forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
integer_search.h
227 lines (189 loc) · 10.3 KB
/
integer_search.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// This file contains all the top-level logic responsible for driving the search
// of a satisfiability integer problem. What decision we take next, which new
// Literal associated to an IntegerLiteral we create and when we restart.
//
// For an optimization problem, our algorithm solves a sequence of decision
// problem using this file as an entry point. Note that some heuristics here
// still use the objective if there is one in order to orient the search towards
// good feasible solution though.
#ifndef OR_TOOLS_SAT_INTEGER_SEARCH_H_
#define OR_TOOLS_SAT_INTEGER_SEARCH_H_
#include <vector>
#include "ortools/sat/integer.h"
#include "ortools/sat/sat_base.h"
#include "ortools/sat/sat_solver.h"
namespace operations_research {
namespace sat {
// Model struct that contains the search heuristics used to find a feasible
// solution to an integer problem.
//
// This is reset by ConfigureSearchHeuristics() and used by
// SolveIntegerProblem(), see below.
struct SearchHeuristics {
// Decision and restart heuristics. The two vectors must be of the same size
// and restart_policies[i] will always be used in conjunction with
// decision_policies[i].
std::vector<std::function<LiteralIndex()>> decision_policies;
std::vector<std::function<bool()>> restart_policies;
// Index in the vector above that indicate the current configuration.
int policy_index;
// Two special decision functions that are constructed at loading time.
// These are used by ConfigureSearchHeuristics() to fill the policies above.
std::function<LiteralIndex()> fixed_search = nullptr;
std::function<LiteralIndex()> hint_search = nullptr;
};
// Given a base "fixed_search" function that should mainly control in which
// order integer variables are lazily instantiated (and at what value), this
// uses the current solver parameters to set the SearchHeuristics class in the
// given model.
void ConfigureSearchHeuristics(Model* model);
// For an optimization problem, this contains the internal integer objective
// to minimize and information on how to display it correctly in the logs.
struct ObjectiveDefinition {
double scaling_factor = 1.0;
double offset = 0.0;
IntegerVariable objective_var = kNoIntegerVariable;
// The objective linear expression that should be equal to objective_var.
// If not all proto variable have an IntegerVariable view, then some vars
// will be set to kNoIntegerVariable. In practice, when this is used, we make
// sure there is a view though.
std::vector<IntegerVariable> vars;
std::vector<IntegerValue> coeffs;
// List of variable that when set to their lower bound should help getting a
// better objective. This is used by some search heuristic to preferably
// assign any of the variable here to their lower bound first.
absl::flat_hash_set<IntegerVariable> objective_impacting_variables;
double ScaleIntegerObjective(IntegerValue value) const {
return (ToDouble(value) + offset) * scaling_factor;
}
};
// Callbacks that will be called when the search goes back to level 0.
// Callbacks should return false if the propagation fails.
struct LevelZeroCallbackHelper {
std::vector<std::function<bool()>> callbacks;
};
// Tries to find a feasible solution to the current model.
//
// This function continues from the current state of the solver and loop until
// all variables are instantiated (i.e. the next decision is kNoLiteralIndex) or
// a search limit is reached. It uses the heuristic from the SearchHeuristics
// class in the model to decide when to restart and what next decision to take.
//
// Each time a restart happen, this increment the policy index modulo the number
// of heuristics to act as a portfolio search.
SatSolver::Status SolveIntegerProblem(Model* model);
// Resets the solver to the given assumptions before calling
// SolveIntegerProblem().
SatSolver::Status ResetAndSolveIntegerProblem(
const std::vector<Literal>& assumptions, Model* model);
// Only used in tests. Move to a test utility file.
//
// This configures the model SearchHeuristics with a simple default heuristic
// and then call ResetAndSolveIntegerProblem() without any assumptions.
SatSolver::Status SolveIntegerProblemWithLazyEncoding(Model* model);
// Helper methods to return up (>=) and down (<=) branching decisions.
LiteralIndex BranchDown(IntegerVariable var, IntegerValue value, Model* model);
LiteralIndex BranchUp(IntegerVariable var, IntegerValue value, Model* model);
// Returns decision corresponding to var at its lower bound. Returns
// kNoLiteralIndex if the variable is fixed.
LiteralIndex AtMinValue(IntegerVariable var, IntegerTrail* integer_trail,
IntegerEncoder* integer_encoder);
// Returns decision corresponding to var >= lb + max(1, (ub - lb) / 2). It also
// CHECKs that the variable is not fixed.
LiteralIndex GreaterOrEqualToMiddleValue(IntegerVariable var, Model* model);
// This method first tries var <= value. If this does not reduce the domain it
// tries var >= value. If that also does not reduce the domain then returns
// kNoLiteralIndex.
LiteralIndex SplitAroundGivenValue(IntegerVariable positive_var,
IntegerValue value, Model* model);
// Returns decision corresponding to var <= round(lp_value). If the variable
// does not appear in the LP, this method returns kNoLiteralIndex.
LiteralIndex SplitAroundLpValue(IntegerVariable var, Model* model);
// Returns decision corresponding to var <= best_solution[var]. If no solution
// has been found, this method returns kNoLiteralIndex. This was suggested in
// paper: "Solution-Based Phase Saving for CP" (2018) by Emir Demirovic,
// Geoffrey Chu, and Peter J. Stuckey
LiteralIndex SplitDomainUsingBestSolutionValue(IntegerVariable var,
Model* model);
// Decision heuristic for SolveIntegerProblemWithLazyEncoding(). Returns a
// function that will return the literal corresponding to the fact that the
// first currently non-fixed variable value is <= its min. The function will
// return kNoLiteralIndex if all the given variables are fixed.
//
// Note that this function will create the associated literal if needed.
std::function<LiteralIndex()> FirstUnassignedVarAtItsMinHeuristic(
const std::vector<IntegerVariable>& vars, Model* model);
// Decision heuristic for SolveIntegerProblemWithLazyEncoding(). Like
// FirstUnassignedVarAtItsMinHeuristic() but the function will return the
// literal corresponding to the fact that the currently non-assigned variable
// with the lowest min has a value <= this min.
std::function<LiteralIndex()> UnassignedVarWithLowestMinAtItsMinHeuristic(
const std::vector<IntegerVariable>& vars, Model* model);
// Set the first unassigned Literal/Variable to its value.
//
// TODO(user): This is currently quadratic as we scan all variables to find the
// first unassigned one. Fix. Note that this is also the case in many other
// heuristics and should be fixed.
struct BooleanOrIntegerVariable {
BooleanVariable bool_var = kNoBooleanVariable;
IntegerVariable int_var = kNoIntegerVariable;
};
std::function<LiteralIndex()> FollowHint(
const std::vector<BooleanOrIntegerVariable>& vars,
const std::vector<IntegerValue>& values, Model* model);
// Combines search heuristics in order: if the i-th one returns kNoLiteralIndex,
// ask the (i+1)-th. If every heuristic returned kNoLiteralIndex,
// returns kNoLiteralIndex.
std::function<LiteralIndex()> SequentialSearch(
std::vector<std::function<LiteralIndex()>> heuristics);
// Changes the value of the given decision by 'var_selection_heuristic'. We try
// to see if the decision is "associated" with an IntegerVariable, and if it is
// the case, we choose the new value by the first 'value_selection_heuristics'
// that is applicable (return value != kNoLiteralIndex). If none of the
// heuristics are applicable then the given decision by
// 'var_selection_heuristic' is returned.
std::function<LiteralIndex()> SequentialValueSelection(
std::vector<std::function<LiteralIndex(IntegerVariable)>>
value_selection_heuristics,
std::function<LiteralIndex()> var_selection_heuristic, Model* model);
// Changes the value of the given decision by 'var_selection_heuristic'
// according to various value selection heuristics. Looks at the code to know
// exactly what heuristic we use.
std::function<LiteralIndex()> IntegerValueSelectionHeuristic(
std::function<LiteralIndex()> var_selection_heuristic, Model* model);
// Returns the LiteralIndex advised by the underliying SAT solver.
std::function<LiteralIndex()> SatSolverHeuristic(Model* model);
// Gets the branching variable using pseudo costs and combines it with a value
// for branching.
std::function<LiteralIndex()> PseudoCost(Model* model);
// Returns true if the number of variables in the linearized part represent
// a large enough proportion of all the problem variables.
bool LinearizedPartIsLarge(Model* model);
// A restart policy that restarts every k failures.
std::function<bool()> RestartEveryKFailures(int k, SatSolver* solver);
// A restart policy that uses the underlying sat solver's policy.
std::function<bool()> SatSolverRestartPolicy(Model* model);
// Appends model-owned automatic heuristics to input_heuristics in a new vector.
std::vector<std::function<LiteralIndex()>> AddModelHeuristics(
const std::vector<std::function<LiteralIndex()>>& input_heuristics,
Model* model);
// Concatenates each input_heuristic with a default heuristic that instantiate
// all the problem's Boolean variables, into a new vector.
std::vector<std::function<LiteralIndex()>> CompleteHeuristics(
const std::vector<std::function<LiteralIndex()>>& incomplete_heuristics,
const std::function<LiteralIndex()>& completion_heuristic);
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_INTEGER_SEARCH_H_