This repository contains inference and training code for PixelLink-like model networks. Models code is designed to enable export to a frozen graph and inference on CPU via OpenVINO™.
NOTE: Refer to the original implementation for details.
- Ubuntu* 16.04
- Python* 3.5.2
- TensorFlow* 2.0
- CUDA* 10.0
-
Create virtual environment:
virtualenv venv -p python3 --prompt="(td)"
-
Activate virtual environment and set up OpenVINO™ variables:
. venv/bin/activate
-
Install the module:
pip3 install -e .
A toy dataset located in ./data
. You can use it to do all steps including the following:
- data preparation
- model training
- model evaluation
NOTE: This dataset is considerably small. It is highly recommended to use at least several thousand images datasets like ICDAR-* (ICDAR 2013, ICDAR 2015, ICDAR 2017, ...), COCO-TEXT, MSRA-TD500, and others.
Use the annotation.py
module to convert the datasets listed above to the internal format and create TFRecord that is suitable for training.
To convert a toy dataset located in the ./data
folder,run the command:
python tools/prepare_annotation.py \
--type toy \
--images data \
--out_annotation data/annotation.json
To create TFRecordDataset, run the command:
python tools/create_dataset.py \
--input_datasets data/annotation.json \
--output data/annotation.tfrecord
To run training, run the following:
python tools/train.py \
--learning_rate 0.001 \
--train_dir model \
--train_dataset data/annotation.tfrecord \
--epochs_per_evaluation 100 \
--test_dataset data/annotation.tfrecord \
--model_type mobilenet_v2_ext \
--config configs/config.yaml
Parameter description
train_dir
- training directory where all snapshots and logs are storedlearning_rate
- estimation of how fast the model weighs are updated. Too high value might result in divergence, while too low value might be a reason of slow convergence.train_dataset
- path to the TFRecord dataset that can be created using steps listed in the dataset section of this document. It is used during training.batch_size
- batch size.test_dataset
- path to the TFRecord dataset that can be created using steps listed in the dataset section of this document. It is used during validation to compute F1-score, precision, and recall.epochs_per_evaluation
- the value showing how often the model is saved/evaluated
Optional:
weights
- weights of a pretrained model. Can increase convergence speed and result in a better model.
python tools/train.py \
--learning_rate 0.0001 \
--train_dir model \
--train_dataset data/annotation.tfrecord \
--epochs_per_evaluation 100 \
--test_dataset data/annotation.tfrecord \
--model_type mobilenet_v2_ext \
--config configs/config.yaml \
--weights init_weights/model_mobilenet_v2_ext/weights/model-523.save_weights
python tools/test.py \
--config model/configuration.yaml \
--dataset data/annotation.tfrecord \
--weights model/weights/model-500.save_weights
-
Freeze your model:
NOTE: Use the configuration file that appears in
train_dir
during training.python tools/export.py \ --resolution 1280 768 \ --config model/configuration.yaml \ --weights model/weights/model-500.save_weights
The command prints information about the frozen model and getting IR:
Operations number: 51.075934092 GFlops Output tensor names for using in InferenceEngine: model/link_logits_/add model/segm_logits/add Run model_optimizer to get IR: mo.py --input_model model/weights/export/frozen_graph.pb --reverse_input_channels
-
Run the Model Optimizer.
NOTE You need to install TF1.13 to use the Model Optimizer.
- Create and activate new virtual environment:
virtualenv venv_mo -p python3 --prompt="(td-mo)" . venv_mo/bin/activate
- Install modules and activate environment for OpenVINO™ :
pip3 install -r requirements-mo.txt source /opt/intel/openvino/bin/setupvars.sh
- Run the Model Optimizer tool to export frozen graph to IR:
mo.py --model_name text_detection \ --input_model model/weights/export/frozen_graph.pb \ --reverse_input_channels \ --data_type FP32 \ --output_dir IR
See https://github.com/opencv/open_model_zoo/tree/master/demos/text_detection_demo.