From 91fd7e66d0c363e68bc9ebe2bf3e03c26ef348d2 Mon Sep 17 00:00:00 2001 From: zhangjiajin Date: Tue, 7 Jul 2015 15:30:10 +0800 Subject: [PATCH] Add new algorithm PrefixSpan and test file. --- .../apache/spark/mllib/fpm/Prefixspan.scala | 183 ++++++++++++++++++ .../spark/mllib/fpm/PrefixspanSuite.scala | 47 +++++ 2 files changed, 230 insertions(+) create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/fpm/Prefixspan.scala create mode 100644 mllib/src/test/scala/org/apache/spark/mllib/fpm/PrefixspanSuite.scala diff --git a/mllib/src/main/scala/org/apache/spark/mllib/fpm/Prefixspan.scala b/mllib/src/main/scala/org/apache/spark/mllib/fpm/Prefixspan.scala new file mode 100644 index 0000000000000..c110a37fce169 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/fpm/Prefixspan.scala @@ -0,0 +1,183 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.fpm + +import org.apache.spark.rdd.RDD + +/** + * + * A parallel PrefixSpan algorithm to mine sequential pattern. + * The PrefixSpan algorithm is described in + * [[http://web.engr.illinois.edu/~hanj/pdf/span01.pdf]]. + * + * @param sequences original sequences data + * @param minSupport the minimal support level of the sequential pattern, any pattern appears + * more than minSupport times will be output + * @param maxPatternLength the maximal length of the sequential pattern, any pattern appears + * less than maxPatternLength will be output + * + * @see [[https://en.wikipedia.org/wiki/Sequential_Pattern_Mining Sequential Pattern Mining + * (Wikipedia)]] + */ +class Prefixspan( + val sequences: RDD[Array[Int]], + val minSupport: Int = 2, + val maxPatternLength: Int = 50) extends java.io.Serializable { + + /** + * Calculate sequential patterns: + * a) find and collect length-one patterns + * b) for each length-one patterns and each sequence, + * emit (pattern (prefix), suffix sequence) as key-value pairs + * c) group by key and then map value iterator to array + * d) local PrefixSpan on each prefix + * @return sequential patterns + */ + def run(): RDD[(Seq[Int], Int)] = { + val (patternsOneLength, prefixAndCandidates) = findPatternsLengthOne() + val repartitionedRdd = repartitionSequences(prefixAndCandidates) + val nextPatterns = getPatternsInLocal(repartitionedRdd) + val allPatterns = patternsOneLength.map(x => (Seq(x._1), x._2)) ++ nextPatterns + allPatterns + } + + /** + * Find the patterns that it's length is one + * @return length-one patterns and projection table + */ + private def findPatternsLengthOne(): (RDD[(Int, Int)], RDD[(Seq[Int], Array[Int])]) = { + val patternsOneLength = sequences + .map(_.distinct) + .flatMap(p => p) + .map((_, 1)) + .reduceByKey(_ + _) + + val removedElements: Array[Int] = patternsOneLength + .filter(_._2 < minSupport) + .map(_._1) + .collect() + + val savedElements = patternsOneLength.filter(_._2 >= minSupport) + + val savedElementsArray = savedElements + .map(_._1) + .collect() + + val filteredSequences = + if (removedElements.isEmpty) { + sequences + } else { + sequences.map { p => + p.filter { x => !removedElements.contains(x) } + } + } + + val prefixAndCandidates = filteredSequences.flatMap { x => + savedElementsArray.map { y => + val sub = getSuffix(y, x) + (Seq(y), sub) + } + } + + (savedElements, prefixAndCandidates) + } + + /** + * Re-partition the RDD data, to get better balance and performance. + * @param data patterns and projected sequences data before re-partition + * @return patterns and projected sequences data after re-partition + */ + private def repartitionSequences( + data: RDD[(Seq[Int], Array[Int])]): RDD[(Seq[Int], Array[Array[Int]])] = { + val dataRemovedEmptyLine = data.filter(x => x._2.nonEmpty) + val dataMerged = dataRemovedEmptyLine + .groupByKey() + .map(x => (x._1, x._2.toArray)) + dataMerged + } + + /** + * calculate the patterns in local. + * @param data patterns and projected sequences data data + * @return patterns + */ + private def getPatternsInLocal( + data: RDD[(Seq[Int], Array[Array[Int]])]): RDD[(Seq[Int], Int)] = { + val result = data.flatMap { x => + getPatternsWithPrefix(x._1, x._2) + } + result + } + + /** + * calculate the patterns with one prefix in local. + * @param prefix prefix + * @param data patterns and projected sequences data + * @return patterns + */ + private def getPatternsWithPrefix( + prefix: Seq[Int], + data: Array[Array[Int]]): Array[(Seq[Int], Int)] = { + val elements = data + .map(x => x.distinct) + .flatMap(x => x) + .groupBy(x => x) + .map(x => (x._1, x._2.length)) + + val selectedSingleElements = elements.filter(x => x._2 >= minSupport) + + val selectedElements = selectedSingleElements + .map(x => (prefix ++ Seq(x._1), x._2)) + .toArray + + val cleanedSearchSpace = data + .map(x => x.filter(y => selectedSingleElements.contains(y))) + + val newSearchSpace = selectedSingleElements.map { x => + val sub = cleanedSearchSpace.map(y => getSuffix(x._1, y)).filter(_.nonEmpty) + (prefix ++ Seq(x._1), sub) + }.filter(x => x._2.nonEmpty) + .toArray + + val continueProcess = newSearchSpace.nonEmpty && prefix.length + 1 < maxPatternLength + + if (continueProcess) { + val nextPatterns = newSearchSpace + .map(x => getPatternsWithPrefix(x._1, x._2)) + .reduce(_ ++ _) + selectedElements ++ nextPatterns + } else { + selectedElements + } + } + + /** + * calculate suffix sequence following a prefix in a sequence + * @param prefix prefix + * @param sequence original sequence + * @return suffix sequence + */ + private def getSuffix(prefix: Int, sequence: Array[Int]): Array[Int] = { + val index = sequence.indexOf(prefix) + if (index == -1) { + Array() + } else { + sequence.takeRight(sequence.length - index - 1) + } + } +} \ No newline at end of file diff --git a/mllib/src/test/scala/org/apache/spark/mllib/fpm/PrefixspanSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/fpm/PrefixspanSuite.scala new file mode 100644 index 0000000000000..770a0c0906f95 --- /dev/null +++ b/mllib/src/test/scala/org/apache/spark/mllib/fpm/PrefixspanSuite.scala @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package org.apache.spark.mllib.fpm + +import org.apache.spark.SparkFunSuite +import org.apache.spark.mllib.util.MLlibTestSparkContext + +class PrefixspanSuite extends SparkFunSuite with MLlibTestSparkContext { + + test("Prefixspan sequences mining using Integer type") { + val sequences = Array( + Array(3, 1, 3, 4, 5), + Array(2, 3, 1), + Array(3, 4, 4, 3), + Array(1, 3, 4, 5), + Array(2, 4, 1), + Array(6, 5, 3)) + + val rdd = sc.parallelize(sequences, 2).cache() + + val prefixspan1 = new Prefixspan(rdd, 2, 50) + val result1 = prefixspan1.run() + assert(result1.count() == 19) + + val prefixspan2 = new Prefixspan(rdd, 3, 50) + val result2 = prefixspan2.run() + assert(result2.count() == 5) + + val prefixspan3 = new Prefixspan(rdd, 2, 2) + val result3 = prefixspan3.run() + assert(result3.count() == 14) + } +}