forked from google/or-tools
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlu_factorization.cc
576 lines (515 loc) · 19.6 KB
/
lu_factorization.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
// Copyright 2010-2018 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/glop/lu_factorization.h"
#include <cstddef>
#include "ortools/lp_data/lp_types.h"
#include "ortools/lp_data/lp_utils.h"
namespace operations_research {
namespace glop {
LuFactorization::LuFactorization()
: is_identity_factorization_(true),
col_perm_(),
inverse_col_perm_(),
row_perm_(),
inverse_row_perm_() {}
void LuFactorization::Clear() {
SCOPED_TIME_STAT(&stats_);
lower_.Reset(RowIndex(0), ColIndex(0));
upper_.Reset(RowIndex(0), ColIndex(0));
transpose_upper_.Reset(RowIndex(0), ColIndex(0));
transpose_lower_.Reset(RowIndex(0), ColIndex(0));
is_identity_factorization_ = true;
col_perm_.clear();
row_perm_.clear();
inverse_row_perm_.clear();
inverse_col_perm_.clear();
}
Status LuFactorization::ComputeFactorization(
const CompactSparseMatrixView& compact_matrix) {
SCOPED_TIME_STAT(&stats_);
Clear();
if (compact_matrix.num_rows().value() != compact_matrix.num_cols().value()) {
GLOP_RETURN_AND_LOG_ERROR(Status::ERROR_LU, "Not a square matrix!!");
}
GLOP_RETURN_IF_ERROR(markowitz_.ComputeLU(compact_matrix, &row_perm_,
&col_perm_, &lower_, &upper_));
inverse_col_perm_.PopulateFromInverse(col_perm_);
inverse_row_perm_.PopulateFromInverse(row_perm_);
ComputeTransposeUpper();
ComputeTransposeLower();
is_identity_factorization_ = false;
IF_STATS_ENABLED({
stats_.lu_fill_in.Add(GetFillInPercentage(compact_matrix));
stats_.basis_num_entries.Add(matrix.num_entries().value());
});
DCHECK(CheckFactorization(compact_matrix, Fractional(1e-6)));
return Status::OK();
}
void LuFactorization::RightSolve(DenseColumn* x) const {
SCOPED_TIME_STAT(&stats_);
if (is_identity_factorization_) return;
ApplyPermutation(row_perm_, *x, &dense_column_scratchpad_);
lower_.LowerSolve(&dense_column_scratchpad_);
upper_.UpperSolve(&dense_column_scratchpad_);
ApplyPermutation(inverse_col_perm_, dense_column_scratchpad_, x);
}
void LuFactorization::LeftSolve(DenseRow* y) const {
SCOPED_TIME_STAT(&stats_);
if (is_identity_factorization_) return;
// We need to interpret y as a column for the permutation functions.
DenseColumn* const x = reinterpret_cast<DenseColumn*>(y);
ApplyInversePermutation(inverse_col_perm_, *x, &dense_column_scratchpad_);
upper_.TransposeUpperSolve(&dense_column_scratchpad_);
lower_.TransposeLowerSolve(&dense_column_scratchpad_);
ApplyInversePermutation(row_perm_, dense_column_scratchpad_, x);
}
namespace {
// If non_zeros is empty, uses a dense algorithm to compute the squared L2
// norm of the given column, otherwise do the same with a sparse version. In
// both cases column is cleared.
Fractional ComputeSquaredNormAndResetToZero(
const std::vector<RowIndex>& non_zeros, DenseColumn* column) {
Fractional sum = 0.0;
if (non_zeros.empty()) {
sum = SquaredNorm(*column);
column->clear();
} else {
for (const RowIndex row : non_zeros) {
sum += Square((*column)[row]);
(*column)[row] = 0.0;
}
}
return sum;
}
} // namespace
Fractional LuFactorization::RightSolveSquaredNorm(const ColumnView& a) const {
SCOPED_TIME_STAT(&stats_);
if (is_identity_factorization_) return SquaredNorm(a);
non_zero_rows_.clear();
dense_zero_scratchpad_.resize(lower_.num_rows(), 0.0);
DCHECK(IsAllZero(dense_zero_scratchpad_));
for (const SparseColumn::Entry e : a) {
const RowIndex permuted_row = row_perm_[e.row()];
dense_zero_scratchpad_[permuted_row] = e.coefficient();
non_zero_rows_.push_back(permuted_row);
}
lower_.ComputeRowsToConsiderInSortedOrder(&non_zero_rows_);
if (non_zero_rows_.empty()) {
lower_.LowerSolve(&dense_zero_scratchpad_);
} else {
lower_.HyperSparseSolve(&dense_zero_scratchpad_, &non_zero_rows_);
upper_.ComputeRowsToConsiderInSortedOrder(&non_zero_rows_);
}
if (non_zero_rows_.empty()) {
upper_.UpperSolve(&dense_zero_scratchpad_);
} else {
upper_.HyperSparseSolveWithReversedNonZeros(&dense_zero_scratchpad_,
&non_zero_rows_);
}
return ComputeSquaredNormAndResetToZero(non_zero_rows_,
&dense_zero_scratchpad_);
}
Fractional LuFactorization::DualEdgeSquaredNorm(RowIndex row) const {
if (is_identity_factorization_) return 1.0;
SCOPED_TIME_STAT(&stats_);
const RowIndex permuted_row =
col_perm_.empty() ? row : ColToRowIndex(col_perm_[RowToColIndex(row)]);
non_zero_rows_.clear();
dense_zero_scratchpad_.resize(lower_.num_rows(), 0.0);
DCHECK(IsAllZero(dense_zero_scratchpad_));
dense_zero_scratchpad_[permuted_row] = 1.0;
non_zero_rows_.push_back(permuted_row);
transpose_upper_.ComputeRowsToConsiderInSortedOrder(&non_zero_rows_);
if (non_zero_rows_.empty()) {
transpose_upper_.LowerSolveStartingAt(RowToColIndex(permuted_row),
&dense_zero_scratchpad_);
} else {
transpose_upper_.HyperSparseSolve(&dense_zero_scratchpad_, &non_zero_rows_);
transpose_lower_.ComputeRowsToConsiderInSortedOrder(&non_zero_rows_);
}
if (non_zero_rows_.empty()) {
transpose_lower_.UpperSolve(&dense_zero_scratchpad_);
} else {
transpose_lower_.HyperSparseSolveWithReversedNonZeros(
&dense_zero_scratchpad_, &non_zero_rows_);
}
return ComputeSquaredNormAndResetToZero(non_zero_rows_,
&dense_zero_scratchpad_);
}
namespace {
// Returns whether 'b' is equal to 'a' permuted by the given row permutation
// 'perm'.
bool AreEqualWithPermutation(const DenseColumn& a, const DenseColumn& b,
const RowPermutation& perm) {
const RowIndex num_rows = perm.size();
for (RowIndex row(0); row < num_rows; ++row) {
if (a[row] != b[perm[row]]) return false;
}
return true;
}
} // namespace
void LuFactorization::RightSolveLWithPermutedInput(const DenseColumn& a,
ScatteredColumn* x) const {
SCOPED_TIME_STAT(&stats_);
if (!is_identity_factorization_) {
DCHECK(AreEqualWithPermutation(a, x->values, row_perm_));
lower_.ComputeRowsToConsiderInSortedOrder(&x->non_zeros);
if (x->non_zeros.empty()) {
lower_.LowerSolve(&x->values);
} else {
lower_.HyperSparseSolve(&x->values, &x->non_zeros);
}
}
}
template <typename Column>
void LuFactorization::RightSolveLInternal(const Column& b,
ScatteredColumn* x) const {
// This code is equivalent to
// b.PermutedCopyToDenseVector(row_perm_, num_rows, x);
// but it also computes the first column index which does not correspond to an
// identity column of lower_ thus exploiting a bit the hyper-sparsity
// of b.
ColIndex first_column_to_consider(RowToColIndex(x->values.size()));
const ColIndex limit = lower_.GetFirstNonIdentityColumn();
for (const auto e : b) {
const RowIndex permuted_row = row_perm_[e.row()];
(*x)[permuted_row] = e.coefficient();
x->non_zeros.push_back(permuted_row);
// The second condition only works because the elements on the diagonal of
// lower_ are all equal to 1.0.
const ColIndex col = RowToColIndex(permuted_row);
if (col < limit || lower_.ColumnIsDiagonalOnly(col)) {
DCHECK_EQ(1.0, lower_.GetDiagonalCoefficient(col));
continue;
}
first_column_to_consider = std::min(first_column_to_consider, col);
}
lower_.ComputeRowsToConsiderInSortedOrder(&x->non_zeros);
x->non_zeros_are_sorted = true;
if (x->non_zeros.empty()) {
lower_.LowerSolveStartingAt(first_column_to_consider, &x->values);
} else {
lower_.HyperSparseSolve(&x->values, &x->non_zeros);
}
}
void LuFactorization::RightSolveLForColumnView(const ColumnView& b,
ScatteredColumn* x) const {
SCOPED_TIME_STAT(&stats_);
DCHECK(IsAllZero(x->values));
x->non_zeros.clear();
if (is_identity_factorization_) {
for (const ColumnView::Entry e : b) {
(*x)[e.row()] = e.coefficient();
x->non_zeros.push_back(e.row());
}
return;
}
RightSolveLInternal(b, x);
}
void LuFactorization::RightSolveLWithNonZeros(ScatteredColumn* x) const {
if (is_identity_factorization_) return;
if (x->non_zeros.empty()) {
PermuteWithScratchpad(row_perm_, &dense_zero_scratchpad_, &x->values);
lower_.LowerSolve(&x->values);
return;
}
PermuteWithKnownNonZeros(row_perm_, &dense_zero_scratchpad_, &x->values,
&x->non_zeros);
lower_.ComputeRowsToConsiderInSortedOrder(&x->non_zeros);
x->non_zeros_are_sorted = true;
if (x->non_zeros.empty()) {
lower_.LowerSolve(&x->values);
} else {
lower_.HyperSparseSolve(&x->values, &x->non_zeros);
}
}
void LuFactorization::RightSolveLForScatteredColumn(const ScatteredColumn& b,
ScatteredColumn* x) const {
SCOPED_TIME_STAT(&stats_);
DCHECK(IsAllZero(x->values));
x->non_zeros.clear();
if (is_identity_factorization_) {
*x = b;
return;
}
if (b.non_zeros.empty()) {
*x = b;
return RightSolveLWithNonZeros(x);
}
RightSolveLInternal(b, x);
}
void LuFactorization::LeftSolveUWithNonZeros(ScatteredRow* y) const {
SCOPED_TIME_STAT(&stats_);
CHECK(col_perm_.empty());
if (is_identity_factorization_) return;
DenseColumn* const x = reinterpret_cast<DenseColumn*>(&y->values);
RowIndexVector* const nz = reinterpret_cast<RowIndexVector*>(&y->non_zeros);
transpose_upper_.ComputeRowsToConsiderInSortedOrder(nz);
y->non_zeros_are_sorted = true;
if (nz->empty()) {
upper_.TransposeUpperSolve(x);
} else {
upper_.TransposeHyperSparseSolve(x, nz);
}
}
void LuFactorization::RightSolveUWithNonZeros(ScatteredColumn* x) const {
SCOPED_TIME_STAT(&stats_);
CHECK(col_perm_.empty());
if (is_identity_factorization_) return;
// If non-zeros is non-empty, we use an hypersparse solve. Note that if
// non_zeros starts to be too big, we clear it and thus switch back to a
// normal sparse solve.
upper_.ComputeRowsToConsiderInSortedOrder(&x->non_zeros, 0.1, 0.2);
x->non_zeros_are_sorted = true;
if (x->non_zeros.empty()) {
transpose_upper_.TransposeLowerSolve(&x->values);
} else {
transpose_upper_.TransposeHyperSparseSolveWithReversedNonZeros(
&x->values, &x->non_zeros);
}
}
bool LuFactorization::LeftSolveLWithNonZeros(
ScatteredRow* y, ScatteredColumn* result_before_permutation) const {
SCOPED_TIME_STAT(&stats_);
if (is_identity_factorization_) {
// It is not advantageous to fill result_before_permutation in this case.
return false;
}
DenseColumn* const x = reinterpret_cast<DenseColumn*>(&y->values);
std::vector<RowIndex>* nz = reinterpret_cast<RowIndexVector*>(&y->non_zeros);
// Hypersparse?
transpose_lower_.ComputeRowsToConsiderInSortedOrder(nz);
y->non_zeros_are_sorted = true;
if (nz->empty()) {
lower_.TransposeLowerSolve(x);
} else {
lower_.TransposeHyperSparseSolveWithReversedNonZeros(x, nz);
}
if (result_before_permutation == nullptr) {
// Note(user): For the behavior of the two functions to be exactly the same,
// we need the positions listed in nz to be the "exact" non-zeros of x. This
// should be the case because the hyper-sparse functions makes sure of that.
// We also DCHECK() this below.
if (nz->empty()) {
PermuteWithScratchpad(inverse_row_perm_, &dense_zero_scratchpad_, x);
} else {
PermuteWithKnownNonZeros(inverse_row_perm_, &dense_zero_scratchpad_, x,
nz);
}
if (DEBUG_MODE) {
for (const RowIndex row : *nz) {
DCHECK_NE((*x)[row], 0.0);
}
}
return false;
}
// This computes the same thing as in the other branch but also keeps the
// original x in result_before_permutation. Because of this, it is faster to
// use a different algorithm.
ClearAndResizeVectorWithNonZeros(x->size(), result_before_permutation);
x->swap(result_before_permutation->values);
if (nz->empty()) {
for (RowIndex row(0); row < inverse_row_perm_.size(); ++row) {
const Fractional value = (*result_before_permutation)[row];
if (value != 0.0) {
const RowIndex permuted_row = inverse_row_perm_[row];
(*x)[permuted_row] = value;
}
}
} else {
nz->swap(result_before_permutation->non_zeros);
nz->reserve(result_before_permutation->non_zeros.size());
for (const RowIndex row : result_before_permutation->non_zeros) {
const Fractional value = (*result_before_permutation)[row];
const RowIndex permuted_row = inverse_row_perm_[row];
(*x)[permuted_row] = value;
nz->push_back(permuted_row);
}
y->non_zeros_are_sorted = false;
}
return true;
}
void LuFactorization::LeftSolveLWithNonZeros(ScatteredRow* y) const {
LeftSolveLWithNonZeros(y, nullptr);
}
ColIndex LuFactorization::LeftSolveUForUnitRow(ColIndex col,
ScatteredRow* y) const {
SCOPED_TIME_STAT(&stats_);
DCHECK(IsAllZero(y->values));
DCHECK(y->non_zeros.empty());
if (is_identity_factorization_) {
(*y)[col] = 1.0;
y->non_zeros.push_back(col);
return col;
}
const ColIndex permuted_col = col_perm_.empty() ? col : col_perm_[col];
(*y)[permuted_col] = 1.0;
y->non_zeros.push_back(permuted_col);
// Using the transposed matrix here is faster (even accounting the time to
// construct it). Note the small optimization in case the inversion is
// trivial.
if (transpose_upper_.ColumnIsDiagonalOnly(permuted_col)) {
(*y)[permuted_col] /= transpose_upper_.GetDiagonalCoefficient(permuted_col);
} else {
RowIndexVector* const nz = reinterpret_cast<RowIndexVector*>(&y->non_zeros);
DenseColumn* const x = reinterpret_cast<DenseColumn*>(&y->values);
transpose_upper_.ComputeRowsToConsiderInSortedOrder(nz);
y->non_zeros_are_sorted = true;
if (y->non_zeros.empty()) {
transpose_upper_.LowerSolveStartingAt(permuted_col, x);
} else {
transpose_upper_.HyperSparseSolve(x, nz);
}
}
return permuted_col;
}
const SparseColumn& LuFactorization::GetColumnOfU(ColIndex col) const {
if (is_identity_factorization_) {
column_of_upper_.Clear();
column_of_upper_.SetCoefficient(ColToRowIndex(col), 1.0);
return column_of_upper_;
}
upper_.CopyColumnToSparseColumn(col_perm_.empty() ? col : col_perm_[col],
&column_of_upper_);
return column_of_upper_;
}
double LuFactorization::GetFillInPercentage(
const CompactSparseMatrixView& matrix) const {
const int initial_num_entries = matrix.num_entries().value();
const int lu_num_entries =
(lower_.num_entries() + upper_.num_entries()).value();
if (is_identity_factorization_ || initial_num_entries == 0) return 1.0;
return static_cast<double>(lu_num_entries) /
static_cast<double>(initial_num_entries);
}
EntryIndex LuFactorization::NumberOfEntries() const {
return is_identity_factorization_
? EntryIndex(0)
: lower_.num_entries() + upper_.num_entries();
}
Fractional LuFactorization::ComputeDeterminant() const {
if (is_identity_factorization_) return 1.0;
DCHECK_EQ(upper_.num_rows().value(), upper_.num_cols().value());
Fractional product(1.0);
for (ColIndex col(0); col < upper_.num_cols(); ++col) {
product *= upper_.GetDiagonalCoefficient(col);
}
return product * row_perm_.ComputeSignature() *
inverse_col_perm_.ComputeSignature();
}
Fractional LuFactorization::ComputeInverseOneNorm() const {
if (is_identity_factorization_) return 1.0;
const RowIndex num_rows = lower_.num_rows();
const ColIndex num_cols = lower_.num_cols();
Fractional norm = 0.0;
for (ColIndex col(0); col < num_cols; ++col) {
DenseColumn right_hand_side(num_rows, 0.0);
right_hand_side[ColToRowIndex(col)] = 1.0;
// Get a column of the matrix inverse.
RightSolve(&right_hand_side);
Fractional column_norm = 0.0;
// Compute sum_i |basis_matrix_ij|.
for (RowIndex row(0); row < num_rows; ++row) {
column_norm += std::abs(right_hand_side[row]);
}
// Compute max_j sum_i |basis_matrix_ij|
norm = std::max(norm, column_norm);
}
return norm;
}
Fractional LuFactorization::ComputeInverseInfinityNorm() const {
if (is_identity_factorization_) return 1.0;
const RowIndex num_rows = lower_.num_rows();
const ColIndex num_cols = lower_.num_cols();
DenseColumn row_sum(num_rows, 0.0);
for (ColIndex col(0); col < num_cols; ++col) {
DenseColumn right_hand_side(num_rows, 0.0);
right_hand_side[ColToRowIndex(col)] = 1.0;
// Get a column of the matrix inverse.
RightSolve(&right_hand_side);
// Compute sum_j |basis_matrix_ij|.
for (RowIndex row(0); row < num_rows; ++row) {
row_sum[row] += std::abs(right_hand_side[row]);
}
}
// Compute max_i sum_j |basis_matrix_ij|
Fractional norm = 0.0;
for (RowIndex row(0); row < num_rows; ++row) {
norm = std::max(norm, row_sum[row]);
}
return norm;
}
Fractional LuFactorization::ComputeOneNormConditionNumber(
const CompactSparseMatrixView& matrix) const {
if (is_identity_factorization_) return 1.0;
return matrix.ComputeOneNorm() * ComputeInverseOneNorm();
}
Fractional LuFactorization::ComputeInfinityNormConditionNumber(
const CompactSparseMatrixView& matrix) const {
if (is_identity_factorization_) return 1.0;
return matrix.ComputeInfinityNorm() * ComputeInverseInfinityNorm();
}
Fractional LuFactorization::ComputeInverseInfinityNormUpperBound() const {
return lower_.ComputeInverseInfinityNormUpperBound() *
upper_.ComputeInverseInfinityNormUpperBound();
}
namespace {
// Returns the density of the sparse column 'b' w.r.t. the given permutation.
double ComputeDensity(const SparseColumn& b, const RowPermutation& row_perm) {
double density = 0.0;
for (const SparseColumn::Entry e : b) {
if (row_perm[e.row()] != kNonPivotal && e.coefficient() != 0.0) {
++density;
}
}
const RowIndex num_rows = row_perm.size();
return density / num_rows.value();
}
} // anonymous namespace
void LuFactorization::ComputeTransposeUpper() {
SCOPED_TIME_STAT(&stats_);
transpose_upper_.PopulateFromTranspose(upper_);
}
void LuFactorization::ComputeTransposeLower() const {
SCOPED_TIME_STAT(&stats_);
transpose_lower_.PopulateFromTranspose(lower_);
}
bool LuFactorization::CheckFactorization(const CompactSparseMatrixView& matrix,
Fractional tolerance) const {
if (is_identity_factorization_) return true;
SparseMatrix lu;
ComputeLowerTimesUpper(&lu);
SparseMatrix paq;
paq.PopulateFromPermutedMatrix(matrix, row_perm_, inverse_col_perm_);
if (!row_perm_.Check()) {
return false;
}
if (!inverse_col_perm_.Check()) {
return false;
}
SparseMatrix should_be_zero;
should_be_zero.PopulateFromLinearCombination(Fractional(1.0), paq,
Fractional(-1.0), lu);
for (ColIndex col(0); col < should_be_zero.num_cols(); ++col) {
for (const SparseColumn::Entry e : should_be_zero.column(col)) {
const Fractional magnitude = std::abs(e.coefficient());
if (magnitude > tolerance) {
VLOG(2) << magnitude << " != 0, at column " << col;
return false;
}
}
}
return true;
}
} // namespace glop
} // namespace operations_research