-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathdiabetes.Rmd
483 lines (381 loc) · 18.6 KB
/
diabetes.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
---
title: "Bayesian Logistic Regression with rstanarm"
author: "Aki Vehtari, Jonah Gabry, and Ben Goodrich"
date: "First version 2017-07-17. Last modified `r format(Sys.Date())`."
output:
html_document:
fig_caption: yes
toc: TRUE
toc_depth: 2
number_sections: TRUE
toc_float:
smooth_scroll: FALSE
bibliography: modelsel.bib
csl: harvard-cite-them-right.csl
---
# Setup {.unnumbered}
```{r setup, include=FALSE}
knitr::opts_chunk$set(cache=FALSE, message=FALSE, error=FALSE, warning=FALSE, comment=NA, out.width='95%')
```
**Load packages**
```{r}
library(tidyverse)
library(caret)
library(GGally)
library(ggplot2)
library(corrplot)
library(bayesplot)
theme_set(bayesplot::theme_default(base_family = "sans"))
library(rstanarm)
options(mc.cores = parallel::detectCores())
library(loo)
library(projpred)
SEED=14124869
```
# Introduction
The introduction to Bayesian logistic regression and **rstanarm** is from a
[CRAN vignette][1] by Jonah Gabry and Ben Goodrich. [CRAN vignette][1] was modified to this notebook by [Aki Vehtari][2]. *Instead of wells data in CRAN vignette, Pima Indians data is used.* The end of this notebook differs significantly from the CRAN vignette. You can read more about how to use **rstanarm** in [several vignettes at CRAN][3].
Acknowledgements: Preprocessing of Pima Indian dataset is from a [noteebok][4] by [Lao Zhang][5]
[1]: https://cran.r-project.org/web/packages/rstanarm/vignettes/binomial.html
[2]: https://users.aalto.fi/~ave/
[3]: https://cran.r-project.org/web/packages/rstanarm/
[4]: https://www.kaggle.com/laozhang/d/uciml/pima-indians-diabetes-database/statistical-learning-with-r/run/445129
[5]: https://www.kaggle.com/laozhang
---
# Bayesian analysis
This vignette explains how to estimate generalized linear models (GLMs) for
binary (Bernoulli) and Binomial response variables using the `stan_glm`
function in the __rstanarm__ package.
The four steps of a Bayesian analysis are
1. Specify a joint distribution for the outcome(s) and all the unknowns, which
typically takes the form of a marginal prior distribution for the unknowns
multiplied by a likelihood for the outcome(s) conditional on the unknowns.
This joint distribution is proportional to a posterior distribution of the
unknowns conditional on the observed data
2. Draw from posterior distribution using Markov Chain Monte Carlo (MCMC).
3. Evaluate how well the model fits the data and possibly revise the model.
4. Draw from the posterior predictive distribution of the outcome(s) given
interesting values of the predictors in order to visualize how a manipulation
of a predictor affects (a function of) the outcome(s).
Steps 3 and 4 are covered in more depth by the vignette entitled ["How to Use the
__rstanarm__ Package"][2]. This vignette focuses on Step 1 when the likelihood is
the product of conditionally independent binomial distributions (possibly with
only one trial per observation).
## Likelihood
For a binomial GLM the likelihood for one observation $y$ can be written as a
conditionally binomial PMF
$$\binom{n}{y} \pi^{y} (1 - \pi)^{n - y},$$
where $n$ is the known number of trials, $\pi = g^{-1}(\eta)$ is the probability
of success and $\eta = \alpha + \mathbf{x}^\top \boldsymbol{\beta}$ is a linear
predictor. For a sample of size $N$, the likelihood of the entire sample is the
product of $N$ individual likelihood contributions.
Because $\pi$ is a probability, for a binomial model the _link_ function $g$
maps between the unit interval (the support of $\pi$) and the set of all real
numbers $\mathbb{R}$. When applied to a linear predictor $\eta$ with values in
$\mathbb{R}$, the inverse link function $g^{-1}(\eta)$ therefore returns a valid
probability between 0 and 1.
The two most common link functions used for binomial GLMs are the
[logit](https://en.wikipedia.org/wiki/Logit) and
[probit](https://en.wikipedia.org/wiki/Probit)
functions. With the logit (or log-odds) link function $g(x) =
\ln{\left(\frac{x}{1-x}\right)}$, the likelihood for a single observation
becomes
$$\binom{n}{y}\left(\text{logit}^{-1}(\eta)\right)^y
\left(1 - \text{logit}^{-1}(\eta)\right)^{n-y} =
\binom{n}{y} \left(\frac{e^{\eta}}{1 + e^{\eta}}\right)^{y}
\left(\frac{1}{1 + e^{\eta}}\right)^{n - y}$$
and the probit link function $g(x) = \Phi^{-1}(x)$ yields the likelihood
$$\binom{n}{y} \left(\Phi(\eta)\right)^{y}
\left(1 - \Phi(\eta)\right)^{n - y},$$
where $\Phi$ is the CDF of the standard normal distribution. The differences
between the logit and probit functions are minor and -- if, as __rstanarm__ does
by default, the probit is scaled so its slope at the origin matches the logit's
-- the two link functions should yield similar results. With `stan_glm`,
binomial models with a logit link function can typically be fit slightly faster
than the identical model with a probit link because of how the two models are
implemented in Stan. Unless the user has a specific reason to prefer the probit
link, we recommend the logit simply because it will be slightly faster and more
numerically stable.
In theory, there are infinitely many possible link functions, although in
practice only a few are typically used. Other common choices are the `cauchit`
and `cloglog` functions, which can also be used with `stan_glm` (every link
function compatible with`glm` will work with `stan_glm`).
A full Bayesian analysis requires specifying prior distributions $f(\alpha)$ and
$f(\boldsymbol{\beta})$ for the intercept and vector of regression coefficients.
When using `stan_glm`, these distributions can be set using the
`prior_intercept` and `prior` arguments. The `stan_glm` function supports a
variety of prior distributions, which are explained in the __rstanarm__
documentation (`help(priors, package = 'rstanarm')`).
As an example, suppose we have $K$ predictors and believe --- prior to seeing
the data --- that $\alpha, \beta_1, \dots, \beta_K$ are as likely to be positive
as they are to be negative, but are highly unlikely to be far from zero. These
beliefs can be represented by normal distributions with mean zero and a small
scale (standard deviation). To give $\alpha$ and each of the $\beta$s this prior
(with a scale of 1, say), in the call to `stan_glm` we would include the
arguments `prior_intercept = normal(0,1)` and
`prior = normal(0,1)`.
If, on the other hand, we have less a priori confidence that the parameters will
be close to zero then we could use a larger scale for the normal distribution
and/or a distribution with heavier tails than the normal like the Student t
distribution. __Step 1__ in the "How to Use the __rstanarm__ Package" vignette
discusses one such example.
## Posterior
With independent prior distributions, the joint posterior distribution for
$\alpha$ and $\boldsymbol{\beta}$ is proportional to the product of the priors
and the $N$ likelihood contributions:
$$f\left(\alpha,\boldsymbol{\beta} | \mathbf{y},\mathbf{X}\right) \propto
f\left(\alpha\right) \times \prod_{k=1}^K f\left(\beta_k\right) \times
\prod_{i=1}^N {
g^{-1}\left(\eta_i\right)^{y_i}
\left(1 - g^{-1}\left(\eta_i\right)\right)^{n_i-y_i}}.$$
This is posterior distribution that `stan_glm` will draw from when using MCMC.
## Logistic Regression
When the logit link function is used the model is often referred to as a
logistic regression model (the inverse logit function is the CDF of the standard
logistic distribution). As an example, here we will show how to carry out a
analysis for Pima Indians data set similar to analysis from Chapter 5.4 of
[Gelman and Hill (2007)](http://www.stat.columbia.edu/~gelman/arm/)
using `stan_glm`.
[2]: https://cran.r-project.org/web/packages/rstanarm/vignettes/rstanarm.html
# Diabetes data
```{r}
# file preview shows a header row
diabetes <- read.csv("diabetes.csv", header = TRUE)
# first look at the data set using summary() and str() to understand what type of data are you working
# with
summary(diabetes)
str(diabetes)
```
Pre-processing
```{r}
# removing those observation rows with 0 in any of the variables
for (i in 2:6) {
diabetes <- diabetes[-which(diabetes[, i] == 0), ]
}
# scale the covariates for easier comparison of coefficient posteriors
for (i in 1:8) {
diabetes[i] <- scale(diabetes[i])
}
# modify the data column names slightly for easier typing
names(diabetes)[7] <- "dpf"
names(diabetes) <- tolower(names(diabetes))
n=dim(diabetes)[1]
p=dim(diabetes)[2]
str(diabetes)
print(paste0("number of observations = ", n))
print(paste0("number of predictors = ", p))
```
Plot correlation structure
```{r}
corrplot(cor(diabetes[, c(9,1:8)]))
```
Make outcome to be factor type and create x and y variables
```{r}
diabetes$outcome <- factor(diabetes$outcome)
# preparing the inputs
x <- model.matrix(outcome ~ . - 1, data = diabetes)
y <- diabetes$outcome
```
# A Bayesian logistic regression model
A Bayesian logistic regression model can be estimated using the `stan_glm` function.
Here we'll use a Student t prior with 7 degrees of freedom and a scale of 2.5, which,
as discussed above, is a reasonable default prior when coefficients should be close to
zero but have some chance of being large.
The `formula`, `data` and `family` arguments to `stan_glm` are specified in
exactly the same way as for `glm`. We've also added the `seed`
(for reproducibility). You can read about other possible arguments in the
`stan_glm` documentation (`help(stan_glm, package = 'rstanarm')`).
```{r, results='hide'}
t_prior <- student_t(df = 7, location = 0, scale = 2.5)
post1 <- stan_glm(outcome ~ ., data = diabetes,
family = binomial(link = "logit"),
prior = t_prior, prior_intercept = t_prior, QR=TRUE,
seed = SEED)
```
**stan_glm** returns the posterior distribution for the parameters describing the uncertainty related to unknown parameter values:
```{r}
pplot<-plot(post1, "areas", prob = 0.95, prob_outer = 1)
pplot+ geom_vline(xintercept = 0)
```
We can extract corresponding posterior median estimates using 'coef' function and to get a sense for the uncertainty in our estimates we can use the `posterior_interval` function to get Bayesian uncertainty intervals. The uncertainty intervals are computed by finding the relevant quantiles of the
draws from the posterior distribution. For example, to compute median and 90% intervals we
use:
```{r}
round(coef(post1), 2)
round(posterior_interval(post1, prob = 0.9), 2)
```
For more on `posterior_interval` and interpreting the parameter estimates from a Bayesian
model see Step 2 in the ["How to Use the __rstanarm__ Package"][1] vignette.
[1]: https://cran.r-project.org/web/packages/rstanarm/vignettes/rstanarm.html
## Leave-one-out cross-validation
__rstanarm__ supports __loo__ package which implements fast Pareto smoothed leave-one-out cross-validation (PSIS-LOO) [@Vehtari+etal:PSIS-LOO:2017] to compute expected log predictive density (elpd):
```{r}
(loo1 <- loo(post1, save_psis = TRUE))
```
Above we see that PSIS-LOO result is reliable as all Pareto $k$ estimates are small (k< 0.5) [@Vehtari+etal:PSIS-LOO:2017; @Vehtari+etal:PSIS:2019].
## Comparison to a baseline model
Compute baseline result without covariates.
```{r}
post0 <- update(post1, formula = outcome ~ 1, QR = FALSE)
```
Compare to baseline
```{r}
(loo0 <- loo(post0))
```
```{r}
loo_compare(loo0, loo1)
```
Covariates contain clearly useful information for predictions.
## Other predictive performance measures
For more easily interpretable predictive performance measures, we next compute posterior predictive probabilities and use them to compute classification error.
```{r}
# Predicted probabilities
linpred <- posterior_linpred(post1)
preds <- posterior_linpred(post1, transform=TRUE)
pred <- colMeans(preds)
pr <- as.integer(pred >= 0.5)
# posterior classification accuracy
round(mean(xor(pr,as.integer(y==0))),2)
# posterior balanced classification accuracy
round((mean(xor(pr[y==0]>0.5,as.integer(y[y==0])))+mean(xor(pr[y==1]<0.5,as.integer(y[y==1]))))/2,2)
```
The predictive performance above is overoptimistic. To better estimate the predictive performance for new not yet seen data we next use leave-one-out cross-validation:
```{r}
# LOO predictive probabilities
ploo=E_loo(preds, loo1$psis_object, type="mean", log_ratios = -log_lik(post1))$value
# LOO classification accuracy
round(mean(xor(ploo>0.5,as.integer(y==0))),2)
# LOO balanced classification accuracy
round((mean(xor(ploo[y==0]>0.5,as.integer(y[y==0])))+mean(xor(ploo[y==1]<0.5,as.integer(y[y==1]))))/2,2)
```
In this case it happens that all predicted classes are same as with posterior predictions. We can see the small difference in posterior predictive probabilities and LOO probabilities:
```{r}
qplot(pred, ploo)
```
## Calibration of predictions
We can also examine calibration of the posterior and LOO predictive probabilities compared to observed binned event rates. We sort the predicted probabilities in ascending order, bin the corresponding binary observations and plot the mean and uncertainty interval based on binomial distribution.
```{r}
calPlotData<-calibration(y ~ pred + loopred,
data = data.frame(pred=pred,loopred=ploo,y=as.factor(y)),
cuts=10, class="1")
ggplot(calPlotData, auto.key = list(columns = 2))
```
From the above calibration plot we see that the model is otherwise calibrated except that for the observations with highest 10% of the predicted probabilities there are less events than predicted.
The above calibration plot is using independent bins for the observations. The following uses a spline fit for smoothing (with narrower uncertainties).
```{r}
library(splines)
library(MASS)
ggplot(data = data.frame(pred=pred,loopred=ploo,y=as.numeric(y)-1), aes(x=loopred, y=y)) +
stat_smooth(method='gam', formula = y ~ s(x, k=20), method.args = list(family = "binomial")) +
geom_abline(linetype = 'dashed') +
labs(x = "Predicted (LOO)", y = "Observed") +
geom_jitter(aes(x=loopred, y=y*0.96+0.02), height=0.02, width=0, alpha=0.3) +
scale_y_continuous(breaks=seq(0,1,by=0.1), limits=c(0,1)) +
xlim(c(0,1))
```
# Alternative horseshoe prior on weights.
In this example, with n>>p the difference is small, and thus we don't expect much difference with a different prior and regularized horseshoe prior [@Piironen+Vehtari:RHS:2017] is usually more useful for n<p.
The global scale parameter for horseshoe prior is chosen as recommended by Piironen and Vehtari [-@Piironen+Vehtari:RHS:2017].
```{r, results='hide'}
p0 <- 2 # prior guess for the number of relevant variables
tau0 <- p0/(p-p0) * 1/sqrt(n)
hs_prior <- hs(df=1, global_df=1, global_scale=tau0)
t_prior <- student_t(df = 7, location = 0, scale = 2.5)
post2 <- stan_glm(outcome ~ ., data = diabetes,
family = binomial(link = "logit"),
prior = hs_prior, prior_intercept = t_prior,
seed = SEED, adapt_delta = 0.9)
```
We see that the regularized horseshoe prior has shrunk the posterior distribution of irrelevant features closer to zero, without affecting the posterior distribution of the relevant features.
```{r}
pplot <- plot(post2, "areas", prob = 0.95, prob_outer = 1)
pplot + geom_vline(xintercept = 0)
```
```{r}
round(coef(post2), 2)
round(posterior_interval(post2, prob = 0.9), 2)
```
We compute LOO also for the model with the regularized horseshoe prior. Expected log predictive density is higher, but not significantly. This is not surprising as this is a easy data with n>>p.
```{r}
(loo2 <- loo(post2))
```
```{r}
loo_compare(loo1, loo2)
```
Looking at the pairwise posteriors we can see that, for example, posteriors for age and pregnancies effects are correlating and thus we can't relay on infering variable relevance by looking at the marginal distributions.
```{r}
mcmc_pairs(as.matrix(post2), pars = c("pregnancies","age"))
```
# Projection predictive variable selection
Next we do variable selection using projection predictive variable selection [@Piironen+etal:projpred:2018]
```{r, results='hide'}
varsel2 <- cv_varsel(post2, method='forward', nloo = n)
```
```{r}
varsel2$vind
```
We can now look at the estimated predictive performance of smaller models compared to the full model.
```{r}
varsel_plot(varsel2, stats = c('elpd', 'pctcorr'))
```
And we get a LOO based recommendation for the model size to choose
```{r}
(nv <- suggest_size(varsel2, alpha=0.2))
```
Next we form the projected posterior for the chosen model.
```{r}
proj2 <- project(varsel2, nv = nv, ns = 4000)
round(colMeans(as.matrix(proj2)),1)
round(posterior_interval(as.matrix(proj2)),1)
```
```{r}
mcmc_areas(as.matrix(proj2), , prob = 0.95, prob_outer = 1,
pars = c('(Intercept)', names(varsel2$vind[1:nv])))
```
The projected posterior can be made predictions in the future (with no need to measure the left out variables).
# Additive non-linear model
We also test an additive non-linear model using `stan_gamm4`.
```{r, results='hide'}
post3 <- stan_gamm4(outcome ~ s(glucose) + s(age) + s(bmi), data = diabetes,
family = binomial(link = "logit"),
seed = SEED)
```
```{r}
(loo3 <- loo(post3, save_psis = TRUE))
loo_compare(loo1, loo3)
```
Based on LOO, non-linear model might be better, but the difference is not big.
Let's look at the calibration.
```{r, results='hide'}
gammpreds <- posterior_linpred(post3, transform=TRUE)
gammpred <- colMeans(gammpreds)
loogammpred=E_loo(gammpreds, loo3$psis_object, type="mean", log_ratios = -log_lik(post3))$value
calPlotData<-calibration(y ~ loopred + loogammpred,
data = data.frame(loopred=ploo,loogammpred=loogammpred,y=y),
cuts=10, class="1")
ggplot(calPlotData, auto.key = list(columns = 2))
```
Non-linear model appears to be able to partially model the saturating high probabilities and is thus slighlty better calibrated.
The above calibration plot is using independent bins for the observations. The following uses a spline fit for smoothing (with narrower uncertainties).
```{r}
ggplot(data = data.frame(loopred=loogammpred,y=as.numeric(y)-1), aes(x=loopred, y=y)) +
stat_smooth(method='gam', formula = y ~ s(x, k=20), method.args = list(family = "binomial")) +
geom_abline(linetype = 'dashed') +
ylab(label = "Observed") +
xlab(label = "Predicted (LOO)") +
geom_jitter(aes(x=loopred, y=y*0.96+0.02), height=0.02, width=0, alpha=0.3) +
scale_y_continuous(breaks=seq(0,1,by=0.1), limits=c(0,1)) +
xlim(c(0,1))
```
<br />
# References {.unnumbered}
<div id="refs"></div>
# Licenses {.unnumbered}
* Code © 2017-2018, Aki Vehtari, licensed under BSD-3.
* Text © 2017-2018, Aki Vehtari, licensed under CC-BY-NC 4.0.
* Introduction Text © 2017, Jonah Gabry and Ben Goodrich [source](https://cran.r-project.org/web/packages/rstanarm/vignettes/binomial.html), licensed under GPL 3>
# Original Computing Environment {.unnumbered}
```{r}
sessionInfo()
```
<br />