forked from xziya/fruit-fly-optimization-algorithm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
iffoa.m
126 lines (119 loc) · 3.84 KB
/
iffoa.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
%FFOA fruit fly optimization algorithm.
function [peak, route, yy] = iffoa(FUN, varargin)
if ~mod(nargin, 2)
error('MATLAB:narginchk:notEnoughInputs', ...
'I have no idea about this, you can guess it');
end
maxIterations = 100;
popSize = 20;
plotFlag = 0;
for ind = 1:2:nargin-1
switch lower(varargin{ind})
case 'maxiterations'
maxIterations = varargin{ind + 1};
case 'popsize'
popSize = varargin{ind + 1};
case 'minmax'
if strcmp(varargin{ind + 1}, 'min')
flagMinMax = 0;
else
flagMinMax = 1;
end
case 'plotflag'
plotFlag = varargin{ind + 1};
otherwise
error('The function don''t support this parameter');
end
end
if ~exist('flagMinMax', 'var')
error('You must specify the parameter ''MinMax''')
end
% random initial fruit fly swarm location
XAxis = 10*rand() - 5;
YAxis = 10*rand() - 5;
% set parameters and variables
if flagMinMax
smellBest = -inf;
else
smellBest = inf;
end
X = zeros(popSize, 1);
Y = zeros(popSize, 1);
D = zeros(popSize, 1);
S = zeros(popSize, 1);
smell = zeros(popSize, 1);
yy = zeros(maxIterations, 1);
XBest = yy;
YBest = XBest;
% interative optimization start
for g = 1:maxIterations
% give the random direction and distance for the search of food using
% osphresis by an individual fruit fly.
for i = 1:popSize
X(i) = XAxis + 2*rand() - 1;
Y(i) = YAxis + 2*rand() - 1;
% since the food location cannot be known, the distance to the
% origin is thus estimated first(Dist), then the smell
% concentration judgment value(S) is calculated, and this value is
% the reciprocal of distance.
D(i) = (X(i)^2 + Y(i)^2)^0.5;
S(i) = 1/D(i);
% substitude smell concentration judgment value(S) into smell
% concentration judgment function(or called Fitness function) so as
% to find the smell concentration(smelli) of the individual
% location of the fruit fly.
if (X(i) < 0 && Y(i) > 0) || (X(i) > 0 && Y(i) < 0)
S(i) = -S(i);
end
smell(i) = FUN(S(i));
end
% find out the fruit fly with maximal smell concentration (finding the
% maximal value)among the fruit fly swarm.
if flagMinMax
[bestSmell, bestIndex] = max(smell);
else
[bestSmell, bestIndex] = min(smell);
end
% determine whether the smell concentration better than the previous
% iteration of concertration, if yes then keep the best smell
% concentration value and x,y coordinate, and at this moment, the fruit
% fly swarm will use vision to fly towards that location.
if flagMinMax
if bestSmell > smellBest
XAxis = X(bestIndex);
YAxis = Y(bestIndex);
smellBest = bestSmell;
end
else
if bestSmell < smellBest
XAxis = X(bestIndex);
YAxis = Y(bestIndex);
smellBest = bestSmell;
end
end
yy(g) = smellBest;
XBest(g) = XAxis;
YBest(g) = YAxis;
end
peak = yy(end);
route = [XBest, YBest];
if plotFlag
% draw smell concentration of each iteration
figure(1)
plot(yy, 'LineWidth', 1.5);
title('Optimization process', 'FontSize', 12);
xlabel('Iteration Number', 'FontSize', 12), ylabel('Smell', 'FontSize', 12)
figure(2), hold on
axis([min(XBest)-5 max(XBest)+5 min(YBest)-5 max(YBest)+5]);
h = animatedline;
h.LineStyle = 'none'; h.Marker = '.'; h.Color = 'r';
for id = 1:maxIterations
addpoints(h, XBest(id), YBest(id));
drawnow
end
plot(XBest, YBest, 'b-')
text(XBest(end), YBest(end), ['(', num2str(XBest(end)), ', ',...
num2str(YBest(end)), ')'], 'Interpreter', 'latex');
title('Fruit fly flying route', 'FontSize', 14)
xlabel('XAxis'), ylabel('YAxis')
end