From 64f3175bf976f5a28e691cedc7a4b333709e0c58 Mon Sep 17 00:00:00 2001 From: DB Tsai Date: Tue, 2 Dec 2014 11:40:43 +0800 Subject: [PATCH] [SPARK-4611][MLlib] Implement the efficient vector norm The vector norm in breeze is implemented by `activeIterator` which is known to be very slow. In this PR, an efficient vector norm is implemented, and with this API, `Normalizer` and `k-means` have big performance improvement. Here is the benchmark against mnist8m dataset. a) `Normalizer` Before DenseVector: 68.25secs SparseVector: 17.01secs With this PR DenseVector: 12.71secs SparseVector: 2.73secs b) `k-means` Before DenseVector: 83.46secs SparseVector: 61.60secs With this PR DenseVector: 70.04secs SparseVector: 59.05secs Author: DB Tsai Closes #3462 from dbtsai/norm and squashes the following commits: 63c7165 [DB Tsai] typo 0c3637f [DB Tsai] add import org.apache.spark.SparkContext._ back 6fa616c [DB Tsai] address feedback 9b7cb56 [DB Tsai] move norm to static method 0b632e6 [DB Tsai] kmeans dbed124 [DB Tsai] style c1a877c [DB Tsai] first commit --- .../spark/mllib/clustering/KMeans.scala | 6 +-- .../spark/mllib/feature/Normalizer.scala | 4 +- .../apache/spark/mllib/linalg/Vectors.scala | 51 +++++++++++++++++++ .../spark/mllib/linalg/VectorsSuite.scala | 24 +++++++++ 4 files changed, 79 insertions(+), 6 deletions(-) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala index 34ea0de706f08..0f8dee58d8464 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/KMeans.scala @@ -19,7 +19,7 @@ package org.apache.spark.mllib.clustering import scala.collection.mutable.ArrayBuffer -import breeze.linalg.{DenseVector => BDV, Vector => BV, norm => breezeNorm} +import breeze.linalg.{DenseVector => BDV, Vector => BV} import org.apache.spark.annotation.Experimental import org.apache.spark.Logging @@ -125,7 +125,7 @@ class KMeans private ( } // Compute squared norms and cache them. - val norms = data.map(v => breezeNorm(v.toBreeze, 2.0)) + val norms = data.map(Vectors.norm(_, 2.0)) norms.persist() val breezeData = data.map(_.toBreeze).zip(norms).map { case (v, norm) => new BreezeVectorWithNorm(v, norm) @@ -425,7 +425,7 @@ object KMeans { private[clustering] class BreezeVectorWithNorm(val vector: BV[Double], val norm: Double) extends Serializable { - def this(vector: BV[Double]) = this(vector, breezeNorm(vector, 2.0)) + def this(vector: BV[Double]) = this(vector, Vectors.norm(Vectors.fromBreeze(vector), 2.0)) def this(array: Array[Double]) = this(new BDV[Double](array)) diff --git a/mllib/src/main/scala/org/apache/spark/mllib/feature/Normalizer.scala b/mllib/src/main/scala/org/apache/spark/mllib/feature/Normalizer.scala index a9c2e23717896..1ced26a9b70a2 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/feature/Normalizer.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/feature/Normalizer.scala @@ -17,8 +17,6 @@ package org.apache.spark.mllib.feature -import breeze.linalg.{norm => brzNorm} - import org.apache.spark.annotation.Experimental import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vector, Vectors} @@ -47,7 +45,7 @@ class Normalizer(p: Double) extends VectorTransformer { * @return normalized vector. If the norm of the input is zero, it will return the input vector. */ override def transform(vector: Vector): Vector = { - val norm = brzNorm(vector.toBreeze, p) + val norm = Vectors.norm(vector, p) if (norm != 0.0) { // For dense vector, we've to allocate new memory for new output vector. diff --git a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala index c6d5fe5bc678c..47d1a76fa361d 100644 --- a/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala +++ b/mllib/src/main/scala/org/apache/spark/mllib/linalg/Vectors.scala @@ -261,6 +261,57 @@ object Vectors { sys.error("Unsupported Breeze vector type: " + v.getClass.getName) } } + + /** + * Returns the p-norm of this vector. + * @param vector input vector. + * @param p norm. + * @return norm in L^p^ space. + */ + private[spark] def norm(vector: Vector, p: Double): Double = { + require(p >= 1.0) + val values = vector match { + case dv: DenseVector => dv.values + case sv: SparseVector => sv.values + case v => throw new IllegalArgumentException("Do not support vector type " + v.getClass) + } + val size = values.size + + if (p == 1) { + var sum = 0.0 + var i = 0 + while (i < size) { + sum += math.abs(values(i)) + i += 1 + } + sum + } else if (p == 2) { + var sum = 0.0 + var i = 0 + while (i < size) { + sum += values(i) * values(i) + i += 1 + } + math.sqrt(sum) + } else if (p == Double.PositiveInfinity) { + var max = 0.0 + var i = 0 + while (i < size) { + val value = math.abs(values(i)) + if (value > max) max = value + i += 1 + } + max + } else { + var sum = 0.0 + var i = 0 + while (i < size) { + sum += math.pow(math.abs(values(i)), p) + i += 1 + } + math.pow(sum, 1.0 / p) + } + } } /** diff --git a/mllib/src/test/scala/org/apache/spark/mllib/linalg/VectorsSuite.scala b/mllib/src/test/scala/org/apache/spark/mllib/linalg/VectorsSuite.scala index 9492f604af4d5..f99f01450992a 100644 --- a/mllib/src/test/scala/org/apache/spark/mllib/linalg/VectorsSuite.scala +++ b/mllib/src/test/scala/org/apache/spark/mllib/linalg/VectorsSuite.scala @@ -21,6 +21,7 @@ import breeze.linalg.{DenseMatrix => BDM} import org.scalatest.FunSuite import org.apache.spark.SparkException +import org.apache.spark.mllib.util.TestingUtils._ class VectorsSuite extends FunSuite { @@ -197,4 +198,27 @@ class VectorsSuite extends FunSuite { assert(svMap.get(2) === Some(3.1)) assert(svMap.get(3) === Some(0.0)) } + + test("vector p-norm") { + val dv = Vectors.dense(0.0, -1.2, 3.1, 0.0, -4.5, 1.9) + val sv = Vectors.sparse(6, Seq((1, -1.2), (2, 3.1), (3, 0.0), (4, -4.5), (5, 1.9))) + + assert(Vectors.norm(dv, 1.0) ~== dv.toArray.foldLeft(0.0)((a, v) => + a + math.abs(v)) relTol 1E-8) + assert(Vectors.norm(sv, 1.0) ~== sv.toArray.foldLeft(0.0)((a, v) => + a + math.abs(v)) relTol 1E-8) + + assert(Vectors.norm(dv, 2.0) ~== math.sqrt(dv.toArray.foldLeft(0.0)((a, v) => + a + v * v)) relTol 1E-8) + assert(Vectors.norm(sv, 2.0) ~== math.sqrt(sv.toArray.foldLeft(0.0)((a, v) => + a + v * v)) relTol 1E-8) + + assert(Vectors.norm(dv, Double.PositiveInfinity) ~== dv.toArray.map(math.abs).max relTol 1E-8) + assert(Vectors.norm(sv, Double.PositiveInfinity) ~== sv.toArray.map(math.abs).max relTol 1E-8) + + assert(Vectors.norm(dv, 3.7) ~== math.pow(dv.toArray.foldLeft(0.0)((a, v) => + a + math.pow(math.abs(v), 3.7)), 1.0 / 3.7) relTol 1E-8) + assert(Vectors.norm(sv, 3.7) ~== math.pow(sv.toArray.foldLeft(0.0)((a, v) => + a + math.pow(math.abs(v), 3.7)), 1.0 / 3.7) relTol 1E-8) + } }