forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprecedences.cc
921 lines (830 loc) · 37.4 KB
/
precedences.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/precedences.h"
#include <algorithm>
#include <memory>
#include "ortools/base/cleanup.h"
#include "ortools/base/logging.h"
#include "ortools/base/stl_util.h"
#include "ortools/sat/clause.h"
#include "ortools/sat/cp_constraints.h"
namespace operations_research {
namespace sat {
namespace {
void AppendLowerBoundReasonIfValid(IntegerVariable var,
const IntegerTrail& i_trail,
std::vector<IntegerLiteral>* reason) {
if (var != kNoIntegerVariable) {
reason->push_back(i_trail.LowerBoundAsLiteral(var));
}
}
} // namespace
bool PrecedencesPropagator::Propagate(Trail* trail) { return Propagate(); }
bool PrecedencesPropagator::Propagate() {
while (propagation_trail_index_ < trail_->Index()) {
const Literal literal = (*trail_)[propagation_trail_index_++];
if (literal.Index() >= literal_to_new_impacted_arcs_.size()) continue;
// IMPORTANT: Because of the way Untrail() work, we need to add all the
// potential arcs before we can abort. It is why we iterate twice here.
for (const ArcIndex arc_index :
literal_to_new_impacted_arcs_[literal.Index()]) {
if (--arc_counts_[arc_index] == 0) {
const ArcInfo& arc = arcs_[arc_index];
impacted_arcs_[arc.tail_var].push_back(arc_index);
}
}
// Iterate again to check for a propagation and indirectly update
// modified_vars_.
for (const ArcIndex arc_index :
literal_to_new_impacted_arcs_[literal.Index()]) {
if (arc_counts_[arc_index] > 0) continue;
const ArcInfo& arc = arcs_[arc_index];
if (integer_trail_->IsCurrentlyIgnored(arc.head_var)) continue;
const IntegerValue new_head_lb =
integer_trail_->LowerBound(arc.tail_var) + ArcOffset(arc);
if (new_head_lb > integer_trail_->LowerBound(arc.head_var)) {
if (!EnqueueAndCheck(arc, new_head_lb, trail_)) return false;
}
}
}
// Do the actual propagation of the IntegerVariable bounds.
InitializeBFQueueWithModifiedNodes();
if (!BellmanFordTarjan(trail_)) return false;
// We can only test that no propagation is left if we didn't enqueue new
// literal in the presence of optional variables.
if (propagation_trail_index_ == trail_->Index()) {
DCHECK(NoPropagationLeft(*trail_));
}
// Propagate the presence literals of the arcs that can't be added.
PropagateOptionalArcs(trail_);
// Clean-up modified_vars_ to do as little as possible on the next call.
modified_vars_.ClearAndResize(integer_trail_->NumIntegerVariables());
return true;
}
bool PrecedencesPropagator::PropagateOutgoingArcs(IntegerVariable var) {
for (const ArcIndex arc_index : impacted_arcs_[var]) {
const ArcInfo& arc = arcs_[arc_index];
if (integer_trail_->IsCurrentlyIgnored(arc.head_var)) continue;
const IntegerValue new_head_lb =
integer_trail_->LowerBound(arc.tail_var) + ArcOffset(arc);
if (new_head_lb > integer_trail_->LowerBound(arc.head_var)) {
if (!EnqueueAndCheck(arc, new_head_lb, trail_)) return false;
}
}
return true;
}
void PrecedencesPropagator::Untrail(const Trail& trail, int trail_index) {
if (propagation_trail_index_ > trail_index) {
// This means that we already propagated all there is to propagate
// at the level trail_index, so we can safely clear modified_vars_ in case
// it wasn't already done.
modified_vars_.ClearAndResize(integer_trail_->NumIntegerVariables());
}
while (propagation_trail_index_ > trail_index) {
const Literal literal = trail[--propagation_trail_index_];
if (literal.Index() >= literal_to_new_impacted_arcs_.size()) continue;
for (const ArcIndex arc_index :
literal_to_new_impacted_arcs_[literal.Index()]) {
if (arc_counts_[arc_index]++ == 0) {
const ArcInfo& arc = arcs_[arc_index];
impacted_arcs_[arc.tail_var].pop_back();
}
}
}
}
// Instead of simply sorting the IntegerPrecedences returned by .var,
// experiments showed that it is faster to regroup all the same .var "by hand"
// by first computing how many times they appear and then apply the sorting
// permutation.
void PrecedencesPropagator::ComputePrecedences(
const std::vector<IntegerVariable>& vars,
std::vector<IntegerPrecedences>* output) {
tmp_sorted_vars_.clear();
tmp_precedences_.clear();
for (int index = 0; index < vars.size(); ++index) {
const IntegerVariable var = vars[index];
CHECK_NE(kNoIntegerVariable, var);
if (var >= impacted_arcs_.size()) continue;
for (const ArcIndex arc_index : impacted_arcs_[var]) {
const ArcInfo& arc = arcs_[arc_index];
if (integer_trail_->IsCurrentlyIgnored(arc.head_var)) continue;
IntegerValue offset = arc.offset;
if (arc.offset_var != kNoIntegerVariable) {
offset += integer_trail_->LowerBound(arc.offset_var);
}
// TODO(user): it seems better to ignore negative min offset as we will
// often have relation of the form interval_start >= interval_end -
// offset, and such relation are usually not useful. Revisit this in case
// we see problems where we can propagate more without this test.
if (offset < 0) continue;
if (var_to_degree_[arc.head_var] == 0) {
tmp_sorted_vars_.push_back(
{arc.head_var, integer_trail_->LowerBound(arc.head_var)});
} else {
// This "seen" mechanism is needed because we may have multi-arc and we
// don't want any duplicates in the "is_before" relation. Note that it
// works because var_to_last_index_ is reset by the var_to_degree_ == 0
// case.
if (var_to_last_index_[arc.head_var] == index) continue;
}
var_to_last_index_[arc.head_var] = index;
var_to_degree_[arc.head_var]++;
tmp_precedences_.push_back(
{index, arc.head_var, arc_index.value(), offset});
}
}
// This order is a topological order for the precedences relation order
// provided that all the offset between the involved IntegerVariable are
// positive.
//
// TODO(user): use an order that is always topological? This is not clear
// since it may be slower to compute and not worth it because the order below
// is more natural and may work better.
std::sort(tmp_sorted_vars_.begin(), tmp_sorted_vars_.end());
// Permute tmp_precedences_ into the output to put it in the correct order.
// For that we transform var_to_degree_ to point to the first position of
// each lbvar in the output vector.
int start = 0;
for (const SortedVar pair : tmp_sorted_vars_) {
const int degree = var_to_degree_[pair.var];
if (degree > 1) {
var_to_degree_[pair.var] = start;
start += degree;
} else {
// Optimization: we remove degree one relations.
var_to_degree_[pair.var] = -1;
}
}
output->resize(start);
for (const IntegerPrecedences& precedence : tmp_precedences_) {
if (var_to_degree_[precedence.var] < 0) continue;
(*output)[var_to_degree_[precedence.var]++] = precedence;
}
// Cleanup var_to_degree_, note that we don't need to clean
// var_to_last_index_.
for (const SortedVar pair : tmp_sorted_vars_) {
var_to_degree_[pair.var] = 0;
}
}
void PrecedencesPropagator::AddPrecedenceReason(
int arc_index, IntegerValue min_offset,
std::vector<Literal>* literal_reason,
std::vector<IntegerLiteral>* integer_reason) const {
const ArcInfo& arc = arcs_[ArcIndex(arc_index)];
for (const Literal l : arc.presence_literals) {
literal_reason->push_back(l.Negated());
}
if (arc.offset_var != kNoIntegerVariable) {
// Reason for ArcOffset(arc) to be >= min_offset.
integer_reason->push_back(IntegerLiteral::GreaterOrEqual(
arc.offset_var, min_offset - arc.offset));
}
}
void PrecedencesPropagator::AdjustSizeFor(IntegerVariable i) {
const int index = std::max(i.value(), NegationOf(i).value());
if (index >= impacted_arcs_.size()) {
// TODO(user): only watch lower bound of the relevant variable instead
// of watching everything in [0, max_index_of_variable_used_in_this_class).
for (IntegerVariable var(impacted_arcs_.size()); var <= index; ++var) {
watcher_->WatchLowerBound(var, watcher_id_);
}
impacted_arcs_.resize(index + 1);
impacted_potential_arcs_.resize(index + 1);
var_to_degree_.resize(index + 1);
var_to_last_index_.resize(index + 1);
}
}
void PrecedencesPropagator::AddArc(
IntegerVariable tail, IntegerVariable head, IntegerValue offset,
IntegerVariable offset_var, absl::Span<const Literal> presence_literals) {
DCHECK_EQ(trail_->CurrentDecisionLevel(), 0);
AdjustSizeFor(tail);
AdjustSizeFor(head);
if (offset_var != kNoIntegerVariable) AdjustSizeFor(offset_var);
// This arc is present iff all the literals here are true.
absl::InlinedVector<Literal, 6> enforcement_literals;
{
for (const Literal l : presence_literals) {
enforcement_literals.push_back(l);
}
if (integer_trail_->IsOptional(tail)) {
enforcement_literals.push_back(
integer_trail_->IsIgnoredLiteral(tail).Negated());
}
if (integer_trail_->IsOptional(head)) {
enforcement_literals.push_back(
integer_trail_->IsIgnoredLiteral(head).Negated());
}
if (offset_var != kNoIntegerVariable &&
integer_trail_->IsOptional(offset_var)) {
enforcement_literals.push_back(
integer_trail_->IsIgnoredLiteral(offset_var).Negated());
}
gtl::STLSortAndRemoveDuplicates(&enforcement_literals);
int new_size = 0;
for (const Literal l : enforcement_literals) {
if (trail_->Assignment().LiteralIsTrue(Literal(l))) {
continue; // At true, ignore this literal.
} else if (trail_->Assignment().LiteralIsFalse(Literal(l))) {
return; // At false, ignore completely this arc.
}
enforcement_literals[new_size++] = l;
}
enforcement_literals.resize(new_size);
}
if (head == tail) {
// A self-arc is either plain SAT or plain UNSAT or it forces something on
// the given offset_var or presence_literal_index. In any case it could be
// presolved in something more efficent.
VLOG(1) << "Self arc! This could be presolved. "
<< "var:" << tail << " offset:" << offset
<< " offset_var:" << offset_var
<< " conditioned_by:" << presence_literals;
}
// Remove the offset_var if it is fixed.
// TODO(user): We should also handle the case where tail or head is fixed.
if (offset_var != kNoIntegerVariable) {
const IntegerValue lb = integer_trail_->LowerBound(offset_var);
if (lb == integer_trail_->UpperBound(offset_var)) {
offset += lb;
offset_var = kNoIntegerVariable;
}
}
// Deal first with impacted_potential_arcs_/potential_arcs_.
if (!enforcement_literals.empty()) {
const OptionalArcIndex arc_index(potential_arcs_.size());
potential_arcs_.push_back(
{tail, head, offset, offset_var, enforcement_literals});
impacted_potential_arcs_[tail].push_back(arc_index);
impacted_potential_arcs_[NegationOf(head)].push_back(arc_index);
if (offset_var != kNoIntegerVariable) {
impacted_potential_arcs_[offset_var].push_back(arc_index);
}
}
// Now deal with impacted_arcs_/arcs_.
struct InternalArc {
IntegerVariable tail_var;
IntegerVariable head_var;
IntegerVariable offset_var;
};
std::vector<InternalArc> to_add;
if (offset_var == kNoIntegerVariable) {
// a + offset <= b and -b + offset <= -a
to_add.push_back({tail, head, kNoIntegerVariable});
to_add.push_back({NegationOf(head), NegationOf(tail), kNoIntegerVariable});
} else {
// tail (a) and offset_var (b) are symmetric, so we add:
// - a + b + offset <= c
to_add.push_back({tail, head, offset_var});
to_add.push_back({offset_var, head, tail});
// - a - c + offset <= -b
to_add.push_back({tail, NegationOf(offset_var), NegationOf(head)});
to_add.push_back({NegationOf(head), NegationOf(offset_var), tail});
// - b - c + offset <= -a
to_add.push_back({offset_var, NegationOf(tail), NegationOf(head)});
to_add.push_back({NegationOf(head), NegationOf(tail), offset_var});
}
for (const InternalArc a : to_add) {
// Since we add a new arc, we will need to consider its tail during the next
// propagation. Note that the size of modified_vars_ will be automatically
// updated when new integer variables are created since we register it with
// IntegerTrail in this class contructor.
//
// TODO(user): Adding arcs and then calling Untrail() before Propagate()
// will cause this mecanism to break. Find a more robust implementation.
//
// TODO(user): In some rare corner case, rescanning the whole list of arc
// leaving tail_var can make AddVar() have a quadratic complexity where it
// shouldn't. A better solution would be to see if this new arc currently
// propagate something, and if it does, just update the lower bound of
// a.head_var and let the normal "is modified" mecanism handle any eventual
// follow up propagations.
modified_vars_.Set(a.tail_var);
// If a.head_var is optional, we can potentially remove some literal from
// enforcement_literals.
const ArcIndex arc_index(arcs_.size());
arcs_.push_back(
{a.tail_var, a.head_var, offset, a.offset_var, enforcement_literals});
auto& presence_literals = arcs_.back().presence_literals;
if (integer_trail_->IsOptional(a.head_var)) {
// TODO(user): More generally, we can remove any literal that is implied
// by to_remove.
const Literal to_remove =
integer_trail_->IsIgnoredLiteral(a.head_var).Negated();
const auto it = std::find(presence_literals.begin(),
presence_literals.end(), to_remove);
if (it != presence_literals.end()) presence_literals.erase(it);
}
if (presence_literals.empty()) {
impacted_arcs_[a.tail_var].push_back(arc_index);
} else {
for (const Literal l : presence_literals) {
if (l.Index() >= literal_to_new_impacted_arcs_.size()) {
literal_to_new_impacted_arcs_.resize(l.Index().value() + 1);
}
literal_to_new_impacted_arcs_[l.Index()].push_back(arc_index);
}
}
arc_counts_.push_back(presence_literals.size());
}
}
// TODO(user): On jobshop problems with a lot of tasks per machine (500), this
// takes up a big chunck of the running time even before we find a solution.
// This is because, for each lower bound changed, we inspect 500 arcs even
// though they will never be propagated because the other bound is still at the
// horizon. Find an even sparser algorithm?
void PrecedencesPropagator::PropagateOptionalArcs(Trail* trail) {
for (const IntegerVariable var : modified_vars_.PositionsSetAtLeastOnce()) {
if (var >= impacted_potential_arcs_.size()) break;
// Note that we can currently check the same ArcInfo up to 3 times, one for
// each of the arc variables: tail, NegationOf(head) and offset_var.
for (const OptionalArcIndex arc_index : impacted_potential_arcs_[var]) {
const ArcInfo& arc = potential_arcs_[arc_index];
int num_not_true = 0;
Literal to_propagate;
for (const Literal l : arc.presence_literals) {
if (!trail->Assignment().LiteralIsTrue(l)) {
++num_not_true;
to_propagate = l;
}
}
if (num_not_true != 1) continue;
if (trail->Assignment().LiteralIsFalse(to_propagate)) continue;
// Test if this arc can be present or not.
// Important arc.tail_var can be different from var here.
const IntegerValue tail_lb = integer_trail_->LowerBound(arc.tail_var);
const IntegerValue head_ub = integer_trail_->UpperBound(arc.head_var);
if (tail_lb + ArcOffset(arc) > head_ub) {
integer_reason_.clear();
integer_reason_.push_back(
integer_trail_->LowerBoundAsLiteral(arc.tail_var));
integer_reason_.push_back(
integer_trail_->UpperBoundAsLiteral(arc.head_var));
AppendLowerBoundReasonIfValid(arc.offset_var, *integer_trail_,
&integer_reason_);
literal_reason_.clear();
for (const Literal l : arc.presence_literals) {
if (l != to_propagate) literal_reason_.push_back(l.Negated());
}
integer_trail_->EnqueueLiteral(to_propagate.Negated(), literal_reason_,
integer_reason_);
}
}
}
}
IntegerValue PrecedencesPropagator::ArcOffset(const ArcInfo& arc) const {
return arc.offset + (arc.offset_var == kNoIntegerVariable
? IntegerValue(0)
: integer_trail_->LowerBound(arc.offset_var));
}
bool PrecedencesPropagator::EnqueueAndCheck(const ArcInfo& arc,
IntegerValue new_head_lb,
Trail* trail) {
DCHECK_GT(new_head_lb, integer_trail_->LowerBound(arc.head_var));
// Compute the reason for new_head_lb.
//
// TODO(user): do like for clause and keep the negation of
// arc.presence_literals? I think we could change the integer.h API to accept
// true literal like for IntegerVariable, it is really confusing currently.
literal_reason_.clear();
for (const Literal l : arc.presence_literals) {
literal_reason_.push_back(l.Negated());
}
integer_reason_.clear();
integer_reason_.push_back(integer_trail_->LowerBoundAsLiteral(arc.tail_var));
AppendLowerBoundReasonIfValid(arc.offset_var, *integer_trail_,
&integer_reason_);
// The code works without this block since Enqueue() below can already take
// care of conflicts. However, it is better to deal with the conflict
// ourselves because we can be smarter about the reason this way.
//
// The reason for a "precedence" conflict is always a linear reason
// involving the tail lower_bound, the head upper bound and eventually the
// size lower bound. Because of that, we can use the RelaxLinearReason()
// code.
if (new_head_lb > integer_trail_->UpperBound(arc.head_var)) {
const IntegerValue slack =
new_head_lb - integer_trail_->UpperBound(arc.head_var) - 1;
integer_reason_.push_back(
integer_trail_->UpperBoundAsLiteral(arc.head_var));
std::vector<IntegerValue> coeffs(integer_reason_.size(), IntegerValue(1));
integer_trail_->RelaxLinearReason(slack, coeffs, &integer_reason_);
if (!integer_trail_->IsOptional(arc.head_var)) {
return integer_trail_->ReportConflict(literal_reason_, integer_reason_);
} else {
CHECK(!integer_trail_->IsCurrentlyIgnored(arc.head_var));
const Literal l = integer_trail_->IsIgnoredLiteral(arc.head_var);
if (trail->Assignment().LiteralIsFalse(l)) {
literal_reason_.push_back(l);
return integer_trail_->ReportConflict(literal_reason_, integer_reason_);
} else {
integer_trail_->EnqueueLiteral(l, literal_reason_, integer_reason_);
return true;
}
}
}
return integer_trail_->Enqueue(
IntegerLiteral::GreaterOrEqual(arc.head_var, new_head_lb),
literal_reason_, integer_reason_);
}
bool PrecedencesPropagator::NoPropagationLeft(const Trail& trail) const {
const int num_nodes = impacted_arcs_.size();
for (IntegerVariable var(0); var < num_nodes; ++var) {
for (const ArcIndex arc_index : impacted_arcs_[var]) {
const ArcInfo& arc = arcs_[arc_index];
if (integer_trail_->IsCurrentlyIgnored(arc.head_var)) continue;
if (integer_trail_->LowerBound(arc.tail_var) + ArcOffset(arc) >
integer_trail_->LowerBound(arc.head_var)) {
return false;
}
}
}
return true;
}
void PrecedencesPropagator::InitializeBFQueueWithModifiedNodes() {
// Sparse clear of the queue. TODO(user): only use the sparse version if
// queue.size() is small or use SparseBitset.
const int num_nodes = impacted_arcs_.size();
bf_in_queue_.resize(num_nodes, false);
for (const int node : bf_queue_) bf_in_queue_[node] = false;
bf_queue_.clear();
DCHECK(std::none_of(bf_in_queue_.begin(), bf_in_queue_.end(),
[](bool v) { return v; }));
for (const IntegerVariable var : modified_vars_.PositionsSetAtLeastOnce()) {
if (var >= num_nodes) continue;
bf_queue_.push_back(var.value());
bf_in_queue_[var.value()] = true;
}
}
void PrecedencesPropagator::CleanUpMarkedArcsAndParents() {
// To be sparse, we use the fact that each node with a parent must be in
// modified_vars_.
const int num_nodes = impacted_arcs_.size();
for (const IntegerVariable var : modified_vars_.PositionsSetAtLeastOnce()) {
if (var >= num_nodes) continue;
const ArcIndex parent_arc_index = bf_parent_arc_of_[var.value()];
if (parent_arc_index != -1) {
arcs_[parent_arc_index].is_marked = false;
bf_parent_arc_of_[var.value()] = -1;
bf_can_be_skipped_[var.value()] = false;
}
}
DCHECK(std::none_of(bf_parent_arc_of_.begin(), bf_parent_arc_of_.end(),
[](ArcIndex v) { return v != -1; }));
DCHECK(std::none_of(bf_can_be_skipped_.begin(), bf_can_be_skipped_.end(),
[](bool v) { return v; }));
}
bool PrecedencesPropagator::DisassembleSubtree(
int source, int target, std::vector<bool>* can_be_skipped) {
// Note that we explore a tree, so we can do it in any order, and the one
// below seems to be the fastest.
tmp_vector_.clear();
tmp_vector_.push_back(source);
while (!tmp_vector_.empty()) {
const int tail = tmp_vector_.back();
tmp_vector_.pop_back();
for (const ArcIndex arc_index : impacted_arcs_[IntegerVariable(tail)]) {
const ArcInfo& arc = arcs_[arc_index];
if (arc.is_marked) {
arc.is_marked = false; // mutable.
if (arc.head_var.value() == target) return true;
DCHECK(!(*can_be_skipped)[arc.head_var.value()]);
(*can_be_skipped)[arc.head_var.value()] = true;
tmp_vector_.push_back(arc.head_var.value());
}
}
}
return false;
}
void PrecedencesPropagator::AnalyzePositiveCycle(
ArcIndex first_arc, Trail* trail, std::vector<Literal>* must_be_all_true,
std::vector<Literal>* literal_reason,
std::vector<IntegerLiteral>* integer_reason) {
must_be_all_true->clear();
literal_reason->clear();
integer_reason->clear();
// Follow bf_parent_arc_of_[] to find the cycle containing first_arc.
const IntegerVariable first_arc_head = arcs_[first_arc].head_var;
ArcIndex arc_index = first_arc;
std::vector<ArcIndex> arc_on_cycle;
// Just to be safe and avoid an infinite loop we use the fact that the maximum
// cycle size on a graph with n nodes is of size n. If we have more in the
// code below, it means first_arc is not part of a cycle according to
// bf_parent_arc_of_[], which should never happen.
const int num_nodes = impacted_arcs_.size();
while (arc_on_cycle.size() <= num_nodes) {
arc_on_cycle.push_back(arc_index);
const ArcInfo& arc = arcs_[arc_index];
if (arc.tail_var == first_arc_head) break;
arc_index = bf_parent_arc_of_[arc.tail_var.value()];
CHECK_NE(arc_index, ArcIndex(-1));
}
CHECK_NE(arc_on_cycle.size(), num_nodes + 1) << "Infinite loop.";
// Compute the reason for this cycle.
IntegerValue sum(0);
for (const ArcIndex arc_index : arc_on_cycle) {
const ArcInfo& arc = arcs_[arc_index];
sum += ArcOffset(arc);
AppendLowerBoundReasonIfValid(arc.offset_var, *integer_trail_,
integer_reason);
for (const Literal l : arc.presence_literals) {
literal_reason->push_back(l.Negated());
}
// If the cycle happens to contain optional variable not yet ignored, then
// it is not a conflict anymore, but we can infer that these variable must
// all be ignored. This is because since we propagated them even if they
// where not present for sure, their presence literal must form a cycle
// together (i.e. they are all absent or present at the same time).
if (integer_trail_->IsOptional(arc.head_var)) {
must_be_all_true->push_back(
integer_trail_->IsIgnoredLiteral(arc.head_var));
}
}
// TODO(user): what if the sum overflow? this is just a check so I guess
// we don't really care, but fix the issue.
CHECK_GT(sum, 0);
}
// Note that in our settings it is important to use an algorithm that tries to
// minimize the number of integer_trail_->Enqueue() as much as possible.
//
// TODO(user): The current algorithm is quite efficient, but there is probably
// still room for improvments.
bool PrecedencesPropagator::BellmanFordTarjan(Trail* trail) {
const int num_nodes = impacted_arcs_.size();
// These vector are reset by CleanUpMarkedArcsAndParents() so resize is ok.
bf_can_be_skipped_.resize(num_nodes, false);
bf_parent_arc_of_.resize(num_nodes, ArcIndex(-1));
const auto cleanup =
::gtl::MakeCleanup([this]() { CleanUpMarkedArcsAndParents(); });
// The queue initialization is done by InitializeBFQueueWithModifiedNodes().
while (!bf_queue_.empty()) {
const int node = bf_queue_.front();
bf_queue_.pop_front();
bf_in_queue_[node] = false;
// TODO(user): we don't need bf_can_be_skipped_ since we can detect this
// if this node has a parent arc which is not marked. Investigate if it is
// faster without the std::vector<bool>.
//
// TODO(user): An alternative algorithm is to remove all these nodes from
// the queue instead of simply marking them. This should also lead to a
// better "relaxation" order of the arcs. It is however a bit more work to
// remove them since we need to track their position.
if (bf_can_be_skipped_[node]) {
DCHECK_NE(bf_parent_arc_of_[node], -1);
DCHECK(!arcs_[bf_parent_arc_of_[node]].is_marked);
continue;
}
const IntegerValue tail_lb =
integer_trail_->LowerBound(IntegerVariable(node));
for (const ArcIndex arc_index : impacted_arcs_[IntegerVariable(node)]) {
const ArcInfo& arc = arcs_[arc_index];
DCHECK_EQ(arc.tail_var, node);
const IntegerValue candidate = tail_lb + ArcOffset(arc);
if (candidate > integer_trail_->LowerBound(arc.head_var)) {
if (integer_trail_->IsCurrentlyIgnored(arc.head_var)) continue;
if (!EnqueueAndCheck(arc, candidate, trail)) return false;
// This is the Tarjan contribution to Bellman-Ford. This code detect
// positive cycle, and because it disassemble the subtree while doing
// so, the cost is amortized during the algorithm execution. Another
// advantages is that it will mark the node explored here as skippable
// which will avoid to propagate them too early (knowing that they will
// need to be propagated again later).
if (DisassembleSubtree(arc.head_var.value(), arc.tail_var.value(),
&bf_can_be_skipped_)) {
std::vector<Literal> must_be_all_true;
AnalyzePositiveCycle(arc_index, trail, &must_be_all_true,
&literal_reason_, &integer_reason_);
if (must_be_all_true.empty()) {
return integer_trail_->ReportConflict(literal_reason_,
integer_reason_);
} else {
gtl::STLSortAndRemoveDuplicates(&must_be_all_true);
for (const Literal l : must_be_all_true) {
if (trail_->Assignment().LiteralIsFalse(l)) {
literal_reason_.push_back(l);
return integer_trail_->ReportConflict(literal_reason_,
integer_reason_);
}
}
for (const Literal l : must_be_all_true) {
if (trail_->Assignment().LiteralIsTrue(l)) continue;
integer_trail_->EnqueueLiteral(l, literal_reason_,
integer_reason_);
}
// We just marked some optional variable as ignored, no need
// to update bf_parent_arc_of_[].
continue;
}
}
// We need to enforce the invariant that only the arc_index in
// bf_parent_arc_of_[] are marked (but not necessarily all of them
// since we unmark some in DisassembleSubtree()).
if (bf_parent_arc_of_[arc.head_var.value()] != -1) {
arcs_[bf_parent_arc_of_[arc.head_var.value()]].is_marked = false;
}
// Tricky: We just enqueued the fact that the lower-bound of head is
// candidate. However, because the domain of head may be discrete, it is
// possible that the lower-bound of head is now higher than candidate!
// If this is the case, we don't update bf_parent_arc_of_[] so that we
// don't wrongly detect a positive weight cycle because of this "extra
// push".
if (integer_trail_->LowerBound(arc.head_var) == candidate) {
bf_parent_arc_of_[arc.head_var.value()] = arc_index;
arcs_[arc_index].is_marked = true;
} else {
// We still unmark any previous dependency, since we have pushed the
// value of arc.head_var further.
bf_parent_arc_of_[arc.head_var.value()] = -1;
}
bf_can_be_skipped_[arc.head_var.value()] = false;
if (!bf_in_queue_[arc.head_var.value()]) {
bf_queue_.push_back(arc.head_var.value());
bf_in_queue_[arc.head_var.value()] = true;
}
}
}
}
return true;
}
int PrecedencesPropagator::AddGreaterThanAtLeastOneOfConstraintsFromClause(
const absl::Span<const Literal> clause, Model* model) {
CHECK_EQ(model->GetOrCreate<Trail>()->CurrentDecisionLevel(), 0);
if (clause.size() < 2) return 0;
// Collect all arcs impacted by this clause.
std::vector<ArcInfo> infos;
for (const Literal l : clause) {
if (l.Index() >= literal_to_new_impacted_arcs_.size()) continue;
for (const ArcIndex arc_index : literal_to_new_impacted_arcs_[l.Index()]) {
const ArcInfo& arc = arcs_[arc_index];
if (arc.presence_literals.size() != 1) continue;
// TODO(user): Support variable offset.
if (arc.offset_var != kNoIntegerVariable) continue;
infos.push_back(arc);
}
}
if (infos.size() <= 1) return 0;
// Stable sort by head_var so that for a same head_var, the entry are sorted
// by Literal as they appear in clause.
std::stable_sort(infos.begin(), infos.end(),
[](const ArcInfo& a, const ArcInfo& b) {
return a.head_var < b.head_var;
});
// We process ArcInfo with the same head_var toghether.
int num_added_constraints = 0;
auto* solver = model->GetOrCreate<SatSolver>();
for (int i = 0; i < infos.size();) {
const int start = i;
const IntegerVariable head_var = infos[start].head_var;
for (i++; i < infos.size() && infos[i].head_var == head_var; ++i) {
}
const absl::Span<ArcInfo> arcs(&infos[start], i - start);
// Skip single arcs since it will already be fully propagated.
if (arcs.size() < 2) continue;
// Heuristic. Look for full or almost full clauses. We could add
// GreaterThanAtLeastOneOf() with more enforcement literals. TODO(user):
// experiments.
if (arcs.size() + 1 < clause.size()) continue;
std::vector<IntegerVariable> vars;
std::vector<IntegerValue> offsets;
std::vector<Literal> selectors;
std::vector<Literal> enforcements;
int j = 0;
for (const Literal l : clause) {
bool added = false;
for (; j < arcs.size() && l == arcs[j].presence_literals.front(); ++j) {
added = true;
vars.push_back(arcs[j].tail_var);
offsets.push_back(arcs[j].offset);
// Note that duplicate selector are supported.
//
// TODO(user): If we support variable offset, we should regroup the arcs
// into one (tail + offset <= head) though, instead of having too
// identical entries.
selectors.push_back(l);
}
if (!added) {
enforcements.push_back(l.Negated());
}
}
// No point adding a constraint if there is not at least two different
// literals in selectors.
if (enforcements.size() + 1 == clause.size()) continue;
++num_added_constraints;
model->Add(GreaterThanAtLeastOneOf(head_var, vars, offsets, selectors,
enforcements));
if (!solver->FinishPropagation()) return num_added_constraints;
}
return num_added_constraints;
}
int PrecedencesPropagator::
AddGreaterThanAtLeastOneOfConstraintsWithClauseAutoDetection(Model* model) {
auto* time_limit = model->GetOrCreate<TimeLimit>();
auto* solver = model->GetOrCreate<SatSolver>();
// Fill the set of incoming conditional arcs for each variables.
gtl::ITIVector<IntegerVariable, std::vector<ArcIndex>> incoming_arcs_;
for (ArcIndex arc_index(0); arc_index < arcs_.size(); ++arc_index) {
const ArcInfo& arc = arcs_[arc_index];
// Only keep arc that have a fixed offset and a single presence_literals.
if (arc.offset_var != kNoIntegerVariable) continue;
if (arc.tail_var == arc.head_var) continue;
if (arc.presence_literals.size() != 1) continue;
if (arc.head_var >= incoming_arcs_.size()) {
incoming_arcs_.resize(arc.head_var.value() + 1);
}
incoming_arcs_[arc.head_var].push_back(arc_index);
}
int num_added_constraints = 0;
for (IntegerVariable target(0); target < incoming_arcs_.size(); ++target) {
if (incoming_arcs_[target].size() <= 1) continue;
if (time_limit->LimitReached()) return num_added_constraints;
// Detect set of incoming arcs for which at least one must be present.
// TODO(user): Find more than one disjoint set of incoming arcs.
// TODO(user): call MinimizeCoreWithPropagation() on the clause.
solver->Backtrack(0);
if (solver->IsModelUnsat()) return num_added_constraints;
std::vector<Literal> clause;
for (const ArcIndex arc_index : incoming_arcs_[target]) {
const Literal literal = arcs_[arc_index].presence_literals.front();
if (solver->Assignment().LiteralIsFalse(literal)) continue;
const int old_level = solver->CurrentDecisionLevel();
solver->EnqueueDecisionAndBacktrackOnConflict(literal.Negated());
if (solver->IsModelUnsat()) return num_added_constraints;
const int new_level = solver->CurrentDecisionLevel();
if (new_level <= old_level) {
clause = solver->GetLastIncompatibleDecisions();
break;
}
}
solver->Backtrack(0);
if (clause.size() > 1) {
// Extract the set of arc for which at least one must be present.
const std::set<Literal> clause_set(clause.begin(), clause.end());
std::vector<ArcIndex> arcs_in_clause;
for (const ArcIndex arc_index : incoming_arcs_[target]) {
const Literal literal(arcs_[arc_index].presence_literals.front());
if (gtl::ContainsKey(clause_set, literal.Negated())) {
arcs_in_clause.push_back(arc_index);
}
}
VLOG(2) << arcs_in_clause.size() << "/" << incoming_arcs_[target].size();
++num_added_constraints;
std::vector<IntegerVariable> vars;
std::vector<IntegerValue> offsets;
std::vector<Literal> selectors;
for (const ArcIndex a : arcs_in_clause) {
vars.push_back(arcs_[a].tail_var);
offsets.push_back(arcs_[a].offset);
selectors.push_back(Literal(arcs_[a].presence_literals.front()));
}
model->Add(GreaterThanAtLeastOneOf(target, vars, offsets, selectors));
if (!solver->FinishPropagation()) return num_added_constraints;
}
}
return num_added_constraints;
}
int PrecedencesPropagator::AddGreaterThanAtLeastOneOfConstraints(Model* model) {
VLOG(1) << "Detecting GreaterThanAtLeastOneOf() constraints...";
auto* time_limit = model->GetOrCreate<TimeLimit>();
auto* solver = model->GetOrCreate<SatSolver>();
auto* clauses = model->GetOrCreate<LiteralWatchers>();
int num_added_constraints = 0;
// We have two possible approaches. For now, we prefer the first one except if
// there is too many clauses in the problem.
//
// TODO(user): Do more extensive experiment. Remove the second approach as
// it is more time consuming? or identify when it make sense. Note that the
// first approach also allows to use "incomplete" at least one between arcs.
if (clauses->AllClausesInCreationOrder().size() < 1e6) {
// TODO(user): This does not take into account clause of size 2 since they
// are stored in the BinaryImplicationGraph instead. Some ideas specific
// to size 2:
// - There can be a lot of such clauses, but it might be nice to consider
// them. we need to experiments.
// - The automatic clause detection might be a better approach and it
// could be combined with probing.
for (const SatClause* clause : clauses->AllClausesInCreationOrder()) {
if (time_limit->LimitReached()) return num_added_constraints;
if (solver->IsModelUnsat()) return num_added_constraints;
num_added_constraints += AddGreaterThanAtLeastOneOfConstraintsFromClause(
clause->AsSpan(), model);
}
} else {
num_added_constraints +=
AddGreaterThanAtLeastOneOfConstraintsWithClauseAutoDetection(model);
}
VLOG(1) << "Added " << num_added_constraints
<< " GreaterThanAtLeastOneOf() constraints.";
return num_added_constraints;
}
} // namespace sat
} // namespace operations_research