precisionInfo == None || d.precisionInfo.get.precision > 18) { sys.error(s"Unsupported datatype $d, cannot write to consumer") diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala index d5993656e0225..e4a10aa2ae6c3 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTestData.scala @@ -25,7 +25,7 @@ import org.apache.hadoop.mapreduce.Job import org.apache.spark.sql.test.TestSQLContext import parquet.example.data.{GroupWriter, Group} -import parquet.example.data.simple.SimpleGroup +import parquet.example.data.simple.{NanoTime, SimpleGroup} import parquet.hadoop.{ParquetReader, ParquetFileReader, ParquetWriter} import parquet.hadoop.api.WriteSupport import parquet.hadoop.api.WriteSupport.WriteContext @@ -63,6 +63,7 @@ private[sql] object ParquetTestData { optional int64 mylong; optional float myfloat; optional double mydouble; + optional int96 mytimestamp; }""" // field names for test assertion error messages @@ -72,7 +73,8 @@ private[sql] object ParquetTestData { "mystring:String", "mylong:Long", "myfloat:Float", - "mydouble:Double" + "mydouble:Double", + "mytimestamp:Timestamp" ) val subTestSchema = @@ -98,6 +100,7 @@ private[sql] object ParquetTestData { optional int64 myoptlong; optional float myoptfloat; optional double myoptdouble; + optional int96 mytimestamp; } """ @@ -236,6 +239,7 @@ private[sql] object ParquetTestData { record.add(3, i.toLong << 33) record.add(4, 2.5F) record.add(5, 4.5D) + record.add(6, new NanoTime(1,2)) writer.write(record) } writer.close() diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTypes.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTypes.scala index 6d8c682ccced8..f1d4ff2387709 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTypes.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/ParquetTypes.scala @@ -54,7 +54,8 @@ private[parquet] object ParquetTypesConverter extends Logging { def toPrimitiveDataType( parquetType: ParquetPrimitiveType, - binaryAsString: Boolean): DataType = { + binaryAsString: Boolean, + int96AsTimestamp: Boolean): DataType = { val originalType = parquetType.getOriginalType val decimalInfo = parquetType.getDecimalMetadata parquetType.getPrimitiveTypeName match { @@ -66,6 +67,7 @@ private[parquet] object ParquetTypesConverter extends Logging { case ParquetPrimitiveTypeName.FLOAT => FloatType case ParquetPrimitiveTypeName.INT32 => IntegerType case ParquetPrimitiveTypeName.INT64 => LongType + case ParquetPrimitiveTypeName.INT96 if int96AsTimestamp => TimestampType case ParquetPrimitiveTypeName.INT96 => // TODO: add BigInteger type? TODO(andre) use DecimalType instead???? sys.error("Potential loss of precision: cannot convert INT96") @@ -103,7 +105,9 @@ private[parquet] object ParquetTypesConverter extends Logging { * @param parquetType The type to convert. * @return The corresponding Catalyst type. */ - def toDataType(parquetType: ParquetType, isBinaryAsString: Boolean): DataType = { + def toDataType(parquetType: ParquetType, + isBinaryAsString: Boolean, + isInt96AsTimestamp: Boolean): DataType = { def correspondsToMap(groupType: ParquetGroupType): Boolean = { if (groupType.getFieldCount != 1 || groupType.getFields.apply(0).isPrimitive) { false @@ -125,7 +129,7 @@ private[parquet] object ParquetTypesConverter extends Logging { } if (parquetType.isPrimitive) { - toPrimitiveDataType(parquetType.asPrimitiveType, isBinaryAsString) + toPrimitiveDataType(parquetType.asPrimitiveType, isBinaryAsString, isInt96AsTimestamp) } else { val groupType = parquetType.asGroupType() parquetType.getOriginalType match { @@ -137,9 +141,12 @@ private[parquet] object ParquetTypesConverter extends Logging { if (field.getName == CatalystConverter.ARRAY_CONTAINS_NULL_BAG_SCHEMA_NAME) { val bag = field.asGroupType() assert(bag.getFieldCount == 1) - ArrayType(toDataType(bag.getFields.apply(0), isBinaryAsString), containsNull = true) + ArrayType( + toDataType(bag.getFields.apply(0), isBinaryAsString, isInt96AsTimestamp), + containsNull = true) } else { - ArrayType(toDataType(field, isBinaryAsString), containsNull = false) + ArrayType( + toDataType(field, isBinaryAsString, isInt96AsTimestamp), containsNull = false) } } case ParquetOriginalType.MAP => { @@ -152,8 +159,10 @@ private[parquet] object ParquetTypesConverter extends Logging { "Parquet Map type malformatted: nested group should have 2 (key, value) fields!") assert(keyValueGroup.getFields.apply(0).getRepetition == Repetition.REQUIRED) - val keyType = toDataType(keyValueGroup.getFields.apply(0), isBinaryAsString) - val valueType = toDataType(keyValueGroup.getFields.apply(1), isBinaryAsString) + val keyType = + toDataType(keyValueGroup.getFields.apply(0), isBinaryAsString, isInt96AsTimestamp) + val valueType = + toDataType(keyValueGroup.getFields.apply(1), isBinaryAsString, isInt96AsTimestamp) MapType(keyType, valueType, keyValueGroup.getFields.apply(1).getRepetition != Repetition.REQUIRED) } @@ -163,8 +172,10 @@ private[parquet] object ParquetTypesConverter extends Logging { val keyValueGroup = groupType.getFields.apply(0).asGroupType() assert(keyValueGroup.getFields.apply(0).getRepetition == Repetition.REQUIRED) - val keyType = toDataType(keyValueGroup.getFields.apply(0), isBinaryAsString) - val valueType = toDataType(keyValueGroup.getFields.apply(1), isBinaryAsString) + val keyType = + toDataType(keyValueGroup.getFields.apply(0), isBinaryAsString, isInt96AsTimestamp) + val valueType = + toDataType(keyValueGroup.getFields.apply(1), isBinaryAsString, isInt96AsTimestamp) MapType(keyType, valueType, keyValueGroup.getFields.apply(1).getRepetition != Repetition.REQUIRED) } else if (correspondsToArray(groupType)) { // ArrayType @@ -172,16 +183,19 @@ private[parquet] object ParquetTypesConverter extends Logging { if (field.getName == CatalystConverter.ARRAY_CONTAINS_NULL_BAG_SCHEMA_NAME) { val bag = field.asGroupType() assert(bag.getFieldCount == 1) - ArrayType(toDataType(bag.getFields.apply(0), isBinaryAsString), containsNull = true) + ArrayType( + toDataType(bag.getFields.apply(0), isBinaryAsString, isInt96AsTimestamp), + containsNull = true) } else { - ArrayType(toDataType(field, isBinaryAsString), containsNull = false) + ArrayType( + toDataType(field, isBinaryAsString, isInt96AsTimestamp), containsNull = false) } } else { // everything else: StructType val fields = groupType .getFields .map(ptype => new StructField( ptype.getName, - toDataType(ptype, isBinaryAsString), + toDataType(ptype, isBinaryAsString, isInt96AsTimestamp), ptype.getRepetition != Repetition.REQUIRED)) StructType(fields) } @@ -210,6 +224,7 @@ private[parquet] object ParquetTypesConverter extends Logging { case ShortType => Some(ParquetTypeInfo(ParquetPrimitiveTypeName.INT32)) case ByteType => Some(ParquetTypeInfo(ParquetPrimitiveTypeName.INT32)) case LongType => Some(ParquetTypeInfo(ParquetPrimitiveTypeName.INT64)) + case TimestampType => Some(ParquetTypeInfo(ParquetPrimitiveTypeName.INT96)) case DecimalType.Fixed(precision, scale) if precision <= 18 => // TODO: for now, our writer only supports decimals that fit in a Long Some(ParquetTypeInfo(ParquetPrimitiveTypeName.FIXED_LEN_BYTE_ARRAY, @@ -345,7 +360,9 @@ private[parquet] object ParquetTypesConverter extends Logging { } } - def convertToAttributes(parquetSchema: ParquetType, isBinaryAsString: Boolean): Seq[Attribute] = { + def convertToAttributes(parquetSchema: ParquetType, + isBinaryAsString: Boolean, + isInt96AsTimestamp: Boolean): Seq[Attribute] = { parquetSchema .asGroupType() .getFields @@ -353,7 +370,7 @@ private[parquet] object ParquetTypesConverter extends Logging { field => new AttributeReference( field.getName, - toDataType(field, isBinaryAsString), + toDataType(field, isBinaryAsString, isInt96AsTimestamp), field.getRepetition != Repetition.REQUIRED)()) } @@ -476,7 +493,8 @@ private[parquet] object ParquetTypesConverter extends Logging { def readSchemaFromFile( origPath: Path, conf: Option[Configuration], - isBinaryAsString: Boolean): Seq[Attribute] = { + isBinaryAsString: Boolean, + isInt96AsTimestamp: Boolean): Seq[Attribute] = { val keyValueMetadata: java.util.Map[String, String] = readMetaData(origPath, conf) .getFileMetaData @@ -485,7 +503,9 @@ private[parquet] object ParquetTypesConverter extends Logging { convertFromString(keyValueMetadata.get(RowReadSupport.SPARK_METADATA_KEY)) } else { val attributes = convertToAttributes( - readMetaData(origPath, conf).getFileMetaData.getSchema, isBinaryAsString) + readMetaData(origPath, conf).getFileMetaData.getSchema, + isBinaryAsString, + isInt96AsTimestamp) log.info(s"Falling back to schema conversion from Parquet types; result: $attributes") attributes } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala index 1e794cad73936..179c0d6b22239 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/newParquet.scala @@ -136,7 +136,8 @@ case class ParquetRelation2(path: String)(@transient val sqlContext: SQLContext) ParquetTypesConverter.readSchemaFromFile( partitions.head.files.head.getPath, Some(sparkContext.hadoopConfiguration), - sqlContext.conf.isParquetBinaryAsString)) + sqlContext.conf.isParquetBinaryAsString, + sqlContext.conf.isParquetINT96AsTimestamp)) val dataIncludesKey = partitionKeys.headOption.map(dataSchema.fieldNames.contains(_)).getOrElse(true) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/parquet/timestamp/NanoTime.scala b/sql/core/src/main/scala/org/apache/spark/sql/parquet/timestamp/NanoTime.scala new file mode 100644 index 0000000000000..887161684429f --- /dev/null +++ b/sql/core/src/main/scala/org/apache/spark/sql/parquet/timestamp/NanoTime.scala @@ -0,0 +1,69 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.parquet.timestamp + +import java.nio.{ByteBuffer, ByteOrder} + +import parquet.Preconditions +import parquet.io.api.{Binary, RecordConsumer} + +private[parquet] class NanoTime extends Serializable { + private var julianDay = 0 + private var timeOfDayNanos = 0L + + def set(julianDay: Int, timeOfDayNanos: Long) = { + this.julianDay = julianDay + this.timeOfDayNanos = timeOfDayNanos + this + } + + def getJulianDay: Int = julianDay + + def getTimeOfDayNanos: Long = timeOfDayNanos + + def toBinary: Binary = { + val buf = ByteBuffer.allocate(12) + buf.order(ByteOrder.LITTLE_ENDIAN) + buf.putLong(timeOfDayNanos) + buf.putInt(julianDay) + buf.flip() + Binary.fromByteBuffer(buf) + } + + def writeValue(recordConsumer: RecordConsumer) { + recordConsumer.addBinary(toBinary) + } + + override def toString = + "NanoTime{julianDay=" + julianDay + ", timeOfDayNanos=" + timeOfDayNanos + "}" +} + +object NanoTime { + def fromBinary(bytes: Binary): NanoTime = { + Preconditions.checkArgument(bytes.length() == 12, "Must be 12 bytes") + val buf = bytes.toByteBuffer + buf.order(ByteOrder.LITTLE_ENDIAN) + val timeOfDayNanos = buf.getLong + val julianDay = buf.getInt + new NanoTime().set(julianDay, timeOfDayNanos) + } + + def apply(julianDay: Int, timeOfDayNanos: Long): NanoTime = { + new NanoTime().set(julianDay, timeOfDayNanos) + } +} From ca7a6cdff004eb4605fd223e127b4a46a0a214e7 Mon Sep 17 00:00:00 2001 From: Cheng Hao Date: Tue, 3 Feb 2015 12:12:26 -0800 Subject: [PATCH 46/52] [SPARK-5550] [SQL] Support the case insensitive for UDF SQL in HiveContext, should be case insensitive, however, the following query will fail. ```scala udf.register("random0", () => { Math.random()}) assert(sql("SELECT RANDOM0() FROM src LIMIT 1").head().getDouble(0) >= 0.0) ``` Author: Cheng Hao Closes #4326 from chenghao-intel/udf_case_sensitive and squashes the following commits: 485cf66 [Cheng Hao] Support the case insensitive for UDF --- .../catalyst/analysis/FunctionRegistry.scala | 36 ++++++++++++++++--- .../org/apache/spark/sql/SQLContext.scala | 2 +- .../apache/spark/sql/hive/HiveContext.scala | 4 ++- .../org/apache/spark/sql/hive/UDFSuite.scala | 36 +++++++++++++++++++ 4 files changed, 72 insertions(+), 6 deletions(-) create mode 100644 sql/hive/src/test/scala/org/apache/spark/sql/hive/UDFSuite.scala diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/FunctionRegistry.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/FunctionRegistry.scala index 760c49fbca4a5..9f334f6d42ad1 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/FunctionRegistry.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/FunctionRegistry.scala @@ -27,23 +27,25 @@ trait FunctionRegistry { def registerFunction(name: String, builder: FunctionBuilder): Unit def lookupFunction(name: String, children: Seq[Expression]): Expression + + def caseSensitive: Boolean } trait OverrideFunctionRegistry extends FunctionRegistry { - val functionBuilders = new mutable.HashMap[String, FunctionBuilder]() + val functionBuilders = StringKeyHashMap[FunctionBuilder](caseSensitive) def registerFunction(name: String, builder: FunctionBuilder) = { functionBuilders.put(name, builder) } abstract override def lookupFunction(name: String, children: Seq[Expression]): Expression = { - functionBuilders.get(name).map(_(children)).getOrElse(super.lookupFunction(name,children)) + functionBuilders.get(name).map(_(children)).getOrElse(super.lookupFunction(name, children)) } } -class SimpleFunctionRegistry extends FunctionRegistry { - val functionBuilders = new mutable.HashMap[String, FunctionBuilder]() +class SimpleFunctionRegistry(val caseSensitive: Boolean) extends FunctionRegistry { + val functionBuilders = StringKeyHashMap[FunctionBuilder](caseSensitive) def registerFunction(name: String, builder: FunctionBuilder) = { functionBuilders.put(name, builder) @@ -64,4 +66,30 @@ object EmptyFunctionRegistry extends FunctionRegistry { def lookupFunction(name: String, children: Seq[Expression]): Expression = { throw new UnsupportedOperationException } + + def caseSensitive: Boolean = ??? +} + +/** + * Build a map with String type of key, and it also supports either key case + * sensitive or insensitive. + * TODO move this into util folder? + */ +object StringKeyHashMap { + def apply[T](caseSensitive: Boolean) = caseSensitive match { + case false => new StringKeyHashMap[T](_.toLowerCase) + case true => new StringKeyHashMap[T](identity) + } +} + +class StringKeyHashMap[T](normalizer: (String) => String) { + private val base = new collection.mutable.HashMap[String, T]() + + def apply(key: String): T = base(normalizer(key)) + + def get(key: String): Option[T] = base.get(normalizer(key)) + def put(key: String, value: T): Option[T] = base.put(normalizer(key), value) + def remove(key: String): Option[T] = base.remove(normalizer(key)) + def iterator: Iterator[(String, T)] = base.toIterator } + diff --git a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala index a741d0031d155..2697e780c05c6 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala @@ -87,7 +87,7 @@ class SQLContext(@transient val sparkContext: SparkContext) protected[sql] lazy val catalog: Catalog = new SimpleCatalog(true) @transient - protected[sql] lazy val functionRegistry: FunctionRegistry = new SimpleFunctionRegistry + protected[sql] lazy val functionRegistry: FunctionRegistry = new SimpleFunctionRegistry(true) @transient protected[sql] lazy val analyzer: Analyzer = diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala index f6d9027f90a99..50f266a4bc29e 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala @@ -311,7 +311,9 @@ class HiveContext(sc: SparkContext) extends SQLContext(sc) { // Note that HiveUDFs will be overridden by functions registered in this context. @transient override protected[sql] lazy val functionRegistry = - new HiveFunctionRegistry with OverrideFunctionRegistry + new HiveFunctionRegistry with OverrideFunctionRegistry { + def caseSensitive = false + } /* An analyzer that uses the Hive metastore. */ @transient diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/UDFSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/UDFSuite.scala new file mode 100644 index 0000000000000..85b6bc93d7122 --- /dev/null +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/UDFSuite.scala @@ -0,0 +1,36 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.hive + +/* Implicits */ + +import org.apache.spark.sql.QueryTest +import org.apache.spark.sql.hive.test.TestHive._ + +case class FunctionResult(f1: String, f2: String) + +class UDFSuite extends QueryTest { + test("UDF case insensitive") { + udf.register("random0", () => { Math.random()}) + udf.register("RANDOM1", () => { Math.random()}) + udf.register("strlenScala", (_: String).length + (_:Int)) + assert(sql("SELECT RANDOM0() FROM src LIMIT 1").head().getDouble(0) >= 0.0) + assert(sql("SELECT RANDOm1() FROM src LIMIT 1").head().getDouble(0) >= 0.0) + assert(sql("SELECT strlenscala('test', 1) FROM src LIMIT 1").head().getInt(0) === 5) + } +} From 5adbb39482631998dbfe4a1da88f6e75b30fb5ac Mon Sep 17 00:00:00 2001 From: wangfei Date: Tue, 3 Feb 2015 12:16:31 -0800 Subject: [PATCH 47/52] [SPARK-5383][SQL] Support alias for udtfs Add support for alias of udtfs, such as ``` select stack(2, key, value, key, value) as (a, b) from src limit 5; select a, b from (select stack(2, key, value, key, value) as (a, b) from src) t limit 5 ``` Author: wangfei Author: scwf Author: Fei Wang Closes #4186 from scwf/multi-alias-names and squashes the following commits: c35e922 [wangfei] fix conflicts adc8311 [wangfei] minor format fix 2783aed [wangfei] convert it to a Generate instead of leaving it inside of a Project clause a87668a [wangfei] minor improvement b25d9b3 [wangfei] resolve conflicts d38f041 [wangfei] style fix 8cfcebf [wangfei] minor improvement 12a239e [wangfei] fix test case 050177f [wangfei] added extendedCheckRules 3d69329 [wangfei] added CheckMultiAlias to analyzer 324150d [wangfei] added multi alias node 74f5a81 [Fei Wang] imports order fix 5bc3f59 [scwf] style fix 3daec28 [scwf] support alias for udfs with multi output columns --- .../sql/catalyst/analysis/Analyzer.scala | 5 ++- .../sql/catalyst/analysis/unresolved.scala | 38 +++++++++++++++++++ .../expressions/namedExpressions.scala | 2 +- .../apache/spark/sql/hive/HiveContext.scala | 1 + .../org/apache/spark/sql/hive/HiveQl.scala | 16 ++++++-- .../org/apache/spark/sql/hive/hiveUdfs.scala | 19 +++++++++- .../sql/hive/execution/HiveQuerySuite.scala | 12 ++++++ 7 files changed, 85 insertions(+), 8 deletions(-) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala index cefd70acf3931..ae7f7b9feb5fd 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/Analyzer.scala @@ -69,8 +69,9 @@ class Analyzer(catalog: Catalog, typeCoercionRules ++ extendedRules : _*), Batch("Check Analysis", Once, - CheckResolution, - CheckAggregation), + CheckResolution :: + CheckAggregation :: + Nil: _*), Batch("AnalysisOperators", fixedPoint, EliminateAnalysisOperators) ) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/unresolved.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/unresolved.scala index 66060289189ef..f35921e2a772c 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/unresolved.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/analysis/unresolved.scala @@ -128,6 +128,44 @@ case class UnresolvedStar(table: Option[String]) extends Star { override def toString = table.map(_ + ".").getOrElse("") + "*" } +/** + * Used to assign new names to Generator's output, such as hive udtf. + * For example the SQL expression "stack(2, key, value, key, value) as (a, b)" could be represented + * as follows: + * MultiAlias(stack_function, Seq(a, b)) + + * @param child the computation being performed + * @param names the names to be associated with each output of computing [[child]]. + */ +case class MultiAlias(child: Expression, names: Seq[String]) + extends Attribute with trees.UnaryNode[Expression] { + + override def name = throw new UnresolvedException(this, "name") + + override def exprId = throw new UnresolvedException(this, "exprId") + + override def dataType = throw new UnresolvedException(this, "dataType") + + override def nullable = throw new UnresolvedException(this, "nullable") + + override def qualifiers = throw new UnresolvedException(this, "qualifiers") + + override lazy val resolved = false + + override def newInstance = this + + override def withNullability(newNullability: Boolean) = this + + override def withQualifiers(newQualifiers: Seq[String]) = this + + override def withName(newName: String) = this + + override def eval(input: Row = null): EvaluatedType = + throw new TreeNodeException(this, s"No function to evaluate expression. type: ${this.nodeName}") + + override def toString: String = s"$child AS $names" + +} /** * Represents all the resolved input attributes to a given relational operator. This is used diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/namedExpressions.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/namedExpressions.scala index f388cd5972bac..e6ab1fd8d7939 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/namedExpressions.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/namedExpressions.scala @@ -75,7 +75,7 @@ abstract class Attribute extends NamedExpression { /** * Used to assign a new name to a computation. * For example the SQL expression "1 + 1 AS a" could be represented as follows: - * Alias(Add(Literal(1), Literal(1), "a")() + * Alias(Add(Literal(1), Literal(1)), "a")() * * Note that exprId and qualifiers are in a separate parameter list because * we only pattern match on child and name. diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala index 50f266a4bc29e..922e61f0be12f 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala @@ -323,6 +323,7 @@ class HiveContext(sc: SparkContext) extends SQLContext(sc) { catalog.CreateTables :: catalog.PreInsertionCasts :: ExtractPythonUdfs :: + ResolveUdtfsAlias :: Nil } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala index ab305e1f82a55..74ca0d4ed5bb1 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveQl.scala @@ -18,6 +18,7 @@ package org.apache.spark.sql.hive import java.sql.Date +import scala.collection.mutable.ArrayBuffer import org.apache.hadoop.hive.conf.HiveConf import org.apache.hadoop.hive.ql.Context @@ -968,14 +969,21 @@ https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2C } protected def selExprNodeToExpr(node: Node): Option[Expression] = node match { - case Token("TOK_SELEXPR", - e :: Nil) => + case Token("TOK_SELEXPR", e :: Nil) => Some(nodeToExpr(e)) - case Token("TOK_SELEXPR", - e :: Token(alias, Nil) :: Nil) => + case Token("TOK_SELEXPR", e :: Token(alias, Nil) :: Nil) => Some(Alias(nodeToExpr(e), cleanIdentifier(alias))()) + case Token("TOK_SELEXPR", e :: aliasChildren) => + var aliasNames = ArrayBuffer[String]() + aliasChildren.foreach { _ match { + case Token(name, Nil) => aliasNames += cleanIdentifier(name) + case _ => + } + } + Some(MultiAlias(nodeToExpr(e), aliasNames)) + /* Hints are ignored */ case Token("TOK_HINTLIST", _) => None diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUdfs.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUdfs.scala index 76d2140372197..34c21c11761ae 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUdfs.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/hiveUdfs.scala @@ -33,8 +33,11 @@ import org.apache.hadoop.hive.ql.udf.generic.GenericUDF._ import org.apache.spark.Logging import org.apache.spark.sql.catalyst.analysis import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.catalyst.plans.logical.{Generate, Project, LogicalPlan} +import org.apache.spark.sql.catalyst.rules.Rule import org.apache.spark.sql.types._ -import org.apache.spark.util.Utils.getContextOrSparkClassLoader +import org.apache.spark.sql.catalyst.analysis.MultiAlias +import org.apache.spark.sql.catalyst.errors.TreeNodeException /* Implicit conversions */ import scala.collection.JavaConversions._ @@ -321,6 +324,20 @@ private[hive] case class HiveGenericUdtf( override def toString = s"$nodeName#${funcWrapper.functionClassName}(${children.mkString(",")})" } +/** + * Resolve Udtfs Alias. + */ +private[spark] object ResolveUdtfsAlias extends Rule[LogicalPlan] { + def apply(plan: LogicalPlan) = plan transform { + case p @ Project(projectList, _) + if projectList.exists(_.isInstanceOf[MultiAlias]) && projectList.size != 1 => + throw new TreeNodeException(p, "only single Generator supported for SELECT clause") + + case Project(Seq(MultiAlias(udtf @ HiveGenericUdtf(_, _, _), names)), child) => + Generate(udtf.copy(aliasNames = names), join = false, outer = false, None, child) + } +} + private[hive] case class HiveUdafFunction( funcWrapper: HiveFunctionWrapper, exprs: Seq[Expression], diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala index 4c53b10ba96e9..8e84d279fe119 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala @@ -583,6 +583,18 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { assert(sql("select key from src having key > 490").collect().size < 100) } + test("SPARK-5383 alias for udfs with multi output columns") { + assert( + sql("select stack(2, key, value, key, value) as (a, b) from src limit 5") + .collect() + .size == 5) + + assert( + sql("select a, b from (select stack(2, key, value, key, value) as (a, b) from src) t limit 5") + .collect() + .size == 5) + } + test("SPARK-5367: resolve star expression in udf") { assert(sql("select concat(*) from src limit 5").collect().size == 5) assert(sql("select array(*) from src limit 5").collect().size == 5) From db821ed2ededf6ce79b838c77a9c10bed2ce555a Mon Sep 17 00:00:00 2001 From: Daoyuan Wang Date: Tue, 3 Feb 2015 12:21:45 -0800 Subject: [PATCH 48/52] [SPARK-4508] [SQL] build native date type to conform behavior to Hive The previous #3732 is reverted due to some test failure. Have fixed that. Author: Daoyuan Wang Closes #4325 from adrian-wang/datenative and squashes the following commits: 096e20d [Daoyuan Wang] fix for mixed timezone 0ed0fdc [Daoyuan Wang] fix test data a2fdd4e [Daoyuan Wang] getDate c37832b [Daoyuan Wang] row to catalyst f0005b1 [Daoyuan Wang] add date in sql parser and java type conversion 024c9a6 [Daoyuan Wang] clean some import order d6715fc [Daoyuan Wang] refactoring Date as Primitive Int internally 374abd5 [Daoyuan Wang] spark native date type support --- .../main/scala/org/apache/spark/sql/Row.scala | 2 +- .../spark/sql/catalyst/ScalaReflection.scala | 9 +-- .../apache/spark/sql/catalyst/SqlParser.scala | 2 + .../spark/sql/catalyst/expressions/Cast.scala | 53 +++++++--------- .../expressions/codegen/CodeGenerator.scala | 3 + .../sql/catalyst/expressions/literals.scala | 2 +- .../apache/spark/sql/types/DateUtils.scala | 60 +++++++++++++++++++ .../apache/spark/sql/types/dataTypes.scala | 12 ++-- .../ExpressionEvaluationSuite.scala | 28 ++++----- .../spark/sql/types/DataTypeSuite.scala | 2 +- .../spark/sql/columnar/ColumnStats.scala | 19 +----- .../spark/sql/columnar/ColumnType.scala | 13 ++-- .../spark/sql/execution/pythonUdfs.scala | 4 +- .../org/apache/spark/sql/json/JsonRDD.scala | 6 +- .../org/apache/spark/sql/SQLQuerySuite.scala | 33 ++++++---- .../sql/ScalaReflectionRelationSuite.scala | 3 +- .../spark/sql/columnar/ColumnStatsSuite.scala | 2 +- .../spark/sql/columnar/ColumnTypeSuite.scala | 6 +- .../sql/columnar/ColumnarTestUtils.scala | 6 +- .../org/apache/spark/sql/json/JsonSuite.scala | 7 ++- .../execution/HiveCompatibilitySuite.scala | 1 + .../apache/spark/sql/hive/HiveContext.scala | 4 +- .../spark/sql/hive/HiveInspectors.scala | 11 +++- .../apache/spark/sql/hive/TableReader.scala | 3 +- ...te cast-0-a7cd69b80c77a771a2c955db666be53d | 1 + ... test 1-0-bde89be08a12361073ff658fef768b7e | 1 + ... test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 | 1 + .../date_1-0-50131c0ba7b7a6b65c789a5a8497bada | 1 + ...date_1-1-23edf29bf7376c70d5ecf12720f4b1eb} | 0 ...ate_1-10-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...ate_1-11-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...ate_1-12-480c5f024a28232b7857be327c992509} | 0 ...ate_1-13-4c0ed7fcb75770d8790575b586bf14f4} | 0 ...date_1-14-44fc74c1993062c0a9522199ff27fea} | 0 ...ate_1-15-4855a66124b16d1d0d003235995ac06b} | 0 ...ate_1-16-8bc190dba0f641840b5e1e198a14c55b} | 0 ...ate_1-17-23edf29bf7376c70d5ecf12720f4b1eb} | 0 ...date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b} | 0 ... date_1-3-26b5c291400dfde455b3c1b878b71d0} | 0 ...date_1-4-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...date_1-5-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...date_1-6-559d01fb0b42c42f0c4927fa0f9deac4} | 0 ...date_1-7-df16364a220ff96a6ea1cd478cbc1d0b} | 0 ...date_1-8-d964bec7e5632091ab5cb6f6786dbbf9} | 0 ...date_1-9-8306558e0eabe936ac33dabaaa17fea4} | 0 .../spark/sql/hive/HiveInspectorSuite.scala | 4 +- .../sql/hive/execution/HiveQuerySuite.scala | 26 +++++++- .../org/apache/spark/sql/hive/Shim12.scala | 2 +- .../org/apache/spark/sql/hive/Shim13.scala | 2 +- 49 files changed, 204 insertions(+), 125 deletions(-) create mode 100644 sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala create mode 100644 sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d create mode 100644 sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e create mode 100644 sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 create mode 100644 sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada rename sql/hive/src/test/resources/golden/{date_1-0-23edf29bf7376c70d5ecf12720f4b1eb => date_1-1-23edf29bf7376c70d5ecf12720f4b1eb} (100%) rename sql/hive/src/test/resources/golden/{date_1-3-df16364a220ff96a6ea1cd478cbc1d0b => date_1-10-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-11-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-11-480c5f024a28232b7857be327c992509 => date_1-12-480c5f024a28232b7857be327c992509} (100%) rename sql/hive/src/test/resources/golden/{date_1-12-4c0ed7fcb75770d8790575b586bf14f4 => date_1-13-4c0ed7fcb75770d8790575b586bf14f4} (100%) rename sql/hive/src/test/resources/golden/{date_1-13-44fc74c1993062c0a9522199ff27fea => date_1-14-44fc74c1993062c0a9522199ff27fea} (100%) rename sql/hive/src/test/resources/golden/{date_1-14-4855a66124b16d1d0d003235995ac06b => date_1-15-4855a66124b16d1d0d003235995ac06b} (100%) rename sql/hive/src/test/resources/golden/{date_1-15-8bc190dba0f641840b5e1e198a14c55b => date_1-16-8bc190dba0f641840b5e1e198a14c55b} (100%) rename sql/hive/src/test/resources/golden/{date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b => date_1-17-23edf29bf7376c70d5ecf12720f4b1eb} (100%) rename sql/hive/src/test/resources/golden/{date_1-16-23edf29bf7376c70d5ecf12720f4b1eb => date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b} (100%) rename sql/hive/src/test/resources/golden/{date_1-2-abdce0c0d14d3fc7441b7c134b02f99a => date_1-3-26b5c291400dfde455b3c1b878b71d0} (100%) rename sql/hive/src/test/resources/golden/{date_1-6-df16364a220ff96a6ea1cd478cbc1d0b => date_1-4-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-5-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-5-5e70fc74158fbfca38134174360de12d => date_1-6-559d01fb0b42c42f0c4927fa0f9deac4} (100%) rename sql/hive/src/test/resources/golden/{date_1-9-df16364a220ff96a6ea1cd478cbc1d0b => date_1-7-df16364a220ff96a6ea1cd478cbc1d0b} (100%) rename sql/hive/src/test/resources/golden/{date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 => date_1-8-d964bec7e5632091ab5cb6f6786dbbf9} (100%) rename sql/hive/src/test/resources/golden/{date_1-8-1d5c58095cd52ea539d869f2ab1ab67d => date_1-9-8306558e0eabe936ac33dabaaa17fea4} (100%) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala index 41bb4f012f2e1..3a70d25534968 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/Row.scala @@ -20,7 +20,7 @@ package org.apache.spark.sql import scala.util.hashing.MurmurHash3 import org.apache.spark.sql.catalyst.expressions.GenericRow - +import org.apache.spark.sql.types.DateUtils object Row { /** diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala index e0db587efb08d..8e79e532ca564 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/ScalaReflection.scala @@ -17,14 +17,13 @@ package org.apache.spark.sql.catalyst -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.apache.spark.util.Utils import org.apache.spark.sql.catalyst.expressions.{GenericRow, Attribute, AttributeReference, Row} import org.apache.spark.sql.catalyst.plans.logical.LocalRelation import org.apache.spark.sql.types._ - /** * A default version of ScalaReflection that uses the runtime universe. */ @@ -72,6 +71,7 @@ trait ScalaReflection { }.toArray) case (d: BigDecimal, _) => Decimal(d) case (d: java.math.BigDecimal, _) => Decimal(d) + case (d: java.sql.Date, _) => DateUtils.fromJavaDate(d) case (other, _) => other } @@ -85,6 +85,7 @@ trait ScalaReflection { } case (r: Row, s: StructType) => convertRowToScala(r, s) case (d: Decimal, _: DecimalType) => d.toJavaBigDecimal + case (i: Int, DateType) => DateUtils.toJavaDate(i) case (other, _) => other } @@ -159,7 +160,7 @@ trait ScalaReflection { valueDataType, valueContainsNull = valueNullable), nullable = true) case t if t <:< typeOf[String] => Schema(StringType, nullable = true) case t if t <:< typeOf[Timestamp] => Schema(TimestampType, nullable = true) - case t if t <:< typeOf[Date] => Schema(DateType, nullable = true) + case t if t <:< typeOf[java.sql.Date] => Schema(DateType, nullable = true) case t if t <:< typeOf[BigDecimal] => Schema(DecimalType.Unlimited, nullable = true) case t if t <:< typeOf[java.math.BigDecimal] => Schema(DecimalType.Unlimited, nullable = true) case t if t <:< typeOf[Decimal] => Schema(DecimalType.Unlimited, nullable = true) @@ -191,7 +192,7 @@ trait ScalaReflection { case obj: LongType.JvmType => LongType case obj: FloatType.JvmType => FloatType case obj: DoubleType.JvmType => DoubleType - case obj: DateType.JvmType => DateType + case obj: java.sql.Date => DateType case obj: java.math.BigDecimal => DecimalType.Unlimited case obj: Decimal => DecimalType.Unlimited case obj: TimestampType.JvmType => TimestampType diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala index 25e639d390da0..5c006e9d4c6f5 100755 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/SqlParser.scala @@ -52,6 +52,7 @@ class SqlParser extends AbstractSparkSQLParser { protected val CAST = Keyword("CAST") protected val COALESCE = Keyword("COALESCE") protected val COUNT = Keyword("COUNT") + protected val DATE = Keyword("DATE") protected val DECIMAL = Keyword("DECIMAL") protected val DESC = Keyword("DESC") protected val DISTINCT = Keyword("DISTINCT") @@ -383,6 +384,7 @@ class SqlParser extends AbstractSparkSQLParser { | DOUBLE ^^^ DoubleType | fixedDecimalType | DECIMAL ^^^ DecimalType.Unlimited + | DATE ^^^ DateType ) protected lazy val fixedDecimalType: Parser[DataType] = diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala index ece5ee73618cb..b1bc858478ee1 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/Cast.scala @@ -113,7 +113,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w // UDFToString private[this] def castToString(from: DataType): Any => Any = from match { case BinaryType => buildCast[Array[Byte]](_, new String(_, "UTF-8")) - case DateType => buildCast[Date](_, dateToString) + case DateType => buildCast[Int](_, d => DateUtils.toString(d)) case TimestampType => buildCast[Timestamp](_, timestampToString) case _ => buildCast[Any](_, _.toString) } @@ -131,7 +131,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w buildCast[Timestamp](_, t => t.getTime() != 0 || t.getNanos() != 0) case DateType => // Hive would return null when cast from date to boolean - buildCast[Date](_, d => null) + buildCast[Int](_, d => null) case LongType => buildCast[Long](_, _ != 0) case IntegerType => @@ -171,7 +171,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case ByteType => buildCast[Byte](_, b => new Timestamp(b)) case DateType => - buildCast[Date](_, d => new Timestamp(d.getTime)) + buildCast[Int](_, d => new Timestamp(DateUtils.toJavaDate(d).getTime)) // TimestampWritable.decimalToTimestamp case DecimalType() => buildCast[Decimal](_, d => decimalToTimestamp(d)) @@ -224,37 +224,24 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w } } - // Converts Timestamp to string according to Hive TimestampWritable convention - private[this] def timestampToDateString(ts: Timestamp): String = { - Cast.threadLocalDateFormat.get.format(ts) - } - // DateConverter private[this] def castToDate(from: DataType): Any => Any = from match { case StringType => buildCast[String](_, s => - try Date.valueOf(s) catch { case _: java.lang.IllegalArgumentException => null }) + try DateUtils.fromJavaDate(Date.valueOf(s)) + catch { case _: java.lang.IllegalArgumentException => null } + ) case TimestampType => // throw valid precision more than seconds, according to Hive. // Timestamp.nanos is in 0 to 999,999,999, no more than a second. - buildCast[Timestamp](_, t => new Date(Math.floor(t.getTime / 1000.0).toLong * 1000)) + buildCast[Timestamp](_, t => DateUtils.millisToDays(t.getTime)) // Hive throws this exception as a Semantic Exception - // It is never possible to compare result when hive return with exception, so we can return null + // It is never possible to compare result when hive return with exception, + // so we can return null // NULL is more reasonable here, since the query itself obeys the grammar. case _ => _ => null } - // Date cannot be cast to long, according to hive - private[this] def dateToLong(d: Date) = null - - // Date cannot be cast to double, according to hive - private[this] def dateToDouble(d: Date) = null - - // Converts Date to string according to Hive DateWritable convention - private[this] def dateToString(d: Date): String = { - Cast.threadLocalDateFormat.get.format(d) - } - // LongConverter private[this] def castToLong(from: DataType): Any => Any = from match { case StringType => @@ -264,7 +251,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1L else 0L) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t)) case x: NumericType => @@ -280,7 +267,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1 else 0) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toInt) case x: NumericType => @@ -296,7 +283,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1.toShort else 0.toShort) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toShort) case x: NumericType => @@ -312,7 +299,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1.toByte else 0.toByte) case DateType => - buildCast[Date](_, d => dateToLong(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToLong(t).toByte) case x: NumericType => @@ -342,7 +329,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => changePrecision(if (b) Decimal(1) else Decimal(0), target)) case DateType => - buildCast[Date](_, d => null) // date can't cast to decimal in Hive + buildCast[Int](_, d => null) // date can't cast to decimal in Hive case TimestampType => // Note that we lose precision here. buildCast[Timestamp](_, t => changePrecision(Decimal(timestampToDouble(t)), target)) @@ -367,7 +354,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1d else 0d) case DateType => - buildCast[Date](_, d => dateToDouble(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToDouble(t)) case x: NumericType => @@ -383,7 +370,7 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w case BooleanType => buildCast[Boolean](_, b => if (b) 1f else 0f) case DateType => - buildCast[Date](_, d => dateToDouble(d)) + buildCast[Int](_, d => null) case TimestampType => buildCast[Timestamp](_, t => timestampToDouble(t).toFloat) case x: NumericType => @@ -442,16 +429,16 @@ case class Cast(child: Expression, dataType: DataType) extends UnaryExpression w object Cast { // `SimpleDateFormat` is not thread-safe. - private[sql] val threadLocalDateFormat = new ThreadLocal[DateFormat] { + private[sql] val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { override def initialValue() = { - new SimpleDateFormat("yyyy-MM-dd") + new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") } } // `SimpleDateFormat` is not thread-safe. - private[sql] val threadLocalTimestampFormat = new ThreadLocal[DateFormat] { + private[sql] val threadLocalDateFormat = new ThreadLocal[DateFormat] { override def initialValue() = { - new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") + new SimpleDateFormat("yyyy-MM-dd") } } } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala index 4cae5c4718683..1f80d84b744a1 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/codegen/CodeGenerator.scala @@ -246,6 +246,9 @@ abstract class CodeGenerator[InType <: AnyRef, OutType <: AnyRef] extends Loggin new String(${eval.primitiveTerm}.asInstanceOf[Array[Byte]]) """.children + case Cast(child @ DateType(), StringType) => + child.castOrNull(c => q"org.apache.spark.sql.types.DateUtils.toString($c)", StringType) + case Cast(child @ NumericType(), IntegerType) => child.castOrNull(c => q"$c.toInt", IntegerType) diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala index 5b389aad7a85d..97bb96f48e2c7 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/catalyst/expressions/literals.scala @@ -35,7 +35,7 @@ object Literal { case d: java.math.BigDecimal => Literal(Decimal(d), DecimalType.Unlimited) case d: Decimal => Literal(d, DecimalType.Unlimited) case t: Timestamp => Literal(t, TimestampType) - case d: Date => Literal(d, DateType) + case d: Date => Literal(DateUtils.fromJavaDate(d), DateType) case a: Array[Byte] => Literal(a, BinaryType) case null => Literal(null, NullType) } diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala new file mode 100644 index 0000000000000..8a1a3b81b3d2c --- /dev/null +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/DateUtils.scala @@ -0,0 +1,60 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.sql.types + +import java.sql.Date +import java.util.{Calendar, TimeZone} + +import org.apache.spark.sql.catalyst.expressions.Cast + +/** + * helper function to convert between Int value of days since 1970-01-01 and java.sql.Date + */ +object DateUtils { + private val MILLIS_PER_DAY = 86400000 + + // Java TimeZone has no mention of thread safety. Use thread local instance to be safe. + private val LOCAL_TIMEZONE = new ThreadLocal[TimeZone] { + override protected def initialValue: TimeZone = { + Calendar.getInstance.getTimeZone + } + } + + private def javaDateToDays(d: Date): Int = { + millisToDays(d.getTime) + } + + def millisToDays(millisLocal: Long): Int = { + ((millisLocal + LOCAL_TIMEZONE.get().getOffset(millisLocal)) / MILLIS_PER_DAY).toInt + } + + private def toMillisSinceEpoch(days: Int): Long = { + val millisUtc = days.toLong * MILLIS_PER_DAY + millisUtc - LOCAL_TIMEZONE.get().getOffset(millisUtc) + } + + def fromJavaDate(date: java.sql.Date): Int = { + javaDateToDays(date) + } + + def toJavaDate(daysSinceEpoch: Int): java.sql.Date = { + new java.sql.Date(toMillisSinceEpoch(daysSinceEpoch)) + } + + def toString(days: Int): String = Cast.threadLocalDateFormat.get.format(toJavaDate(days)) +} diff --git a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala index defdcb2b706f5..4825d1ff81402 100644 --- a/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala +++ b/sql/catalyst/src/main/scala/org/apache/spark/sql/types/dataTypes.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.types -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import scala.math.Numeric.{FloatAsIfIntegral, DoubleAsIfIntegral} import scala.reflect.ClassTag @@ -387,18 +387,16 @@ case object TimestampType extends NativeType { */ @DeveloperApi case object DateType extends NativeType { - private[sql] type JvmType = Date + private[sql] type JvmType = Int @transient private[sql] lazy val tag = ScalaReflectionLock.synchronized { typeTag[JvmType] } - private[sql] val ordering = new Ordering[JvmType] { - def compare(x: Date, y: Date) = x.compareTo(y) - } + private[sql] val ordering = implicitly[Ordering[JvmType]] /** - * The default size of a value of the DateType is 8 bytes. + * The default size of a value of the DateType is 4 bytes. */ - override def defaultSize: Int = 8 + override def defaultSize: Int = 4 } diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala index 37e64adeea853..25d1c105a00a6 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/catalyst/expressions/ExpressionEvaluationSuite.scala @@ -303,6 +303,7 @@ class ExpressionEvaluationSuite extends FunSuite { val sd = "1970-01-01" val d = Date.valueOf(sd) + val zts = sd + " 00:00:00" val sts = sd + " 00:00:02" val nts = sts + ".1" val ts = Timestamp.valueOf(nts) @@ -319,14 +320,14 @@ class ExpressionEvaluationSuite extends FunSuite { checkEvaluation(Cast(Literal(1.toDouble) cast TimestampType, DoubleType), 1.toDouble) checkEvaluation(Cast(Literal(sd) cast DateType, StringType), sd) - checkEvaluation(Cast(Literal(d) cast StringType, DateType), d) + checkEvaluation(Cast(Literal(d) cast StringType, DateType), 0) checkEvaluation(Cast(Literal(nts) cast TimestampType, StringType), nts) checkEvaluation(Cast(Literal(ts) cast StringType, TimestampType), ts) // all convert to string type to check checkEvaluation( Cast(Cast(Literal(nts) cast TimestampType, DateType), StringType), sd) checkEvaluation( - Cast(Cast(Literal(ts) cast DateType, TimestampType), StringType), sts) + Cast(Cast(Literal(ts) cast DateType, TimestampType), StringType), zts) checkEvaluation(Cast("abdef" cast BinaryType, StringType), "abdef") @@ -377,8 +378,8 @@ class ExpressionEvaluationSuite extends FunSuite { } test("date") { - val d1 = Date.valueOf("1970-01-01") - val d2 = Date.valueOf("1970-01-02") + val d1 = DateUtils.fromJavaDate(Date.valueOf("1970-01-01")) + val d2 = DateUtils.fromJavaDate(Date.valueOf("1970-01-02")) checkEvaluation(Literal(d1) < Literal(d2), true) } @@ -459,22 +460,21 @@ class ExpressionEvaluationSuite extends FunSuite { test("date casting") { val d = Date.valueOf("1970-01-01") - checkEvaluation(Cast(d, ShortType), null) - checkEvaluation(Cast(d, IntegerType), null) - checkEvaluation(Cast(d, LongType), null) - checkEvaluation(Cast(d, FloatType), null) - checkEvaluation(Cast(d, DoubleType), null) - checkEvaluation(Cast(d, DecimalType.Unlimited), null) - checkEvaluation(Cast(d, DecimalType(10, 2)), null) - checkEvaluation(Cast(d, StringType), "1970-01-01") - checkEvaluation(Cast(Cast(d, TimestampType), StringType), "1970-01-01 00:00:00") + checkEvaluation(Cast(Literal(d), ShortType), null) + checkEvaluation(Cast(Literal(d), IntegerType), null) + checkEvaluation(Cast(Literal(d), LongType), null) + checkEvaluation(Cast(Literal(d), FloatType), null) + checkEvaluation(Cast(Literal(d), DoubleType), null) + checkEvaluation(Cast(Literal(d), DecimalType.Unlimited), null) + checkEvaluation(Cast(Literal(d), DecimalType(10, 2)), null) + checkEvaluation(Cast(Literal(d), StringType), "1970-01-01") + checkEvaluation(Cast(Cast(Literal(d), TimestampType), StringType), "1970-01-01 00:00:00") } test("timestamp casting") { val millis = 15 * 1000 + 2 val seconds = millis * 1000 + 2 val ts = new Timestamp(millis) - val ts1 = new Timestamp(15 * 1000) // a timestamp without the milliseconds part val tss = new Timestamp(seconds) checkEvaluation(Cast(ts, ShortType), 15) checkEvaluation(Cast(ts, IntegerType), 15) diff --git a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala index c147be9f6b1ae..7bcd6687d11a1 100644 --- a/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala +++ b/sql/catalyst/src/test/scala/org/apache/spark/sql/types/DataTypeSuite.scala @@ -106,7 +106,7 @@ class DataTypeSuite extends FunSuite { checkDefaultSize(DoubleType, 8) checkDefaultSize(DecimalType(10, 5), 4096) checkDefaultSize(DecimalType.Unlimited, 4096) - checkDefaultSize(DateType, 8) + checkDefaultSize(DateType, 4) checkDefaultSize(TimestampType, 8) checkDefaultSize(StringType, 4096) checkDefaultSize(BinaryType, 4096) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala index 391b3dae5c8ce..cad0667b46435 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnStats.scala @@ -17,7 +17,7 @@ package org.apache.spark.sql.columnar -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.{AttributeMap, Attribute, AttributeReference} @@ -215,22 +215,7 @@ private[sql] class StringColumnStats extends ColumnStats { def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) } -private[sql] class DateColumnStats extends ColumnStats { - protected var upper: Date = null - protected var lower: Date = null - - override def gatherStats(row: Row, ordinal: Int) { - super.gatherStats(row, ordinal) - if (!row.isNullAt(ordinal)) { - val value = row(ordinal).asInstanceOf[Date] - if (upper == null || value.compareTo(upper) > 0) upper = value - if (lower == null || value.compareTo(lower) < 0) lower = value - sizeInBytes += DATE.defaultSize - } - } - - def collectedStatistics = Row(lower, upper, nullCount, count, sizeInBytes) -} +private[sql] class DateColumnStats extends IntColumnStats private[sql] class TimestampColumnStats extends ColumnStats { protected var upper: Timestamp = null diff --git a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala index fcf2faa0914c0..db5bc0de363c7 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/columnar/ColumnType.scala @@ -335,21 +335,20 @@ private[sql] object STRING extends NativeColumnType(StringType, 7, 8) { } } -private[sql] object DATE extends NativeColumnType(DateType, 8, 8) { +private[sql] object DATE extends NativeColumnType(DateType, 8, 4) { override def extract(buffer: ByteBuffer) = { - val date = new Date(buffer.getLong()) - date + buffer.getInt } - override def append(v: Date, buffer: ByteBuffer): Unit = { - buffer.putLong(v.getTime) + override def append(v: Int, buffer: ByteBuffer): Unit = { + buffer.putInt(v) } override def getField(row: Row, ordinal: Int) = { - row(ordinal).asInstanceOf[Date] + row(ordinal).asInstanceOf[Int] } - override def setField(row: MutableRow, ordinal: Int, value: Date): Unit = { + def setField(row: MutableRow, ordinal: Int, value: Int): Unit = { row(ordinal) = value } } diff --git a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala index b85021acc9d4c..3a2f8d75dac5e 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/execution/pythonUdfs.scala @@ -135,6 +135,8 @@ object EvaluatePython { case (ud, udt: UserDefinedType[_]) => toJava(udt.serialize(ud), udt.sqlType) + case (date: Int, DateType) => DateUtils.toJavaDate(date) + // Pyrolite can handle Timestamp and Decimal case (other, _) => other } @@ -171,7 +173,7 @@ object EvaluatePython { }): Row case (c: java.util.Calendar, DateType) => - new java.sql.Date(c.getTime().getTime()) + DateUtils.fromJavaDate(new java.sql.Date(c.getTime().getTime())) case (c: java.util.Calendar, TimestampType) => new java.sql.Timestamp(c.getTime().getTime()) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala index 9171939f7e8f7..33ce71b51b213 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/json/JsonRDD.scala @@ -377,10 +377,12 @@ private[sql] object JsonRDD extends Logging { } } - private def toDate(value: Any): Date = { + private def toDate(value: Any): Int = { value match { // only support string as date - case value: java.lang.String => new Date(DataTypeConversions.stringToTime(value).getTime) + case value: java.lang.String => + DateUtils.millisToDays(DataTypeConversions.stringToTime(value).getTime) + case value: java.sql.Date => DateUtils.fromJavaDate(value) } } diff --git a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala index e18ba287e8683..0501b47f080d7 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/SQLQuerySuite.scala @@ -38,7 +38,7 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { var origZone: TimeZone = _ override protected def beforeAll() { origZone = TimeZone.getDefault - TimeZone.setDefault(TimeZone.getTimeZone("UTC")) + TimeZone.setDefault(TimeZone.getTimeZone("America/Los_Angeles")) } override protected def afterAll() { @@ -143,26 +143,26 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { test("SPARK-3173 Timestamp support in the parser") { checkAnswer(sql( - "SELECT time FROM timestamps WHERE time=CAST('1970-01-01 00:00:00.001' AS TIMESTAMP)"), - Row(java.sql.Timestamp.valueOf("1970-01-01 00:00:00.001"))) + "SELECT time FROM timestamps WHERE time=CAST('1969-12-31 16:00:00.001' AS TIMESTAMP)"), + Row(java.sql.Timestamp.valueOf("1969-12-31 16:00:00.001"))) checkAnswer(sql( - "SELECT time FROM timestamps WHERE time='1970-01-01 00:00:00.001'"), - Row(java.sql.Timestamp.valueOf("1970-01-01 00:00:00.001"))) + "SELECT time FROM timestamps WHERE time='1969-12-31 16:00:00.001'"), + Row(java.sql.Timestamp.valueOf("1969-12-31 16:00:00.001"))) checkAnswer(sql( - "SELECT time FROM timestamps WHERE '1970-01-01 00:00:00.001'=time"), - Row(java.sql.Timestamp.valueOf("1970-01-01 00:00:00.001"))) + "SELECT time FROM timestamps WHERE '1969-12-31 16:00:00.001'=time"), + Row(java.sql.Timestamp.valueOf("1969-12-31 16:00:00.001"))) checkAnswer(sql( - """SELECT time FROM timestamps WHERE time<'1970-01-01 00:00:00.003' - AND time>'1970-01-01 00:00:00.001'"""), - Row(java.sql.Timestamp.valueOf("1970-01-01 00:00:00.002"))) + """SELECT time FROM timestamps WHERE time<'1969-12-31 16:00:00.003' + AND time>'1969-12-31 16:00:00.001'"""), + Row(java.sql.Timestamp.valueOf("1969-12-31 16:00:00.002"))) checkAnswer(sql( - "SELECT time FROM timestamps WHERE time IN ('1970-01-01 00:00:00.001','1970-01-01 00:00:00.002')"), - Seq(Row(java.sql.Timestamp.valueOf("1970-01-01 00:00:00.001")), - Row(java.sql.Timestamp.valueOf("1970-01-01 00:00:00.002")))) + "SELECT time FROM timestamps WHERE time IN ('1969-12-31 16:00:00.001','1969-12-31 16:00:00.002')"), + Seq(Row(java.sql.Timestamp.valueOf("1969-12-31 16:00:00.001")), + Row(java.sql.Timestamp.valueOf("1969-12-31 16:00:00.002")))) checkAnswer(sql( "SELECT time FROM timestamps WHERE time='123'"), @@ -296,6 +296,13 @@ class SQLQuerySuite extends QueryTest with BeforeAndAfterAll { mapData.collect().take(1).map(Row.fromTuple).toSeq) } + test("date row") { + checkAnswer(sql( + """select cast("2015-01-28" as date) from testData limit 1"""), + Row(java.sql.Date.valueOf("2015-01-28")) + ) + } + test("from follow multiple brackets") { checkAnswer(sql( "select key from ((select * from testData limit 1) union all (select * from testData limit 1)) x limit 1"), diff --git a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala index a015884bae282..f26fcc0385b68 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/ScalaReflectionRelationSuite.scala @@ -83,7 +83,8 @@ class ScalaReflectionRelationSuite extends FunSuite { assert(sql("SELECT * FROM reflectData").collect().head === Row("a", 1, 1L, 1.toFloat, 1.toDouble, 1.toShort, 1.toByte, true, - new java.math.BigDecimal(1), new Date(12345), new Timestamp(12345), Seq(1,2,3))) + new java.math.BigDecimal(1), new Date(70, 0, 1), // This is 1970-01-01 + new Timestamp(12345), Seq(1,2,3))) } test("query case class RDD with nulls") { diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala index be2b34de077c9..581fccf8ee613 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnStatsSuite.scala @@ -30,7 +30,7 @@ class ColumnStatsSuite extends FunSuite { testColumnStats(classOf[FloatColumnStats], FLOAT, Row(Float.MaxValue, Float.MinValue, 0)) testColumnStats(classOf[DoubleColumnStats], DOUBLE, Row(Double.MaxValue, Double.MinValue, 0)) testColumnStats(classOf[StringColumnStats], STRING, Row(null, null, 0)) - testColumnStats(classOf[DateColumnStats], DATE, Row(null, null, 0)) + testColumnStats(classOf[DateColumnStats], DATE, Row(Int.MaxValue, Int.MinValue, 0)) testColumnStats(classOf[TimestampColumnStats], TIMESTAMP, Row(null, null, 0)) def testColumnStats[T <: NativeType, U <: ColumnStats]( diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala index 87e608a8853dc..9ce845912f1c7 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnTypeSuite.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.columnar import java.nio.ByteBuffer -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import org.scalatest.FunSuite @@ -34,7 +34,7 @@ class ColumnTypeSuite extends FunSuite with Logging { test("defaultSize") { val checks = Map( INT -> 4, SHORT -> 2, LONG -> 8, BYTE -> 1, DOUBLE -> 8, FLOAT -> 4, BOOLEAN -> 1, - STRING -> 8, DATE -> 8, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) + STRING -> 8, DATE -> 4, TIMESTAMP -> 12, BINARY -> 16, GENERIC -> 16) checks.foreach { case (columnType, expectedSize) => assertResult(expectedSize, s"Wrong defaultSize for $columnType") { @@ -64,7 +64,7 @@ class ColumnTypeSuite extends FunSuite with Logging { checkActualSize(FLOAT, Float.MaxValue, 4) checkActualSize(BOOLEAN, true, 1) checkActualSize(STRING, "hello", 4 + "hello".getBytes("utf-8").length) - checkActualSize(DATE, new Date(0L), 8) + checkActualSize(DATE, 0, 4) checkActualSize(TIMESTAMP, new Timestamp(0L), 12) val binary = Array.fill[Byte](4)(0: Byte) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala index f941465fa3e35..60ed28cc97bf1 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/columnar/ColumnarTestUtils.scala @@ -17,11 +17,11 @@ package org.apache.spark.sql.columnar +import java.sql.Timestamp + import scala.collection.immutable.HashSet import scala.util.Random -import java.sql.{Date, Timestamp} - import org.apache.spark.sql.Row import org.apache.spark.sql.catalyst.expressions.GenericMutableRow import org.apache.spark.sql.types.{DataType, NativeType} @@ -50,7 +50,7 @@ object ColumnarTestUtils { case STRING => Random.nextString(Random.nextInt(32)) case BOOLEAN => Random.nextBoolean() case BINARY => randomBytes(Random.nextInt(32)) - case DATE => new Date(Random.nextLong()) + case DATE => Random.nextInt() case TIMESTAMP => val timestamp = new Timestamp(Random.nextLong()) timestamp.setNanos(Random.nextInt(999999999)) diff --git a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala index cb615388da0c7..1396c6b7246d1 100644 --- a/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala +++ b/sql/core/src/test/scala/org/apache/spark/sql/json/JsonSuite.scala @@ -67,14 +67,15 @@ class JsonSuite extends QueryTest { checkTypePromotion(Timestamp.valueOf(strTime), enforceCorrectType(strTime, TimestampType)) val strDate = "2014-10-15" - checkTypePromotion(Date.valueOf(strDate), enforceCorrectType(strDate, DateType)) + checkTypePromotion( + DateUtils.fromJavaDate(Date.valueOf(strDate)), enforceCorrectType(strDate, DateType)) val ISO8601Time1 = "1970-01-01T01:00:01.0Z" checkTypePromotion(new Timestamp(3601000), enforceCorrectType(ISO8601Time1, TimestampType)) - checkTypePromotion(new Date(3601000), enforceCorrectType(ISO8601Time1, DateType)) + checkTypePromotion(DateUtils.millisToDays(3601000), enforceCorrectType(ISO8601Time1, DateType)) val ISO8601Time2 = "1970-01-01T02:00:01-01:00" checkTypePromotion(new Timestamp(10801000), enforceCorrectType(ISO8601Time2, TimestampType)) - checkTypePromotion(new Date(10801000), enforceCorrectType(ISO8601Time2, DateType)) + checkTypePromotion(DateUtils.millisToDays(10801000), enforceCorrectType(ISO8601Time2, DateType)) } test("Get compatible type") { diff --git a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala index 0d934620aca09..a6266f611c219 100644 --- a/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala +++ b/sql/hive/compatibility/src/test/scala/org/apache/spark/sql/hive/execution/HiveCompatibilitySuite.scala @@ -357,6 +357,7 @@ class HiveCompatibilitySuite extends HiveQueryFileTest with BeforeAndAfter { "database_drop", "database_location", "database_properties", + "date_1", "date_2", "date_3", "date_4", diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala index 922e61f0be12f..1921bf6e5e1a6 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveContext.scala @@ -18,7 +18,7 @@ package org.apache.spark.sql.hive import java.io.{BufferedReader, InputStreamReader, PrintStream} -import java.sql.{Date, Timestamp} +import java.sql.Timestamp import scala.collection.JavaConversions._ import scala.language.implicitConversions @@ -478,7 +478,7 @@ private object HiveContext { toHiveStructString((key, kType)) + ":" + toHiveStructString((value, vType)) }.toSeq.sorted.mkString("{", ",", "}") case (null, _) => "NULL" - case (d: Date, DateType) => new DateWritable(d).toString + case (d: Int, DateType) => new DateWritable(d).toString case (t: Timestamp, TimestampType) => new TimestampWritable(t).toString case (bin: Array[Byte], BinaryType) => new String(bin, "UTF-8") case (decimal: java.math.BigDecimal, DecimalType()) => diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala index 82dba99900df9..4afa2e71d77cc 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/HiveInspectors.scala @@ -267,7 +267,8 @@ private[hive] trait HiveInspectors { val temp = new Array[Byte](writable.getLength) System.arraycopy(writable.getBytes, 0, temp, 0, temp.length) temp - case poi: WritableConstantDateObjectInspector => poi.getWritableConstantValue.get() + case poi: WritableConstantDateObjectInspector => + DateUtils.fromJavaDate(poi.getWritableConstantValue.get()) case mi: StandardConstantMapObjectInspector => // take the value from the map inspector object, rather than the input data mi.getWritableConstantValue.map { case (k, v) => @@ -304,7 +305,8 @@ private[hive] trait HiveInspectors { System.arraycopy(bw.getBytes(), 0, result, 0, bw.getLength()) result case x: DateObjectInspector if x.preferWritable() => - x.getPrimitiveWritableObject(data).get() + DateUtils.fromJavaDate(x.getPrimitiveWritableObject(data).get()) + case x: DateObjectInspector => DateUtils.fromJavaDate(x.getPrimitiveJavaObject(data)) // org.apache.hadoop.hive.serde2.io.TimestampWritable.set will reset current time object // if next timestamp is null, so Timestamp object is cloned case x: TimestampObjectInspector if x.preferWritable() => @@ -343,6 +345,9 @@ private[hive] trait HiveInspectors { case _: JavaHiveDecimalObjectInspector => (o: Any) => HiveShim.createDecimal(o.asInstanceOf[Decimal].toJavaBigDecimal) + case _: JavaDateObjectInspector => + (o: Any) => DateUtils.toJavaDate(o.asInstanceOf[Int]) + case soi: StandardStructObjectInspector => val wrappers = soi.getAllStructFieldRefs.map(ref => wrapperFor(ref.getFieldObjectInspector)) (o: Any) => { @@ -426,7 +431,7 @@ private[hive] trait HiveInspectors { case _: BinaryObjectInspector if x.preferWritable() => HiveShim.getBinaryWritable(a) case _: BinaryObjectInspector => a.asInstanceOf[Array[Byte]] case _: DateObjectInspector if x.preferWritable() => HiveShim.getDateWritable(a) - case _: DateObjectInspector => a.asInstanceOf[java.sql.Date] + case _: DateObjectInspector => DateUtils.toJavaDate(a.asInstanceOf[Int]) case _: TimestampObjectInspector if x.preferWritable() => HiveShim.getTimestampWritable(a) case _: TimestampObjectInspector => a.asInstanceOf[java.sql.Timestamp] } diff --git a/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala b/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala index c368715f7c6f5..effaa5a443512 100644 --- a/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala +++ b/sql/hive/src/main/scala/org/apache/spark/sql/hive/TableReader.scala @@ -34,6 +34,7 @@ import org.apache.spark.SerializableWritable import org.apache.spark.broadcast.Broadcast import org.apache.spark.rdd.{EmptyRDD, HadoopRDD, RDD, UnionRDD} import org.apache.spark.sql.catalyst.expressions._ +import org.apache.spark.sql.types.DateUtils /** * A trait for subclasses that handle table scans. @@ -306,7 +307,7 @@ private[hive] object HadoopTableReader extends HiveInspectors { row.update(ordinal, oi.getPrimitiveJavaObject(value).clone()) case oi: DateObjectInspector => (value: Any, row: MutableRow, ordinal: Int) => - row.update(ordinal, oi.getPrimitiveJavaObject(value)) + row.update(ordinal, DateUtils.fromJavaDate(oi.getPrimitiveJavaObject(value))) case oi: BinaryObjectInspector => (value: Any, row: MutableRow, ordinal: Int) => row.update(ordinal, oi.getPrimitiveJavaObject(value)) diff --git a/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d b/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d new file mode 100644 index 0000000000000..98da82fa89386 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date cast-0-a7cd69b80c77a771a2c955db666be53d @@ -0,0 +1 @@ +1970-01-01 1970-01-01 1969-12-31 16:00:00 1969-12-31 16:00:00 1970-01-01 00:00:00 diff --git a/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e b/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e new file mode 100644 index 0000000000000..27ba77ddaf615 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date comparison test 1-0-bde89be08a12361073ff658fef768b7e @@ -0,0 +1 @@ +true diff --git a/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 b/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 new file mode 100644 index 0000000000000..27ba77ddaf615 --- /dev/null +++ b/sql/hive/src/test/resources/golden/Date comparison test 2-0-dc1b267f1d79d49e6675afe4fd2a34a5 @@ -0,0 +1 @@ +true diff --git a/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada b/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada new file mode 100644 index 0000000000000..573541ac9702d --- /dev/null +++ b/sql/hive/src/test/resources/golden/date_1-0-50131c0ba7b7a6b65c789a5a8497bada @@ -0,0 +1 @@ +0 diff --git a/sql/hive/src/test/resources/golden/date_1-0-23edf29bf7376c70d5ecf12720f4b1eb b/sql/hive/src/test/resources/golden/date_1-1-23edf29bf7376c70d5ecf12720f4b1eb similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-0-23edf29bf7376c70d5ecf12720f4b1eb rename to sql/hive/src/test/resources/golden/date_1-1-23edf29bf7376c70d5ecf12720f4b1eb diff --git a/sql/hive/src/test/resources/golden/date_1-3-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-10-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-3-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-10-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-10-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-11-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-11-480c5f024a28232b7857be327c992509 b/sql/hive/src/test/resources/golden/date_1-12-480c5f024a28232b7857be327c992509 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-11-480c5f024a28232b7857be327c992509 rename to sql/hive/src/test/resources/golden/date_1-12-480c5f024a28232b7857be327c992509 diff --git a/sql/hive/src/test/resources/golden/date_1-12-4c0ed7fcb75770d8790575b586bf14f4 b/sql/hive/src/test/resources/golden/date_1-13-4c0ed7fcb75770d8790575b586bf14f4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-12-4c0ed7fcb75770d8790575b586bf14f4 rename to sql/hive/src/test/resources/golden/date_1-13-4c0ed7fcb75770d8790575b586bf14f4 diff --git a/sql/hive/src/test/resources/golden/date_1-13-44fc74c1993062c0a9522199ff27fea b/sql/hive/src/test/resources/golden/date_1-14-44fc74c1993062c0a9522199ff27fea similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-13-44fc74c1993062c0a9522199ff27fea rename to sql/hive/src/test/resources/golden/date_1-14-44fc74c1993062c0a9522199ff27fea diff --git a/sql/hive/src/test/resources/golden/date_1-14-4855a66124b16d1d0d003235995ac06b b/sql/hive/src/test/resources/golden/date_1-15-4855a66124b16d1d0d003235995ac06b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-14-4855a66124b16d1d0d003235995ac06b rename to sql/hive/src/test/resources/golden/date_1-15-4855a66124b16d1d0d003235995ac06b diff --git a/sql/hive/src/test/resources/golden/date_1-15-8bc190dba0f641840b5e1e198a14c55b b/sql/hive/src/test/resources/golden/date_1-16-8bc190dba0f641840b5e1e198a14c55b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-15-8bc190dba0f641840b5e1e198a14c55b rename to sql/hive/src/test/resources/golden/date_1-16-8bc190dba0f641840b5e1e198a14c55b diff --git a/sql/hive/src/test/resources/golden/date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b b/sql/hive/src/test/resources/golden/date_1-17-23edf29bf7376c70d5ecf12720f4b1eb similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-1-4ebe3571c13a8b0c03096fbd972b7f1b rename to sql/hive/src/test/resources/golden/date_1-17-23edf29bf7376c70d5ecf12720f4b1eb diff --git a/sql/hive/src/test/resources/golden/date_1-16-23edf29bf7376c70d5ecf12720f4b1eb b/sql/hive/src/test/resources/golden/date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-16-23edf29bf7376c70d5ecf12720f4b1eb rename to sql/hive/src/test/resources/golden/date_1-2-4ebe3571c13a8b0c03096fbd972b7f1b diff --git a/sql/hive/src/test/resources/golden/date_1-2-abdce0c0d14d3fc7441b7c134b02f99a b/sql/hive/src/test/resources/golden/date_1-3-26b5c291400dfde455b3c1b878b71d0 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-2-abdce0c0d14d3fc7441b7c134b02f99a rename to sql/hive/src/test/resources/golden/date_1-3-26b5c291400dfde455b3c1b878b71d0 diff --git a/sql/hive/src/test/resources/golden/date_1-6-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-4-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-6-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-4-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-4-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-5-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-5-5e70fc74158fbfca38134174360de12d b/sql/hive/src/test/resources/golden/date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-5-5e70fc74158fbfca38134174360de12d rename to sql/hive/src/test/resources/golden/date_1-6-559d01fb0b42c42f0c4927fa0f9deac4 diff --git a/sql/hive/src/test/resources/golden/date_1-9-df16364a220ff96a6ea1cd478cbc1d0b b/sql/hive/src/test/resources/golden/date_1-7-df16364a220ff96a6ea1cd478cbc1d0b similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-9-df16364a220ff96a6ea1cd478cbc1d0b rename to sql/hive/src/test/resources/golden/date_1-7-df16364a220ff96a6ea1cd478cbc1d0b diff --git a/sql/hive/src/test/resources/golden/date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 b/sql/hive/src/test/resources/golden/date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-7-d964bec7e5632091ab5cb6f6786dbbf9 rename to sql/hive/src/test/resources/golden/date_1-8-d964bec7e5632091ab5cb6f6786dbbf9 diff --git a/sql/hive/src/test/resources/golden/date_1-8-1d5c58095cd52ea539d869f2ab1ab67d b/sql/hive/src/test/resources/golden/date_1-9-8306558e0eabe936ac33dabaaa17fea4 similarity index 100% rename from sql/hive/src/test/resources/golden/date_1-8-1d5c58095cd52ea539d869f2ab1ab67d rename to sql/hive/src/test/resources/golden/date_1-9-8306558e0eabe936ac33dabaaa17fea4 diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala index 2d3ff680125ad..09bbd5c867e4e 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/HiveInspectorSuite.scala @@ -18,7 +18,6 @@ package org.apache.spark.sql.hive import java.util -import java.sql.Date import java.util.{Locale, TimeZone} import org.apache.hadoop.hive.ql.udf.UDAFPercentile @@ -76,7 +75,7 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { Literal(0.asInstanceOf[Float]) :: Literal(0.asInstanceOf[Double]) :: Literal("0") :: - Literal(new Date(2014, 9, 23)) :: + Literal(new java.sql.Date(114, 8, 23)) :: Literal(Decimal(BigDecimal(123.123))) :: Literal(new java.sql.Timestamp(123123)) :: Literal(Array[Byte](1,2,3)) :: @@ -143,7 +142,6 @@ class HiveInspectorSuite extends FunSuite with HiveInspectors { case (r1: Array[Byte], r2: Array[Byte]) if r1 != null && r2 != null && r1.length == r2.length => r1.zip(r2).map { case (b1, b2) => assert(b1 === b2) } - case (r1: Date, r2: Date) => assert(r1.compareTo(r2) === 0) case (r1, r2) => assert(r1 === r2) } } diff --git a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala index 8e84d279fe119..82efadb28e890 100644 --- a/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala +++ b/sql/hive/src/test/scala/org/apache/spark/sql/hive/execution/HiveQuerySuite.scala @@ -253,8 +253,30 @@ class HiveQuerySuite extends HiveComparisonTest with BeforeAndAfter { createQueryTest("Cast Timestamp to Timestamp in UDF", """ - | SELECT DATEDIFF(CAST(value AS timestamp), CAST('2002-03-21 00:00:00' AS timestamp)) - | FROM src LIMIT 1 + | SELECT DATEDIFF(CAST(value AS timestamp), CAST('2002-03-21 00:00:00' AS timestamp)) + | FROM src LIMIT 1 + """.stripMargin) + + createQueryTest("Date comparison test 1", + """ + | SELECT + | CAST(CAST('1970-01-01 22:00:00' AS timestamp) AS date) == + | CAST(CAST('1970-01-01 23:00:00' AS timestamp) AS date) + | FROM src LIMIT 1 + """.stripMargin) + + createQueryTest("Date comparison test 2", + "SELECT CAST(CAST(0 AS timestamp) AS date) > CAST(0 AS timestamp) FROM src LIMIT 1") + + createQueryTest("Date cast", + """ + | SELECT + | CAST(CAST(0 AS timestamp) AS date), + | CAST(CAST(CAST(0 AS timestamp) AS date) AS string), + | CAST(0 AS timestamp), + | CAST(CAST(0 AS timestamp) AS string), + | CAST(CAST(CAST('1970-01-01 23:00:00' AS timestamp) AS date) AS timestamp) + | FROM src LIMIT 1 """.stripMargin) createQueryTest("Simple Average", diff --git a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala index 254919e8f6fdc..b5a0754ff61f9 100644 --- a/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala +++ b/sql/hive/v0.12.0/src/main/scala/org/apache/spark/sql/hive/Shim12.scala @@ -160,7 +160,7 @@ private[hive] object HiveShim { if (value == null) null else new hadoopIo.BytesWritable(value.asInstanceOf[Array[Byte]]) def getDateWritable(value: Any): hiveIo.DateWritable = - if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[java.sql.Date]) + if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[Int]) def getTimestampWritable(value: Any): hiveIo.TimestampWritable = if (value == null) { diff --git a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala index 45ca59ae56a38..e4c1809c8bb21 100644 --- a/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala +++ b/sql/hive/v0.13.1/src/main/scala/org/apache/spark/sql/hive/Shim13.scala @@ -263,7 +263,7 @@ private[hive] object HiveShim { } def getDateWritable(value: Any): hiveIo.DateWritable = - if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[java.sql.Date]) + if (value == null) null else new hiveIo.DateWritable(value.asInstanceOf[Int]) def getTimestampWritable(value: Any): hiveIo.TimestampWritable = if (value == null) { From 681f9df47ff40f7b0d9175d835e9758d33a13a06 Mon Sep 17 00:00:00 2001 From: Tathagata Das Date: Tue, 3 Feb 2015 13:46:02 -0800 Subject: [PATCH 49/52] [SPARK-5153][Streaming][Test] Increased timeout to deal with flaky KafkaStreamSuite Timeout increased to allow overloaded Jenkins to cope with delay in topic creation. Author: Tathagata Das Closes #4342 from tdas/SPARK-5153 and squashes the following commits: dc42762 [Tathagata Das] Increased timeout to deal with delays in overloaded Jenkins. --- .../org/apache/spark/streaming/kafka/KafkaStreamSuite.scala | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/external/kafka/src/test/scala/org/apache/spark/streaming/kafka/KafkaStreamSuite.scala b/external/kafka/src/test/scala/org/apache/spark/streaming/kafka/KafkaStreamSuite.scala index b19c053ebfc44..0817c56d8f39f 100644 --- a/external/kafka/src/test/scala/org/apache/spark/streaming/kafka/KafkaStreamSuite.scala +++ b/external/kafka/src/test/scala/org/apache/spark/streaming/kafka/KafkaStreamSuite.scala @@ -164,7 +164,7 @@ abstract class KafkaStreamSuiteBase extends FunSuite with Eventually with Loggin } private def waitUntilMetadataIsPropagated(topic: String, partition: Int) { - eventually(timeout(1000 milliseconds), interval(100 milliseconds)) { + eventually(timeout(10000 milliseconds), interval(100 milliseconds)) { assert( server.apis.leaderCache.keySet.contains(TopicAndPartition(topic, partition)), s"Partition [$topic, $partition] metadata not propagated after timeout" From 1e8b5394b44a0d3b36f64f10576c3ae3b977810c Mon Sep 17 00:00:00 2001 From: Jesper Lundgren Date: Tue, 3 Feb 2015 14:53:39 -0800 Subject: [PATCH 50/52] [STREAMING] SPARK-4986 Wait for receivers to deregister and receiver job to terminate A slow receiver might not have enough time to shutdown cleanly even when graceful shutdown is used. This PR extends graceful waiting to make sure all receivers have deregistered and that the receiver job has terminated. Author: Jesper Lundgren Closes #4338 from cleaton/stopreceivers and squashes the following commits: a9cf223 [Jesper Lundgren] remove cleaner.ttl config f969b6e [Jesper Lundgren] fix inversed logic in unit test 3d0bd35 [Jesper Lundgren] switch boleans to match running status instead of terminated 9a9ff88 [Jesper Lundgren] wait for receivers to shutdown and receiver job to terminate d179372 [Jesper Lundgren] Add graceful shutdown unit test covering slow receiver onStop --- .../streaming/scheduler/JobScheduler.scala | 2 +- .../streaming/scheduler/ReceiverTracker.scala | 19 +++++- .../streaming/StreamingContextSuite.scala | 58 +++++++++++++++++++ 3 files changed, 75 insertions(+), 4 deletions(-) diff --git a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala index 0e0f5bd3b9db4..b3ffc71904c76 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/JobScheduler.scala @@ -73,7 +73,7 @@ class JobScheduler(val ssc: StreamingContext) extends Logging { logDebug("Stopping JobScheduler") // First, stop receiving - receiverTracker.stop() + receiverTracker.stop(processAllReceivedData) // Second, stop generating jobs. If it has to process all received data, // then this will wait for all the processing through JobScheduler to be over. diff --git a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala index 4f998869731ed..00456ab2a0c92 100644 --- a/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala +++ b/streaming/src/main/scala/org/apache/spark/streaming/scheduler/ReceiverTracker.scala @@ -86,10 +86,10 @@ class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false } /** Stop the receiver execution thread. */ - def stop() = synchronized { + def stop(graceful: Boolean) = synchronized { if (!receiverInputStreams.isEmpty && actor != null) { // First, stop the receivers - if (!skipReceiverLaunch) receiverExecutor.stop() + if (!skipReceiverLaunch) receiverExecutor.stop(graceful) // Finally, stop the actor ssc.env.actorSystem.stop(actor) @@ -218,6 +218,7 @@ class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false /** This thread class runs all the receivers on the cluster. */ class ReceiverLauncher { @transient val env = ssc.env + @volatile @transient private var running = false @transient val thread = new Thread() { override def run() { try { @@ -233,7 +234,7 @@ class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false thread.start() } - def stop() { + def stop(graceful: Boolean) { // Send the stop signal to all the receivers stopReceivers() @@ -241,6 +242,16 @@ class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false // That is, for the receivers to quit gracefully. thread.join(10000) + if (graceful) { + val pollTime = 100 + def done = { receiverInfo.isEmpty && !running } + logInfo("Waiting for receiver job to terminate gracefully") + while(!done) { + Thread.sleep(pollTime) + } + logInfo("Waited for receiver job to terminate gracefully") + } + // Check if all the receivers have been deregistered or not if (!receiverInfo.isEmpty) { logWarning("All of the receivers have not deregistered, " + receiverInfo) @@ -295,7 +306,9 @@ class ReceiverTracker(ssc: StreamingContext, skipReceiverLaunch: Boolean = false // Distribute the receivers and start them logInfo("Starting " + receivers.length + " receivers") + running = true ssc.sparkContext.runJob(tempRDD, ssc.sparkContext.clean(startReceiver)) + running = false logInfo("All of the receivers have been terminated") } diff --git a/streaming/src/test/scala/org/apache/spark/streaming/StreamingContextSuite.scala b/streaming/src/test/scala/org/apache/spark/streaming/StreamingContextSuite.scala index 9f352bdcb0893..0b5af25e0f7cc 100644 --- a/streaming/src/test/scala/org/apache/spark/streaming/StreamingContextSuite.scala +++ b/streaming/src/test/scala/org/apache/spark/streaming/StreamingContextSuite.scala @@ -205,6 +205,32 @@ class StreamingContextSuite extends FunSuite with BeforeAndAfter with Timeouts w } } + test("stop slow receiver gracefully") { + val conf = new SparkConf().setMaster(master).setAppName(appName) + conf.set("spark.streaming.gracefulStopTimeout", "20000") + sc = new SparkContext(conf) + logInfo("==================================\n\n\n") + ssc = new StreamingContext(sc, Milliseconds(100)) + var runningCount = 0 + SlowTestReceiver.receivedAllRecords = false + //Create test receiver that sleeps in onStop() + val totalNumRecords = 15 + val recordsPerSecond = 1 + val input = ssc.receiverStream(new SlowTestReceiver(totalNumRecords, recordsPerSecond)) + input.count().foreachRDD { rdd => + val count = rdd.first() + runningCount += count.toInt + logInfo("Count = " + count + ", Running count = " + runningCount) + } + ssc.start() + ssc.awaitTermination(500) + ssc.stop(stopSparkContext = false, stopGracefully = true) + logInfo("Running count = " + runningCount) + assert(runningCount > 0) + assert(runningCount == totalNumRecords) + Thread.sleep(100) + } + test("awaitTermination") { ssc = new StreamingContext(master, appName, batchDuration) val inputStream = addInputStream(ssc) @@ -319,6 +345,38 @@ object TestReceiver { val counter = new AtomicInteger(1) } +/** Custom receiver for testing whether a slow receiver can be shutdown gracefully or not */ +class SlowTestReceiver(totalRecords: Int, recordsPerSecond: Int) extends Receiver[Int](StorageLevel.MEMORY_ONLY) with Logging { + + var receivingThreadOption: Option[Thread] = None + + def onStart() { + val thread = new Thread() { + override def run() { + logInfo("Receiving started") + for(i <- 1 to totalRecords) { + Thread.sleep(1000 / recordsPerSecond) + store(i) + } + SlowTestReceiver.receivedAllRecords = true + logInfo(s"Received all $totalRecords records") + } + } + receivingThreadOption = Some(thread) + thread.start() + } + + def onStop() { + // Simulate slow receiver by waiting for all records to be produced + while(!SlowTestReceiver.receivedAllRecords) Thread.sleep(100) + // no cleanup to be done, the receiving thread should stop on it own + } +} + +object SlowTestReceiver { + var receivedAllRecords = false +} + /** Streaming application for testing DStream and RDD creation sites */ package object testPackage extends Assertions { def test() { From 068c0e2ee05ee8b133c2dc26b8fa094ab2712d45 Mon Sep 17 00:00:00 2001 From: Davies Liu Date: Tue, 3 Feb 2015 16:01:56 -0800 Subject: [PATCH 51/52] [SPARK-5554] [SQL] [PySpark] add more tests for DataFrame Python API Add more tests and docs for DataFrame Python API, improve test coverage, fix bugs. Author: Davies Liu Closes #4331 from davies/fix_df and squashes the following commits: dd9919f [Davies Liu] fix tests 467332c [Davies Liu] support string in cast() 83c92fe [Davies Liu] address comments c052f6f [Davies Liu] Merge branch 'master' of github.com:apache/spark into fix_df 8dd19a9 [Davies Liu] fix tests in python 2.6 35ccb9f [Davies Liu] fix build 78ebcfa [Davies Liu] add sql_test.py in run_tests 9ab78b4 [Davies Liu] Merge branch 'master' of github.com:apache/spark into fix_df 6040ba7 [Davies Liu] fix docs 3ab2661 [Davies Liu] add more tests for DataFrame --- python/pyspark/sql.py | 467 +++++++++++------- python/pyspark/sql_tests.py | 299 +++++++++++ python/pyspark/tests.py | 261 ---------- python/run-tests | 1 + .../scala/org/apache/spark/sql/Column.scala | 38 +- .../spark/sql/test/ExamplePointUDT.scala | 2 +- 6 files changed, 586 insertions(+), 482 deletions(-) create mode 100644 python/pyspark/sql_tests.py diff --git a/python/pyspark/sql.py b/python/pyspark/sql.py index 32bff0c7e8c55..268c7ef97cffc 100644 --- a/python/pyspark/sql.py +++ b/python/pyspark/sql.py @@ -62,7 +62,7 @@ "StringType", "BinaryType", "BooleanType", "DateType", "TimestampType", "DecimalType", "DoubleType", "FloatType", "ByteType", "IntegerType", "LongType", "ShortType", "ArrayType", "MapType", "StructField", "StructType", - "SQLContext", "HiveContext", "DataFrame", "GroupedDataFrame", "Column", "Row", + "SQLContext", "HiveContext", "DataFrame", "GroupedDataFrame", "Column", "Row", "Dsl", "SchemaRDD"] @@ -1804,7 +1804,7 @@ class DataFrame(object): people = sqlContext.parquetFile("...") Once created, it can be manipulated using the various domain-specific-language - (DSL) functions defined in: [[DataFrame]], [[Column]]. + (DSL) functions defined in: :class:`DataFrame`, :class:`Column`. To select a column from the data frame, use the apply method:: @@ -1835,8 +1835,10 @@ def __init__(self, jdf, sql_ctx): @property def rdd(self): - """Return the content of the :class:`DataFrame` as an :class:`RDD` - of :class:`Row`s. """ + """ + Return the content of the :class:`DataFrame` as an :class:`RDD` + of :class:`Row` s. + """ if not hasattr(self, '_lazy_rdd'): jrdd = self._jdf.javaToPython() rdd = RDD(jrdd, self.sql_ctx._sc, BatchedSerializer(PickleSerializer())) @@ -1850,18 +1852,6 @@ def applySchema(it): return self._lazy_rdd - def limit(self, num): - """Limit the result count to the number specified. - - >>> df = sqlCtx.inferSchema(rdd) - >>> df.limit(2).collect() - [Row(field1=1, field2=u'row1'), Row(field1=2, field2=u'row2')] - >>> df.limit(0).collect() - [] - """ - jdf = self._jdf.limit(num) - return DataFrame(jdf, self.sql_ctx) - def toJSON(self, use_unicode=False): """Convert a DataFrame into a MappedRDD of JSON documents; one document per row. @@ -1886,7 +1876,6 @@ def saveAsParquetFile(self, path): >>> import tempfile, shutil >>> parquetFile = tempfile.mkdtemp() >>> shutil.rmtree(parquetFile) - >>> df = sqlCtx.inferSchema(rdd) >>> df.saveAsParquetFile(parquetFile) >>> df2 = sqlCtx.parquetFile(parquetFile) >>> sorted(df2.collect()) == sorted(df.collect()) @@ -1900,9 +1889,8 @@ def registerTempTable(self, name): The lifetime of this temporary table is tied to the L{SQLContext} that was used to create this DataFrame. - >>> df = sqlCtx.inferSchema(rdd) - >>> df.registerTempTable("test") - >>> df2 = sqlCtx.sql("select * from test") + >>> df.registerTempTable("people") + >>> df2 = sqlCtx.sql("select * from people") >>> sorted(df.collect()) == sorted(df2.collect()) True """ @@ -1926,11 +1914,22 @@ def saveAsTable(self, tableName): def schema(self): """Returns the schema of this DataFrame (represented by - a L{StructType}).""" + a L{StructType}). + + >>> df.schema() + StructType(List(StructField(age,IntegerType,true),StructField(name,StringType,true))) + """ return _parse_datatype_json_string(self._jdf.schema().json()) def printSchema(self): - """Prints out the schema in the tree format.""" + """Prints out the schema in the tree format. + + >>> df.printSchema() + root + |-- age: integer (nullable = true) + |-- name: string (nullable = true) + + """ print (self._jdf.schema().treeString()) def count(self): @@ -1940,11 +1939,8 @@ def count(self): leverages the query optimizer to compute the count on the DataFrame, which supports features such as filter pushdown. - >>> df = sqlCtx.inferSchema(rdd) >>> df.count() - 3L - >>> df.count() == df.map(lambda x: x).count() - True + 2L """ return self._jdf.count() @@ -1954,13 +1950,11 @@ def collect(self): Each object in the list is a Row, the fields can be accessed as attributes. - >>> df = sqlCtx.inferSchema(rdd) >>> df.collect() - [Row(field1=1, field2=u'row1'), ..., Row(field1=3, field2=u'row3')] + [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ with SCCallSiteSync(self._sc) as css: bytesInJava = self._jdf.javaToPython().collect().iterator() - cls = _create_cls(self.schema()) tempFile = NamedTemporaryFile(delete=False, dir=self._sc._temp_dir) tempFile.close() self._sc._writeToFile(bytesInJava, tempFile.name) @@ -1968,23 +1962,37 @@ def collect(self): with open(tempFile.name, 'rb') as tempFile: rs = list(BatchedSerializer(PickleSerializer()).load_stream(tempFile)) os.unlink(tempFile.name) + cls = _create_cls(self.schema()) return [cls(r) for r in rs] + def limit(self, num): + """Limit the result count to the number specified. + + >>> df.limit(1).collect() + [Row(age=2, name=u'Alice')] + >>> df.limit(0).collect() + [] + """ + jdf = self._jdf.limit(num) + return DataFrame(jdf, self.sql_ctx) + def take(self, num): """Take the first num rows of the RDD. Each object in the list is a Row, the fields can be accessed as attributes. - >>> df = sqlCtx.inferSchema(rdd) >>> df.take(2) - [Row(field1=1, field2=u'row1'), Row(field1=2, field2=u'row2')] + [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] """ return self.limit(num).collect() def map(self, f): """ Return a new RDD by applying a function to each Row, it's a shorthand for df.rdd.map() + + >>> df.map(lambda p: p.name).collect() + [u'Alice', u'Bob'] """ return self.rdd.map(f) @@ -2067,140 +2075,167 @@ def sample(self, withReplacement, fraction, seed=None): @property def dtypes(self): """Return all column names and their data types as a list. + + >>> df.dtypes + [(u'age', 'IntegerType'), (u'name', 'StringType')] """ return [(f.name, str(f.dataType)) for f in self.schema().fields] @property def columns(self): """ Return all column names as a list. + + >>> df.columns + [u'age', u'name'] """ return [f.name for f in self.schema().fields] - def show(self): - raise NotImplemented - def join(self, other, joinExprs=None, joinType=None): """ Join with another DataFrame, using the given join expression. The following performs a full outer join between `df1` and `df2`:: - df1.join(df2, df1.key == df2.key, "outer") - :param other: Right side of the join :param joinExprs: Join expression - :param joinType: One of `inner`, `outer`, `left_outer`, `right_outer`, - `semijoin`. + :param joinType: One of `inner`, `outer`, `left_outer`, `right_outer`, `semijoin`. + + >>> df.join(df2, df.name == df2.name, 'outer').select(df.name, df2.height).collect() + [Row(name=None, height=80), Row(name=u'Bob', height=85), Row(name=u'Alice', height=None)] """ - if joinType is None: - if joinExprs is None: - jdf = self._jdf.join(other._jdf) - else: - jdf = self._jdf.join(other._jdf, joinExprs) + + if joinExprs is None: + jdf = self._jdf.join(other._jdf) else: - jdf = self._jdf.join(other._jdf, joinExprs, joinType) + assert isinstance(joinExprs, Column), "joinExprs should be Column" + if joinType is None: + jdf = self._jdf.join(other._jdf, joinExprs._jc) + else: + assert isinstance(joinType, basestring), "joinType should be basestring" + jdf = self._jdf.join(other._jdf, joinExprs._jc, joinType) return DataFrame(jdf, self.sql_ctx) def sort(self, *cols): - """ Return a new [[DataFrame]] sorted by the specified column, - in ascending column. + """ Return a new :class:`DataFrame` sorted by the specified column. :param cols: The columns or expressions used for sorting + + >>> df.sort(df.age.desc()).collect() + [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] + >>> df.sortBy(df.age.desc()).collect() + [Row(age=5, name=u'Bob'), Row(age=2, name=u'Alice')] """ if not cols: raise ValueError("should sort by at least one column") - for i, c in enumerate(cols): - if isinstance(c, basestring): - cols[i] = Column(c) - jcols = [c._jc for c in cols] - jdf = self._jdf.join(*jcols) + jcols = ListConverter().convert([_to_java_column(c) for c in cols[1:]], + self._sc._gateway._gateway_client) + jdf = self._jdf.sort(_to_java_column(cols[0]), + self._sc._jvm.Dsl.toColumns(jcols)) return DataFrame(jdf, self.sql_ctx) sortBy = sort def head(self, n=None): - """ Return the first `n` rows or the first row if n is None. """ + """ Return the first `n` rows or the first row if n is None. + + >>> df.head() + Row(age=2, name=u'Alice') + >>> df.head(1) + [Row(age=2, name=u'Alice')] + """ if n is None: rs = self.head(1) return rs[0] if rs else None return self.take(n) def first(self): - """ Return the first row. """ - return self.head() + """ Return the first row. - def tail(self): - raise NotImplemented + >>> df.first() + Row(age=2, name=u'Alice') + """ + return self.head() def __getitem__(self, item): + """ Return the column by given name + + >>> df['age'].collect() + [Row(age=2), Row(age=5)] + """ if isinstance(item, basestring): - return Column(self._jdf.apply(item)) + jc = self._jdf.apply(item) + return Column(jc, self.sql_ctx) # TODO projection raise IndexError def __getattr__(self, name): - """ Return the column by given name """ + """ Return the column by given name + + >>> df.age.collect() + [Row(age=2), Row(age=5)] + """ if name.startswith("__"): raise AttributeError(name) - return Column(self._jdf.apply(name)) - - def alias(self, name): - """ Alias the current DataFrame """ - return DataFrame(getattr(self._jdf, "as")(name), self.sql_ctx) + jc = self._jdf.apply(name) + return Column(jc, self.sql_ctx) def select(self, *cols): - """ Selecting a set of expressions.:: - - df.select() - df.select('colA', 'colB') - df.select(df.colA, df.colB + 1) - + """ Selecting a set of expressions. + + >>> df.select().collect() + [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] + >>> df.select('*').collect() + [Row(age=2, name=u'Alice'), Row(age=5, name=u'Bob')] + >>> df.select('name', 'age').collect() + [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)] + >>> df.select(df.name, (df.age + 10).As('age')).collect() + [Row(name=u'Alice', age=12), Row(name=u'Bob', age=15)] """ if not cols: cols = ["*"] - if isinstance(cols[0], basestring): - cols = [_create_column_from_name(n) for n in cols] - else: - cols = [c._jc for c in cols] - jcols = ListConverter().convert(cols, self._sc._gateway._gateway_client) + jcols = ListConverter().convert([_to_java_column(c) for c in cols], + self._sc._gateway._gateway_client) jdf = self._jdf.select(self.sql_ctx._sc._jvm.Dsl.toColumns(jcols)) return DataFrame(jdf, self.sql_ctx) def filter(self, condition): - """ Filtering rows using the given condition:: - - df.filter(df.age > 15) - df.where(df.age > 15) + """ Filtering rows using the given condition. + >>> df.filter(df.age > 3).collect() + [Row(age=5, name=u'Bob')] + >>> df.where(df.age == 2).collect() + [Row(age=2, name=u'Alice')] """ return DataFrame(self._jdf.filter(condition._jc), self.sql_ctx) where = filter def groupBy(self, *cols): - """ Group the [[DataFrame]] using the specified columns, + """ Group the :class:`DataFrame` using the specified columns, so we can run aggregation on them. See :class:`GroupedDataFrame` - for all the available aggregate functions:: - - df.groupBy(df.department).avg() - df.groupBy("department", "gender").agg({ - "salary": "avg", - "age": "max", - }) + for all the available aggregate functions. + + >>> df.groupBy().avg().collect() + [Row(AVG(age#0)=3.5)] + >>> df.groupBy('name').agg({'age': 'mean'}).collect() + [Row(name=u'Bob', AVG(age#0)=5.0), Row(name=u'Alice', AVG(age#0)=2.0)] + >>> df.groupBy(df.name).avg().collect() + [Row(name=u'Bob', AVG(age#0)=5.0), Row(name=u'Alice', AVG(age#0)=2.0)] """ - if cols and isinstance(cols[0], basestring): - cols = [_create_column_from_name(n) for n in cols] - else: - cols = [c._jc for c in cols] - jcols = ListConverter().convert(cols, self._sc._gateway._gateway_client) + jcols = ListConverter().convert([_to_java_column(c) for c in cols], + self._sc._gateway._gateway_client) jdf = self._jdf.groupBy(self.sql_ctx._sc._jvm.Dsl.toColumns(jcols)) return GroupedDataFrame(jdf, self.sql_ctx) def agg(self, *exprs): - """ Aggregate on the entire [[DataFrame]] without groups - (shorthand for df.groupBy.agg()):: - - df.agg({"age": "max", "salary": "avg"}) + """ Aggregate on the entire :class:`DataFrame` without groups + (shorthand for df.groupBy.agg()). + + >>> df.agg({"age": "max"}).collect() + [Row(MAX(age#0)=5)] + >>> from pyspark.sql import Dsl + >>> df.agg(Dsl.min(df.age)).collect() + [Row(MIN(age#0)=2)] """ return self.groupBy().agg(*exprs) @@ -2213,7 +2248,7 @@ def unionAll(self, other): return DataFrame(self._jdf.unionAll(other._jdf), self.sql_ctx) def intersect(self, other): - """ Return a new [[DataFrame]] containing rows only in + """ Return a new :class:`DataFrame` containing rows only in both this frame and another frame. This is equivalent to `INTERSECT` in SQL. @@ -2221,7 +2256,7 @@ def intersect(self, other): return DataFrame(self._jdf.intersect(other._jdf), self.sql_ctx) def subtract(self, other): - """ Return a new [[DataFrame]] containing rows in this frame + """ Return a new :class:`DataFrame` containing rows in this frame but not in another frame. This is equivalent to `EXCEPT` in SQL. @@ -2229,7 +2264,11 @@ def subtract(self, other): return DataFrame(getattr(self._jdf, "except")(other._jdf), self.sql_ctx) def sample(self, withReplacement, fraction, seed=None): - """ Return a new DataFrame by sampling a fraction of rows. """ + """ Return a new DataFrame by sampling a fraction of rows. + + >>> df.sample(False, 0.5, 10).collect() + [Row(age=2, name=u'Alice')] + """ if seed is None: jdf = self._jdf.sample(withReplacement, fraction) else: @@ -2237,11 +2276,12 @@ def sample(self, withReplacement, fraction, seed=None): return DataFrame(jdf, self.sql_ctx) def addColumn(self, colName, col): - """ Return a new [[DataFrame]] by adding a column. """ - return self.select('*', col.alias(colName)) + """ Return a new :class:`DataFrame` by adding a column. - def removeColumn(self, colName): - raise NotImplemented + >>> df.addColumn('age2', df.age + 2).collect() + [Row(age=2, name=u'Alice', age2=4), Row(age=5, name=u'Bob', age2=7)] + """ + return self.select('*', col.As(colName)) # Having SchemaRDD for backward compatibility (for docs) @@ -2280,7 +2320,14 @@ def agg(self, *exprs): `sum`, `count`. :param exprs: list or aggregate columns or a map from column - name to agregate methods. + name to aggregate methods. + + >>> gdf = df.groupBy(df.name) + >>> gdf.agg({"age": "max"}).collect() + [Row(name=u'Bob', MAX(age#0)=5), Row(name=u'Alice', MAX(age#0)=2)] + >>> from pyspark.sql import Dsl + >>> gdf.agg(Dsl.min(df.age)).collect() + [Row(MIN(age#0)=5), Row(MIN(age#0)=2)] """ assert exprs, "exprs should not be empty" if len(exprs) == 1 and isinstance(exprs[0], dict): @@ -2297,7 +2344,11 @@ def agg(self, *exprs): @dfapi def count(self): - """ Count the number of rows for each group. """ + """ Count the number of rows for each group. + + >>> df.groupBy(df.age).count().collect() + [Row(age=2, count=1), Row(age=5, count=1)] + """ @dfapi def mean(self): @@ -2349,18 +2400,25 @@ def sum(self): def _create_column_from_literal(literal): sc = SparkContext._active_spark_context - return sc._jvm.org.apache.spark.sql.Dsl.lit(literal) + return sc._jvm.Dsl.lit(literal) def _create_column_from_name(name): sc = SparkContext._active_spark_context - return sc._jvm.IncomputableColumn(name) + return sc._jvm.Dsl.col(name) + + +def _to_java_column(col): + if isinstance(col, Column): + jcol = col._jc + else: + jcol = _create_column_from_name(col) + return jcol def _scalaMethod(name): """ Translate operators into methodName in Scala - For example: >>> _scalaMethod('+') '$plus' >>> _scalaMethod('>=') @@ -2371,37 +2429,34 @@ def _scalaMethod(name): return ''.join(SCALA_METHOD_MAPPINGS.get(c, c) for c in name) -def _unary_op(name): +def _unary_op(name, doc="unary operator"): """ Create a method for given unary operator """ def _(self): - return Column(getattr(self._jc, _scalaMethod(name))(), self._jdf, self.sql_ctx) + jc = getattr(self._jc, _scalaMethod(name))() + return Column(jc, self.sql_ctx) + _.__doc__ = doc return _ -def _bin_op(name, pass_literal_through=True): +def _bin_op(name, doc="binary operator"): """ Create a method for given binary operator - - Keyword arguments: - pass_literal_through -- whether to pass literal value directly through to the JVM. """ def _(self, other): - if isinstance(other, Column): - jc = other._jc - else: - if pass_literal_through: - jc = other - else: - jc = _create_column_from_literal(other) - return Column(getattr(self._jc, _scalaMethod(name))(jc), self._jdf, self.sql_ctx) + jc = other._jc if isinstance(other, Column) else other + njc = getattr(self._jc, _scalaMethod(name))(jc) + return Column(njc, self.sql_ctx) + _.__doc__ = doc return _ -def _reverse_op(name): +def _reverse_op(name, doc="binary operator"): """ Create a method for binary operator (this object is on right side) """ def _(self, other): - return Column(getattr(_create_column_from_literal(other), _scalaMethod(name))(self._jc), - self._jdf, self.sql_ctx) + jother = _create_column_from_literal(other) + jc = getattr(jother, _scalaMethod(name))(self._jc) + return Column(jc, self.sql_ctx) + _.__doc__ = doc return _ @@ -2410,20 +2465,20 @@ class Column(DataFrame): """ A column in a DataFrame. - `Column` instances can be created by: - {{{ - // 1. Select a column out of a DataFrame - df.colName - df["colName"] + `Column` instances can be created by:: + + # 1. Select a column out of a DataFrame + df.colName + df["colName"] - // 2. Create from an expression - df["colName"] + 1 - }}} + # 2. Create from an expression + df.colName + 1 + 1 / df.colName """ - def __init__(self, jc, jdf=None, sql_ctx=None): + def __init__(self, jc, sql_ctx=None): self._jc = jc - super(Column, self).__init__(jdf, sql_ctx) + super(Column, self).__init__(jc, sql_ctx) # arithmetic operators __neg__ = _unary_op("unary_-") @@ -2438,8 +2493,6 @@ def __init__(self, jc, jdf=None, sql_ctx=None): __rdiv__ = _reverse_op("/") __rmod__ = _reverse_op("%") __abs__ = _unary_op("abs") - abs = _unary_op("abs") - sqrt = _unary_op("sqrt") # logistic operators __eq__ = _bin_op("===") @@ -2448,47 +2501,45 @@ def __init__(self, jc, jdf=None, sql_ctx=None): __le__ = _bin_op("<=") __ge__ = _bin_op(">=") __gt__ = _bin_op(">") - # `and`, `or`, `not` cannot be overloaded in Python - And = _bin_op('&&') - Or = _bin_op('||') - Not = _unary_op('unary_!') - - # bitwise operators - __and__ = _bin_op("&") - __or__ = _bin_op("|") - __invert__ = _unary_op("unary_~") - __xor__ = _bin_op("^") - # __lshift__ = _bin_op("<<") - # __rshift__ = _bin_op(">>") - __rand__ = _bin_op("&") - __ror__ = _bin_op("|") - __rxor__ = _bin_op("^") - # __rlshift__ = _reverse_op("<<") - # __rrshift__ = _reverse_op(">>") + + # `and`, `or`, `not` cannot be overloaded in Python, + # so use bitwise operators as boolean operators + __and__ = _bin_op('&&') + __or__ = _bin_op('||') + __invert__ = _unary_op('unary_!') + __rand__ = _bin_op("&&") + __ror__ = _bin_op("||") # container operators __contains__ = _bin_op("contains") __getitem__ = _bin_op("getItem") - # __getattr__ = _bin_op("getField") + getField = _bin_op("getField", "An expression that gets a field by name in a StructField.") # string methods rlike = _bin_op("rlike") like = _bin_op("like") startswith = _bin_op("startsWith") endswith = _bin_op("endsWith") - upper = _unary_op("upper") - lower = _unary_op("lower") - def substr(self, startPos, pos): - if type(startPos) != type(pos): + def substr(self, startPos, length): + """ + Return a Column which is a substring of the column + + :param startPos: start position (int or Column) + :param length: length of the substring (int or Column) + + >>> df.name.substr(1, 3).collect() + [Row(col=u'Ali'), Row(col=u'Bob')] + """ + if type(startPos) != type(length): raise TypeError("Can not mix the type") if isinstance(startPos, (int, long)): - jc = self._jc.substr(startPos, pos) + jc = self._jc.substr(startPos, length) elif isinstance(startPos, Column): - jc = self._jc.substr(startPos._jc, pos._jc) + jc = self._jc.substr(startPos._jc, length._jc) else: raise TypeError("Unexpected type: %s" % type(startPos)) - return Column(jc, self._jdf, self.sql_ctx) + return Column(jc, self.sql_ctx) __getslice__ = substr @@ -2496,55 +2547,89 @@ def substr(self, startPos, pos): asc = _unary_op("asc") desc = _unary_op("desc") - isNull = _unary_op("isNull") - isNotNull = _unary_op("isNotNull") + isNull = _unary_op("isNull", "True if the current expression is null.") + isNotNull = _unary_op("isNotNull", "True if the current expression is not null.") # `as` is keyword def alias(self, alias): - return Column(getattr(self._jsc, "as")(alias), self._jdf, self.sql_ctx) + """Return a alias for this column + + >>> df.age.As("age2").collect() + [Row(age2=2), Row(age2=5)] + >>> df.age.alias("age2").collect() + [Row(age2=2), Row(age2=5)] + """ + return Column(getattr(self._jc, "as")(alias), self.sql_ctx) + As = alias def cast(self, dataType): + """ Convert the column into type `dataType` + + >>> df.select(df.age.cast("string").As('ages')).collect() + [Row(ages=u'2'), Row(ages=u'5')] + >>> df.select(df.age.cast(StringType()).As('ages')).collect() + [Row(ages=u'2'), Row(ages=u'5')] + """ if self.sql_ctx is None: sc = SparkContext._active_spark_context ssql_ctx = sc._jvm.SQLContext(sc._jsc.sc()) else: ssql_ctx = self.sql_ctx._ssql_ctx - jdt = ssql_ctx.parseDataType(dataType.json()) - return Column(self._jc.cast(jdt), self._jdf, self.sql_ctx) + if isinstance(dataType, basestring): + jc = self._jc.cast(dataType) + elif isinstance(dataType, DataType): + jdt = ssql_ctx.parseDataType(dataType.json()) + jc = self._jc.cast(jdt) + return Column(jc, self.sql_ctx) -def _to_java_column(col): - if isinstance(col, Column): - jcol = col._jc - else: - jcol = _create_column_from_name(col) - return jcol - - -def _aggregate_func(name): +def _aggregate_func(name, doc=""): """ Create a function for aggregator by name""" def _(col): sc = SparkContext._active_spark_context jc = getattr(sc._jvm.Dsl, name)(_to_java_column(col)) return Column(jc) - + _.__name__ = name + _.__doc__ = doc return staticmethod(_) -class Aggregator(object): +class Dsl(object): """ A collections of builtin aggregators """ - AGGS = [ - 'lit', 'col', 'column', 'upper', 'lower', 'sqrt', 'abs', - 'min', 'max', 'first', 'last', 'count', 'avg', 'mean', 'sum', 'sumDistinct', - ] - for _name in AGGS: - locals()[_name] = _aggregate_func(_name) - del _name + DSLS = { + 'lit': 'Creates a :class:`Column` of literal value.', + 'col': 'Returns a :class:`Column` based on the given column name.', + 'column': 'Returns a :class:`Column` based on the given column name.', + 'upper': 'Converts a string expression to upper case.', + 'lower': 'Converts a string expression to upper case.', + 'sqrt': 'Computes the square root of the specified float value.', + 'abs': 'Computes the absolutle value.', + + 'max': 'Aggregate function: returns the maximum value of the expression in a group.', + 'min': 'Aggregate function: returns the minimum value of the expression in a group.', + 'first': 'Aggregate function: returns the first value in a group.', + 'last': 'Aggregate function: returns the last value in a group.', + 'count': 'Aggregate function: returns the number of items in a group.', + 'sum': 'Aggregate function: returns the sum of all values in the expression.', + 'avg': 'Aggregate function: returns the average of the values in a group.', + 'mean': 'Aggregate function: returns the average of the values in a group.', + 'sumDistinct': 'Aggregate function: returns the sum of distinct values in the expression.', + } + + for _name, _doc in DSLS.items(): + locals()[_name] = _aggregate_func(_name, _doc) + del _name, _doc @staticmethod def countDistinct(col, *cols): + """ Return a new Column for distinct count of (col, *cols) + + >>> from pyspark.sql import Dsl + >>> df.agg(Dsl.countDistinct(df.age, df.name).As('c')).collect() + [Row(c=2)] + """ sc = SparkContext._active_spark_context jcols = ListConverter().convert([_to_java_column(c) for c in cols], sc._gateway._gateway_client) @@ -2554,6 +2639,12 @@ def countDistinct(col, *cols): @staticmethod def approxCountDistinct(col, rsd=None): + """ Return a new Column for approxiate distinct count of (col, *cols) + + >>> from pyspark.sql import Dsl + >>> df.agg(Dsl.approxCountDistinct(df.age).As('c')).collect() + [Row(c=2)] + """ sc = SparkContext._active_spark_context if rsd is None: jc = sc._jvm.Dsl.approxCountDistinct(_to_java_column(col)) @@ -2568,16 +2659,20 @@ def _test(): # let doctest run in pyspark.sql, so DataTypes can be picklable import pyspark.sql from pyspark.sql import Row, SQLContext - from pyspark.tests import ExamplePoint, ExamplePointUDT + from pyspark.sql_tests import ExamplePoint, ExamplePointUDT globs = pyspark.sql.__dict__.copy() sc = SparkContext('local[4]', 'PythonTest') globs['sc'] = sc - globs['sqlCtx'] = SQLContext(sc) + globs['sqlCtx'] = sqlCtx = SQLContext(sc) globs['rdd'] = sc.parallelize( [Row(field1=1, field2="row1"), Row(field1=2, field2="row2"), Row(field1=3, field2="row3")] ) + rdd2 = sc.parallelize([Row(name='Alice', age=2), Row(name='Bob', age=5)]) + rdd3 = sc.parallelize([Row(name='Tom', height=80), Row(name='Bob', height=85)]) + globs['df'] = sqlCtx.inferSchema(rdd2) + globs['df2'] = sqlCtx.inferSchema(rdd3) globs['ExamplePoint'] = ExamplePoint globs['ExamplePointUDT'] = ExamplePointUDT jsonStrings = [ diff --git a/python/pyspark/sql_tests.py b/python/pyspark/sql_tests.py new file mode 100644 index 0000000000000..d314f46e8d2d5 --- /dev/null +++ b/python/pyspark/sql_tests.py @@ -0,0 +1,299 @@ +# +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# + +""" +Unit tests for pyspark.sql; additional tests are implemented as doctests in +individual modules. +""" +import os +import sys +import pydoc +import shutil +import tempfile + +if sys.version_info[:2] <= (2, 6): + try: + import unittest2 as unittest + except ImportError: + sys.stderr.write('Please install unittest2 to test with Python 2.6 or earlier') + sys.exit(1) +else: + import unittest + +from pyspark.sql import SQLContext, IntegerType, Row, ArrayType, StructType, StructField, \ + UserDefinedType, DoubleType +from pyspark.tests import ReusedPySparkTestCase + + +class ExamplePointUDT(UserDefinedType): + """ + User-defined type (UDT) for ExamplePoint. + """ + + @classmethod + def sqlType(self): + return ArrayType(DoubleType(), False) + + @classmethod + def module(cls): + return 'pyspark.tests' + + @classmethod + def scalaUDT(cls): + return 'org.apache.spark.sql.test.ExamplePointUDT' + + def serialize(self, obj): + return [obj.x, obj.y] + + def deserialize(self, datum): + return ExamplePoint(datum[0], datum[1]) + + +class ExamplePoint: + """ + An example class to demonstrate UDT in Scala, Java, and Python. + """ + + __UDT__ = ExamplePointUDT() + + def __init__(self, x, y): + self.x = x + self.y = y + + def __repr__(self): + return "ExamplePoint(%s,%s)" % (self.x, self.y) + + def __str__(self): + return "(%s,%s)" % (self.x, self.y) + + def __eq__(self, other): + return isinstance(other, ExamplePoint) and \ + other.x == self.x and other.y == self.y + + +class SQLTests(ReusedPySparkTestCase): + + @classmethod + def setUpClass(cls): + ReusedPySparkTestCase.setUpClass() + cls.tempdir = tempfile.NamedTemporaryFile(delete=False) + os.unlink(cls.tempdir.name) + cls.sqlCtx = SQLContext(cls.sc) + cls.testData = [Row(key=i, value=str(i)) for i in range(100)] + rdd = cls.sc.parallelize(cls.testData) + cls.df = cls.sqlCtx.inferSchema(rdd) + + @classmethod + def tearDownClass(cls): + ReusedPySparkTestCase.tearDownClass() + shutil.rmtree(cls.tempdir.name, ignore_errors=True) + + def test_udf(self): + self.sqlCtx.registerFunction("twoArgs", lambda x, y: len(x) + y, IntegerType()) + [row] = self.sqlCtx.sql("SELECT twoArgs('test', 1)").collect() + self.assertEqual(row[0], 5) + + def test_udf2(self): + self.sqlCtx.registerFunction("strlen", lambda string: len(string), IntegerType()) + self.sqlCtx.inferSchema(self.sc.parallelize([Row(a="test")])).registerTempTable("test") + [res] = self.sqlCtx.sql("SELECT strlen(a) FROM test WHERE strlen(a) > 1").collect() + self.assertEqual(4, res[0]) + + def test_udf_with_array_type(self): + d = [Row(l=range(3), d={"key": range(5)})] + rdd = self.sc.parallelize(d) + self.sqlCtx.inferSchema(rdd).registerTempTable("test") + self.sqlCtx.registerFunction("copylist", lambda l: list(l), ArrayType(IntegerType())) + self.sqlCtx.registerFunction("maplen", lambda d: len(d), IntegerType()) + [(l1, l2)] = self.sqlCtx.sql("select copylist(l), maplen(d) from test").collect() + self.assertEqual(range(3), l1) + self.assertEqual(1, l2) + + def test_broadcast_in_udf(self): + bar = {"a": "aa", "b": "bb", "c": "abc"} + foo = self.sc.broadcast(bar) + self.sqlCtx.registerFunction("MYUDF", lambda x: foo.value[x] if x else '') + [res] = self.sqlCtx.sql("SELECT MYUDF('c')").collect() + self.assertEqual("abc", res[0]) + [res] = self.sqlCtx.sql("SELECT MYUDF('')").collect() + self.assertEqual("", res[0]) + + def test_basic_functions(self): + rdd = self.sc.parallelize(['{"foo":"bar"}', '{"foo":"baz"}']) + df = self.sqlCtx.jsonRDD(rdd) + df.count() + df.collect() + df.schema() + + # cache and checkpoint + self.assertFalse(df.is_cached) + df.persist() + df.unpersist() + df.cache() + self.assertTrue(df.is_cached) + self.assertEqual(2, df.count()) + + df.registerTempTable("temp") + df = self.sqlCtx.sql("select foo from temp") + df.count() + df.collect() + + def test_apply_schema_to_row(self): + df = self.sqlCtx.jsonRDD(self.sc.parallelize(["""{"a":2}"""])) + df2 = self.sqlCtx.applySchema(df.map(lambda x: x), df.schema()) + self.assertEqual(df.collect(), df2.collect()) + + rdd = self.sc.parallelize(range(10)).map(lambda x: Row(a=x)) + df3 = self.sqlCtx.applySchema(rdd, df.schema()) + self.assertEqual(10, df3.count()) + + def test_serialize_nested_array_and_map(self): + d = [Row(l=[Row(a=1, b='s')], d={"key": Row(c=1.0, d="2")})] + rdd = self.sc.parallelize(d) + df = self.sqlCtx.inferSchema(rdd) + row = df.head() + self.assertEqual(1, len(row.l)) + self.assertEqual(1, row.l[0].a) + self.assertEqual("2", row.d["key"].d) + + l = df.map(lambda x: x.l).first() + self.assertEqual(1, len(l)) + self.assertEqual('s', l[0].b) + + d = df.map(lambda x: x.d).first() + self.assertEqual(1, len(d)) + self.assertEqual(1.0, d["key"].c) + + row = df.map(lambda x: x.d["key"]).first() + self.assertEqual(1.0, row.c) + self.assertEqual("2", row.d) + + def test_infer_schema(self): + d = [Row(l=[], d={}), + Row(l=[Row(a=1, b='s')], d={"key": Row(c=1.0, d="2")}, s="")] + rdd = self.sc.parallelize(d) + df = self.sqlCtx.inferSchema(rdd) + self.assertEqual([], df.map(lambda r: r.l).first()) + self.assertEqual([None, ""], df.map(lambda r: r.s).collect()) + df.registerTempTable("test") + result = self.sqlCtx.sql("SELECT l[0].a from test where d['key'].d = '2'") + self.assertEqual(1, result.head()[0]) + + df2 = self.sqlCtx.inferSchema(rdd, 1.0) + self.assertEqual(df.schema(), df2.schema()) + self.assertEqual({}, df2.map(lambda r: r.d).first()) + self.assertEqual([None, ""], df2.map(lambda r: r.s).collect()) + df2.registerTempTable("test2") + result = self.sqlCtx.sql("SELECT l[0].a from test2 where d['key'].d = '2'") + self.assertEqual(1, result.head()[0]) + + def test_struct_in_map(self): + d = [Row(m={Row(i=1): Row(s="")})] + rdd = self.sc.parallelize(d) + df = self.sqlCtx.inferSchema(rdd) + k, v = df.head().m.items()[0] + self.assertEqual(1, k.i) + self.assertEqual("", v.s) + + def test_convert_row_to_dict(self): + row = Row(l=[Row(a=1, b='s')], d={"key": Row(c=1.0, d="2")}) + self.assertEqual(1, row.asDict()['l'][0].a) + rdd = self.sc.parallelize([row]) + df = self.sqlCtx.inferSchema(rdd) + df.registerTempTable("test") + row = self.sqlCtx.sql("select l, d from test").head() + self.assertEqual(1, row.asDict()["l"][0].a) + self.assertEqual(1.0, row.asDict()['d']['key'].c) + + def test_infer_schema_with_udt(self): + from pyspark.sql_tests import ExamplePoint, ExamplePointUDT + row = Row(label=1.0, point=ExamplePoint(1.0, 2.0)) + rdd = self.sc.parallelize([row]) + df = self.sqlCtx.inferSchema(rdd) + schema = df.schema() + field = [f for f in schema.fields if f.name == "point"][0] + self.assertEqual(type(field.dataType), ExamplePointUDT) + df.registerTempTable("labeled_point") + point = self.sqlCtx.sql("SELECT point FROM labeled_point").head().point + self.assertEqual(point, ExamplePoint(1.0, 2.0)) + + def test_apply_schema_with_udt(self): + from pyspark.sql_tests import ExamplePoint, ExamplePointUDT + row = (1.0, ExamplePoint(1.0, 2.0)) + rdd = self.sc.parallelize([row]) + schema = StructType([StructField("label", DoubleType(), False), + StructField("point", ExamplePointUDT(), False)]) + df = self.sqlCtx.applySchema(rdd, schema) + point = df.head().point + self.assertEquals(point, ExamplePoint(1.0, 2.0)) + + def test_parquet_with_udt(self): + from pyspark.sql_tests import ExamplePoint + row = Row(label=1.0, point=ExamplePoint(1.0, 2.0)) + rdd = self.sc.parallelize([row]) + df0 = self.sqlCtx.inferSchema(rdd) + output_dir = os.path.join(self.tempdir.name, "labeled_point") + df0.saveAsParquetFile(output_dir) + df1 = self.sqlCtx.parquetFile(output_dir) + point = df1.head().point + self.assertEquals(point, ExamplePoint(1.0, 2.0)) + + def test_column_operators(self): + from pyspark.sql import Column, LongType + ci = self.df.key + cs = self.df.value + c = ci == cs + self.assertTrue(isinstance((- ci - 1 - 2) % 3 * 2.5 / 3.5, Column)) + rcc = (1 + ci), (1 - ci), (1 * ci), (1 / ci), (1 % ci) + self.assertTrue(all(isinstance(c, Column) for c in rcc)) + cb = [ci == 5, ci != 0, ci > 3, ci < 4, ci >= 0, ci <= 7, ci and cs, ci or cs] + self.assertTrue(all(isinstance(c, Column) for c in cb)) + cbool = (ci & ci), (ci | ci), (~ci) + self.assertTrue(all(isinstance(c, Column) for c in cbool)) + css = cs.like('a'), cs.rlike('a'), cs.asc(), cs.desc(), cs.startswith('a'), cs.endswith('a') + self.assertTrue(all(isinstance(c, Column) for c in css)) + self.assertTrue(isinstance(ci.cast(LongType()), Column)) + + def test_column_select(self): + df = self.df + self.assertEqual(self.testData, df.select("*").collect()) + self.assertEqual(self.testData, df.select(df.key, df.value).collect()) + self.assertEqual([Row(value='1')], df.where(df.key == 1).select(df.value).collect()) + + def test_aggregator(self): + df = self.df + g = df.groupBy() + self.assertEqual([99, 100], sorted(g.agg({'key': 'max', 'value': 'count'}).collect()[0])) + self.assertEqual([Row(**{"AVG(key#0)": 49.5})], g.mean().collect()) + + from pyspark.sql import Dsl + self.assertEqual((0, u'99'), tuple(g.agg(Dsl.first(df.key), Dsl.last(df.value)).first())) + self.assertTrue(95 < g.agg(Dsl.approxCountDistinct(df.key)).first()[0]) + self.assertEqual(100, g.agg(Dsl.countDistinct(df.value)).first()[0]) + + def test_help_command(self): + # Regression test for SPARK-5464 + rdd = self.sc.parallelize(['{"foo":"bar"}', '{"foo":"baz"}']) + df = self.sqlCtx.jsonRDD(rdd) + # render_doc() reproduces the help() exception without printing output + pydoc.render_doc(df) + pydoc.render_doc(df.foo) + pydoc.render_doc(df.take(1)) + + +if __name__ == "__main__": + unittest.main() diff --git a/python/pyspark/tests.py b/python/pyspark/tests.py index c7d0622d65f25..b5e28c498040b 100644 --- a/python/pyspark/tests.py +++ b/python/pyspark/tests.py @@ -23,7 +23,6 @@ from fileinput import input from glob import glob import os -import pydoc import re import shutil import subprocess @@ -52,8 +51,6 @@ from pyspark.serializers import read_int, BatchedSerializer, MarshalSerializer, PickleSerializer, \ CloudPickleSerializer, CompressedSerializer, UTF8Deserializer, NoOpSerializer from pyspark.shuffle import Aggregator, InMemoryMerger, ExternalMerger, ExternalSorter -from pyspark.sql import SQLContext, IntegerType, Row, ArrayType, StructType, StructField, \ - UserDefinedType, DoubleType from pyspark import shuffle from pyspark.profiler import BasicProfiler @@ -795,264 +792,6 @@ def heavy_foo(x): rdd.foreach(heavy_foo) -class ExamplePointUDT(UserDefinedType): - """ - User-defined type (UDT) for ExamplePoint. - """ - - @classmethod - def sqlType(self): - return ArrayType(DoubleType(), False) - - @classmethod - def module(cls): - return 'pyspark.tests' - - @classmethod - def scalaUDT(cls): - return 'org.apache.spark.sql.test.ExamplePointUDT' - - def serialize(self, obj): - return [obj.x, obj.y] - - def deserialize(self, datum): - return ExamplePoint(datum[0], datum[1]) - - -class ExamplePoint: - """ - An example class to demonstrate UDT in Scala, Java, and Python. - """ - - __UDT__ = ExamplePointUDT() - - def __init__(self, x, y): - self.x = x - self.y = y - - def __repr__(self): - return "ExamplePoint(%s,%s)" % (self.x, self.y) - - def __str__(self): - return "(%s,%s)" % (self.x, self.y) - - def __eq__(self, other): - return isinstance(other, ExamplePoint) and \ - other.x == self.x and other.y == self.y - - -class SQLTests(ReusedPySparkTestCase): - - @classmethod - def setUpClass(cls): - ReusedPySparkTestCase.setUpClass() - cls.tempdir = tempfile.NamedTemporaryFile(delete=False) - os.unlink(cls.tempdir.name) - - @classmethod - def tearDownClass(cls): - ReusedPySparkTestCase.tearDownClass() - shutil.rmtree(cls.tempdir.name, ignore_errors=True) - - def setUp(self): - self.sqlCtx = SQLContext(self.sc) - self.testData = [Row(key=i, value=str(i)) for i in range(100)] - rdd = self.sc.parallelize(self.testData) - self.df = self.sqlCtx.inferSchema(rdd) - - def test_udf(self): - self.sqlCtx.registerFunction("twoArgs", lambda x, y: len(x) + y, IntegerType()) - [row] = self.sqlCtx.sql("SELECT twoArgs('test', 1)").collect() - self.assertEqual(row[0], 5) - - def test_udf2(self): - self.sqlCtx.registerFunction("strlen", lambda string: len(string), IntegerType()) - self.sqlCtx.inferSchema(self.sc.parallelize([Row(a="test")])).registerTempTable("test") - [res] = self.sqlCtx.sql("SELECT strlen(a) FROM test WHERE strlen(a) > 1").collect() - self.assertEqual(4, res[0]) - - def test_udf_with_array_type(self): - d = [Row(l=range(3), d={"key": range(5)})] - rdd = self.sc.parallelize(d) - self.sqlCtx.inferSchema(rdd).registerTempTable("test") - self.sqlCtx.registerFunction("copylist", lambda l: list(l), ArrayType(IntegerType())) - self.sqlCtx.registerFunction("maplen", lambda d: len(d), IntegerType()) - [(l1, l2)] = self.sqlCtx.sql("select copylist(l), maplen(d) from test").collect() - self.assertEqual(range(3), l1) - self.assertEqual(1, l2) - - def test_broadcast_in_udf(self): - bar = {"a": "aa", "b": "bb", "c": "abc"} - foo = self.sc.broadcast(bar) - self.sqlCtx.registerFunction("MYUDF", lambda x: foo.value[x] if x else '') - [res] = self.sqlCtx.sql("SELECT MYUDF('c')").collect() - self.assertEqual("abc", res[0]) - [res] = self.sqlCtx.sql("SELECT MYUDF('')").collect() - self.assertEqual("", res[0]) - - def test_basic_functions(self): - rdd = self.sc.parallelize(['{"foo":"bar"}', '{"foo":"baz"}']) - df = self.sqlCtx.jsonRDD(rdd) - df.count() - df.collect() - df.schema() - - # cache and checkpoint - self.assertFalse(df.is_cached) - df.persist() - df.unpersist() - df.cache() - self.assertTrue(df.is_cached) - self.assertEqual(2, df.count()) - - df.registerTempTable("temp") - df = self.sqlCtx.sql("select foo from temp") - df.count() - df.collect() - - def test_apply_schema_to_row(self): - df = self.sqlCtx.jsonRDD(self.sc.parallelize(["""{"a":2}"""])) - df2 = self.sqlCtx.applySchema(df.map(lambda x: x), df.schema()) - self.assertEqual(df.collect(), df2.collect()) - - rdd = self.sc.parallelize(range(10)).map(lambda x: Row(a=x)) - df3 = self.sqlCtx.applySchema(rdd, df.schema()) - self.assertEqual(10, df3.count()) - - def test_serialize_nested_array_and_map(self): - d = [Row(l=[Row(a=1, b='s')], d={"key": Row(c=1.0, d="2")})] - rdd = self.sc.parallelize(d) - df = self.sqlCtx.inferSchema(rdd) - row = df.head() - self.assertEqual(1, len(row.l)) - self.assertEqual(1, row.l[0].a) - self.assertEqual("2", row.d["key"].d) - - l = df.map(lambda x: x.l).first() - self.assertEqual(1, len(l)) - self.assertEqual('s', l[0].b) - - d = df.map(lambda x: x.d).first() - self.assertEqual(1, len(d)) - self.assertEqual(1.0, d["key"].c) - - row = df.map(lambda x: x.d["key"]).first() - self.assertEqual(1.0, row.c) - self.assertEqual("2", row.d) - - def test_infer_schema(self): - d = [Row(l=[], d={}), - Row(l=[Row(a=1, b='s')], d={"key": Row(c=1.0, d="2")}, s="")] - rdd = self.sc.parallelize(d) - df = self.sqlCtx.inferSchema(rdd) - self.assertEqual([], df.map(lambda r: r.l).first()) - self.assertEqual([None, ""], df.map(lambda r: r.s).collect()) - df.registerTempTable("test") - result = self.sqlCtx.sql("SELECT l[0].a from test where d['key'].d = '2'") - self.assertEqual(1, result.head()[0]) - - df2 = self.sqlCtx.inferSchema(rdd, 1.0) - self.assertEqual(df.schema(), df2.schema()) - self.assertEqual({}, df2.map(lambda r: r.d).first()) - self.assertEqual([None, ""], df2.map(lambda r: r.s).collect()) - df2.registerTempTable("test2") - result = self.sqlCtx.sql("SELECT l[0].a from test2 where d['key'].d = '2'") - self.assertEqual(1, result.head()[0]) - - def test_struct_in_map(self): - d = [Row(m={Row(i=1): Row(s="")})] - rdd = self.sc.parallelize(d) - df = self.sqlCtx.inferSchema(rdd) - k, v = df.head().m.items()[0] - self.assertEqual(1, k.i) - self.assertEqual("", v.s) - - def test_convert_row_to_dict(self): - row = Row(l=[Row(a=1, b='s')], d={"key": Row(c=1.0, d="2")}) - self.assertEqual(1, row.asDict()['l'][0].a) - rdd = self.sc.parallelize([row]) - df = self.sqlCtx.inferSchema(rdd) - df.registerTempTable("test") - row = self.sqlCtx.sql("select l, d from test").head() - self.assertEqual(1, row.asDict()["l"][0].a) - self.assertEqual(1.0, row.asDict()['d']['key'].c) - - def test_infer_schema_with_udt(self): - from pyspark.tests import ExamplePoint, ExamplePointUDT - row = Row(label=1.0, point=ExamplePoint(1.0, 2.0)) - rdd = self.sc.parallelize([row]) - df = self.sqlCtx.inferSchema(rdd) - schema = df.schema() - field = [f for f in schema.fields if f.name == "point"][0] - self.assertEqual(type(field.dataType), ExamplePointUDT) - df.registerTempTable("labeled_point") - point = self.sqlCtx.sql("SELECT point FROM labeled_point").head().point - self.assertEqual(point, ExamplePoint(1.0, 2.0)) - - def test_apply_schema_with_udt(self): - from pyspark.tests import ExamplePoint, ExamplePointUDT - row = (1.0, ExamplePoint(1.0, 2.0)) - rdd = self.sc.parallelize([row]) - schema = StructType([StructField("label", DoubleType(), False), - StructField("point", ExamplePointUDT(), False)]) - df = self.sqlCtx.applySchema(rdd, schema) - point = df.head().point - self.assertEquals(point, ExamplePoint(1.0, 2.0)) - - def test_parquet_with_udt(self): - from pyspark.tests import ExamplePoint - row = Row(label=1.0, point=ExamplePoint(1.0, 2.0)) - rdd = self.sc.parallelize([row]) - df0 = self.sqlCtx.inferSchema(rdd) - output_dir = os.path.join(self.tempdir.name, "labeled_point") - df0.saveAsParquetFile(output_dir) - df1 = self.sqlCtx.parquetFile(output_dir) - point = df1.head().point - self.assertEquals(point, ExamplePoint(1.0, 2.0)) - - def test_column_operators(self): - from pyspark.sql import Column, LongType - ci = self.df.key - cs = self.df.value - c = ci == cs - self.assertTrue(isinstance((- ci - 1 - 2) % 3 * 2.5 / 3.5, Column)) - rcc = (1 + ci), (1 - ci), (1 * ci), (1 / ci), (1 % ci) - self.assertTrue(all(isinstance(c, Column) for c in rcc)) - cb = [ci == 5, ci != 0, ci > 3, ci < 4, ci >= 0, ci <= 7, ci and cs, ci or cs] - self.assertTrue(all(isinstance(c, Column) for c in cb)) - cbit = (ci & ci), (ci | ci), (ci ^ ci), (~ci) - self.assertTrue(all(isinstance(c, Column) for c in cbit)) - css = cs.like('a'), cs.rlike('a'), cs.asc(), cs.desc(), cs.startswith('a'), cs.endswith('a') - self.assertTrue(all(isinstance(c, Column) for c in css)) - self.assertTrue(isinstance(ci.cast(LongType()), Column)) - - def test_column_select(self): - df = self.df - self.assertEqual(self.testData, df.select("*").collect()) - self.assertEqual(self.testData, df.select(df.key, df.value).collect()) - self.assertEqual([Row(value='1')], df.where(df.key == 1).select(df.value).collect()) - - def test_aggregator(self): - df = self.df - g = df.groupBy() - self.assertEqual([99, 100], sorted(g.agg({'key': 'max', 'value': 'count'}).collect()[0])) - self.assertEqual([Row(**{"AVG(key#0)": 49.5})], g.mean().collect()) - - from pyspark.sql import Aggregator as Agg - self.assertEqual((0, u'99'), tuple(g.agg(Agg.first(df.key), Agg.last(df.value)).first())) - self.assertTrue(95 < g.agg(Agg.approxCountDistinct(df.key)).first()[0]) - self.assertEqual(100, g.agg(Agg.countDistinct(df.value)).first()[0]) - - def test_help_command(self): - # Regression test for SPARK-5464 - rdd = self.sc.parallelize(['{"foo":"bar"}', '{"foo":"baz"}']) - df = self.sqlCtx.jsonRDD(rdd) - # render_doc() reproduces the help() exception without printing output - pydoc.render_doc(df) - pydoc.render_doc(df.foo) - pydoc.render_doc(df.take(1)) - - class InputFormatTests(ReusedPySparkTestCase): @classmethod diff --git a/python/run-tests b/python/run-tests index e91f1a875d356..649a2c44d187b 100755 --- a/python/run-tests +++ b/python/run-tests @@ -65,6 +65,7 @@ function run_core_tests() { function run_sql_tests() { echo "Run sql tests ..." run_test "pyspark/sql.py" + run_test "pyspark/sql_tests.py" } function run_mllib_tests() { diff --git a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala index 4aa37219e13a6..ddce77deb83e1 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/Column.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/Column.scala @@ -115,15 +115,6 @@ trait Column extends DataFrame { */ def unary_- : Column = exprToColumn(UnaryMinus(expr)) - /** - * Bitwise NOT. - * {{{ - * // Scala: select the flags column and negate every bit. - * df.select( ~df("flags") ) - * }}} - */ - def unary_~ : Column = exprToColumn(BitwiseNot(expr)) - /** * Inversion of boolean expression, i.e. NOT. * {{ @@ -362,27 +353,6 @@ trait Column extends DataFrame { */ def and(other: Column): Column = this && other - /** - * Bitwise AND. - */ - def & (other: Any): Column = constructColumn(other) { o => - BitwiseAnd(expr, o.expr) - } - - /** - * Bitwise OR with an expression. - */ - def | (other: Any): Column = constructColumn(other) { o => - BitwiseOr(expr, o.expr) - } - - /** - * Bitwise XOR with an expression. - */ - def ^ (other: Any): Column = constructColumn(other) { o => - BitwiseXor(expr, o.expr) - } - /** * Sum of this expression and another expression. * {{{ @@ -527,16 +497,16 @@ trait Column extends DataFrame { * @param startPos expression for the starting position. * @param len expression for the length of the substring. */ - def substr(startPos: Column, len: Column): Column = { - new IncomputableColumn(Substring(expr, startPos.expr, len.expr)) - } + def substr(startPos: Column, len: Column): Column = + exprToColumn(Substring(expr, startPos.expr, len.expr), computable = false) /** * An expression that returns a substring. * @param startPos starting position. * @param len length of the substring. */ - def substr(startPos: Int, len: Int): Column = this.substr(lit(startPos), lit(len)) + def substr(startPos: Int, len: Int): Column = + exprToColumn(Substring(expr, lit(startPos).expr, lit(len).expr)) def contains(other: Any): Column = constructColumn(other) { o => Contains(expr, o.expr) diff --git a/sql/core/src/main/scala/org/apache/spark/sql/test/ExamplePointUDT.scala b/sql/core/src/main/scala/org/apache/spark/sql/test/ExamplePointUDT.scala index 006b16fbe07bd..e6f622e87f7a4 100644 --- a/sql/core/src/main/scala/org/apache/spark/sql/test/ExamplePointUDT.scala +++ b/sql/core/src/main/scala/org/apache/spark/sql/test/ExamplePointUDT.scala @@ -37,7 +37,7 @@ private[sql] class ExamplePointUDT extends UserDefinedType[ExamplePoint] { override def sqlType: DataType = ArrayType(DoubleType, false) - override def pyUDT: String = "pyspark.tests.ExamplePointUDT" + override def pyUDT: String = "pyspark.sql_tests.ExamplePointUDT" override def serialize(obj: Any): Seq[Double] = { obj match { From e380d2d46c92b319eafe30974ac7c1509081fca4 Mon Sep 17 00:00:00 2001 From: Jacky Li Date: Tue, 3 Feb 2015 17:02:42 -0800 Subject: [PATCH 52/52] [SPARK-5520][MLlib] Make FP-Growth implementation take generic item types (WIP) Make FPGrowth.run API take generic item types: `def run[Item: ClassTag, Basket <: Iterable[Item]](data: RDD[Basket]): FPGrowthModel[Item]` so that user can invoke it by run[String, Seq[String]], run[Int, Seq[Int]], run[Int, List[Int]], etc. Scala part is done, while java part is still in progress Author: Jacky Li Author: Jacky Li Author: Xiangrui Meng Closes #4340 from jackylk/SPARK-5520-WIP and squashes the following commits: f5acf84 [Jacky Li] Merge pull request #2 from mengxr/SPARK-5520 63073d0 [Xiangrui Meng] update to make generic FPGrowth Java-friendly 737d8bb [Jacky Li] fix scalastyle 793f85c [Jacky Li] add Java test case 7783351 [Jacky Li] add generic support in FPGrowth --- .../org/apache/spark/mllib/fpm/FPGrowth.scala | 50 +++++++---- .../spark/mllib/fpm/JavaFPGrowthSuite.java | 84 +++++++++++++++++++ .../spark/mllib/fpm/FPGrowthSuite.scala | 51 ++++++++++- 3 files changed, 170 insertions(+), 15 deletions(-) create mode 100644 mllib/src/test/java/org/apache/spark/mllib/fpm/JavaFPGrowthSuite.java diff --git a/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPGrowth.scala b/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPGrowth.scala index 9591c7966e06a..1433ee9a0dd5a 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPGrowth.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/fpm/FPGrowth.scala @@ -18,14 +18,31 @@ package org.apache.spark.mllib.fpm import java.{util => ju} +import java.lang.{Iterable => JavaIterable} import scala.collection.mutable +import scala.collection.JavaConverters._ +import scala.reflect.ClassTag -import org.apache.spark.{SparkException, HashPartitioner, Logging, Partitioner} +import org.apache.spark.{HashPartitioner, Logging, Partitioner, SparkException} +import org.apache.spark.api.java.{JavaPairRDD, JavaRDD} +import org.apache.spark.api.java.JavaSparkContext.fakeClassTag import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel -class FPGrowthModel(val freqItemsets: RDD[(Array[String], Long)]) extends Serializable +/** + * Model trained by [[FPGrowth]], which holds frequent itemsets. + * @param freqItemsets frequent itemset, which is an RDD of (itemset, frequency) pairs + * @tparam Item item type + */ +class FPGrowthModel[Item: ClassTag]( + val freqItemsets: RDD[(Array[Item], Long)]) extends Serializable { + + /** Returns frequent itemsets as a [[org.apache.spark.api.java.JavaPairRDD]]. */ + def javaFreqItemsets(): JavaPairRDD[Array[Item], java.lang.Long] = { + JavaPairRDD.fromRDD(freqItemsets).asInstanceOf[JavaPairRDD[Array[Item], java.lang.Long]] + } +} /** * This class implements Parallel FP-growth algorithm to do frequent pattern matching on input data. @@ -69,7 +86,7 @@ class FPGrowth private ( * @param data input data set, each element contains a transaction * @return an [[FPGrowthModel]] */ - def run(data: RDD[Array[String]]): FPGrowthModel = { + def run[Item: ClassTag](data: RDD[Array[Item]]): FPGrowthModel[Item] = { if (data.getStorageLevel == StorageLevel.NONE) { logWarning("Input data is not cached.") } @@ -82,19 +99,24 @@ class FPGrowth private ( new FPGrowthModel(freqItemsets) } + def run[Item, Basket <: JavaIterable[Item]](data: JavaRDD[Basket]): FPGrowthModel[Item] = { + implicit val tag = fakeClassTag[Item] + run(data.rdd.map(_.asScala.toArray)) + } + /** * Generates frequent items by filtering the input data using minimal support level. * @param minCount minimum count for frequent itemsets * @param partitioner partitioner used to distribute items * @return array of frequent pattern ordered by their frequencies */ - private def genFreqItems( - data: RDD[Array[String]], + private def genFreqItems[Item: ClassTag]( + data: RDD[Array[Item]], minCount: Long, - partitioner: Partitioner): Array[String] = { + partitioner: Partitioner): Array[Item] = { data.flatMap { t => val uniq = t.toSet - if (t.length != uniq.size) { + if (t.size != uniq.size) { throw new SparkException(s"Items in a transaction must be unique but got ${t.toSeq}.") } t @@ -114,11 +136,11 @@ class FPGrowth private ( * @param partitioner partitioner used to distribute transactions * @return an RDD of (frequent itemset, count) */ - private def genFreqItemsets( - data: RDD[Array[String]], + private def genFreqItemsets[Item: ClassTag]( + data: RDD[Array[Item]], minCount: Long, - freqItems: Array[String], - partitioner: Partitioner): RDD[(Array[String], Long)] = { + freqItems: Array[Item], + partitioner: Partitioner): RDD[(Array[Item], Long)] = { val itemToRank = freqItems.zipWithIndex.toMap data.flatMap { transaction => genCondTransactions(transaction, itemToRank, partitioner) @@ -139,9 +161,9 @@ class FPGrowth private ( * @param partitioner partitioner used to distribute transactions * @return a map of (target partition, conditional transaction) */ - private def genCondTransactions( - transaction: Array[String], - itemToRank: Map[String, Int], + private def genCondTransactions[Item: ClassTag]( + transaction: Array[Item], + itemToRank: Map[Item, Int], partitioner: Partitioner): mutable.Map[Int, Array[Int]] = { val output = mutable.Map.empty[Int, Array[Int]] // Filter the basket by frequent items pattern and sort their ranks. diff --git a/mllib/src/test/java/org/apache/spark/mllib/fpm/JavaFPGrowthSuite.java b/mllib/src/test/java/org/apache/spark/mllib/fpm/JavaFPGrowthSuite.java new file mode 100644 index 0000000000000..851707c8a19c4 --- /dev/null +++ b/mllib/src/test/java/org/apache/spark/mllib/fpm/JavaFPGrowthSuite.java @@ -0,0 +1,84 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.fpm; + +import java.io.Serializable; +import java.util.ArrayList; + +import org.junit.After; +import org.junit.Before; +import org.junit.Test; +import com.google.common.collect.Lists; +import static org.junit.Assert.*; + +import org.apache.spark.api.java.JavaRDD; +import org.apache.spark.api.java.JavaSparkContext; + +public class JavaFPGrowthSuite implements Serializable { + private transient JavaSparkContext sc; + + @Before + public void setUp() { + sc = new JavaSparkContext("local", "JavaFPGrowth"); + } + + @After + public void tearDown() { + sc.stop(); + sc = null; + } + + @Test + public void runFPGrowth() { + + @SuppressWarnings("unchecked") + JavaRDD> rdd = sc.parallelize(Lists.newArrayList( + Lists.newArrayList("r z h k p".split(" ")), + Lists.newArrayList("z y x w v u t s".split(" ")), + Lists.newArrayList("s x o n r".split(" ")), + Lists.newArrayList("x z y m t s q e".split(" ")), + Lists.newArrayList("z".split(" ")), + Lists.newArrayList("x z y r q t p".split(" "))), 2); + + FPGrowth fpg = new FPGrowth(); + + FPGrowthModel model6 = fpg + .setMinSupport(0.9) + .setNumPartitions(1) + .run(rdd); + assertEquals(0, model6.javaFreqItemsets().count()); + + FPGrowthModel model3 = fpg + .setMinSupport(0.5) + .setNumPartitions(2) + .run(rdd); + assertEquals(18, model3.javaFreqItemsets().count()); + + FPGrowthModel model2 = fpg + .setMinSupport(0.3) + .setNumPartitions(4) + .run(rdd); + assertEquals(54, model2.javaFreqItemsets().count()); + + FPGrowthModel model1 = fpg + .setMinSupport(0.1) + .setNumPartitions(8) + .run(rdd); + assertEquals(625, model1.javaFreqItemsets().count()); + } +} diff --git a/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPGrowthSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPGrowthSuite.scala index 71ef60da6dd32..68128284b8608 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPGrowthSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/fpm/FPGrowthSuite.scala @@ -22,7 +22,8 @@ import org.apache.spark.mllib.util.MLlibTestSparkContext class FPGrowthSuite extends FunSuite with MLlibTestSparkContext { - test("FP-Growth") { + + test("FP-Growth using String type") { val transactions = Seq( "r z h k p", "z y x w v u t s", @@ -70,4 +71,52 @@ class FPGrowthSuite extends FunSuite with MLlibTestSparkContext { .run(rdd) assert(model1.freqItemsets.count() === 625) } + + test("FP-Growth using Int type") { + val transactions = Seq( + "1 2 3", + "1 2 3 4", + "5 4 3 2 1", + "6 5 4 3 2 1", + "2 4", + "1 3", + "1 7") + .map(_.split(" ").map(_.toInt).toArray) + val rdd = sc.parallelize(transactions, 2).cache() + + val fpg = new FPGrowth() + + val model6 = fpg + .setMinSupport(0.9) + .setNumPartitions(1) + .run(rdd) + assert(model6.freqItemsets.count() === 0) + + val model3 = fpg + .setMinSupport(0.5) + .setNumPartitions(2) + .run(rdd) + assert(model3.freqItemsets.first()._1.getClass === Array(1).getClass, + "frequent itemsets should use primitive arrays") + val freqItemsets3 = model3.freqItemsets.collect().map { case (items, count) => + (items.toSet, count) + } + val expected = Set( + (Set(1), 6L), (Set(2), 5L), (Set(3), 5L), (Set(4), 4L), + (Set(1, 2), 4L), (Set(1, 3), 5L), (Set(2, 3), 4L), + (Set(2, 4), 4L), (Set(1, 2, 3), 4L)) + assert(freqItemsets3.toSet === expected) + + val model2 = fpg + .setMinSupport(0.3) + .setNumPartitions(4) + .run(rdd) + assert(model2.freqItemsets.count() === 15) + + val model1 = fpg + .setMinSupport(0.1) + .setNumPartitions(8) + .run(rdd) + assert(model1.freqItemsets.count() === 65) + } }
Property NameDefaultMeaning
spark.sql.parquet.int96AsTimestamptrue + Some Parquet-producing systems, in particular Impala, store Timestamp into INT96. Spark would also + store Timestamp as INT96 because we need to avoid precision lost of the nanoseconds field. This + flag tells Spark SQL to interpret INT96 data as a timestamp to provide compatibility with these systems. +
spark.sql.parquet.cacheMetadata true