$ python3 tools/train.py \
--dataset coco2017 \
--max_image_size 800 1333 \
--bs 16 \
--bs_per_gpu 1 \
--lr 0.02 \
--max_iter 180000 \
--drop_lr 120000 160000 \
--model segmentoly.rcnn.model_zoo.resnet_panet_mask_rcnn.ResNeXt101PANetMaskRCNN \
--load_backbone data/pretrained_models/converted/imagenet/detectron/resnext101.pth
NOTE: This model is trained on 4 P100.
$ python3 tools/train.py \
--dataset coco2017 \
--max_image_size 480 640 \
--bs 16 \
--bs_per_gpu 4 \
--lr 0.02 \
--max_iter 90000 \
--drop_lr 60000 80000 \
--model segmentoly.rcnn.model_zoo.resnet_fpn_mask_rcnn.ResNeXt152FPNMaskRCNN \
--load_backbone data/pretrained_models/converted/imagenet/detectron/resnext152.pth
NOTE: This model is trained on 2 P100.
To train from ImageNet weights, run the command below:
$ python3 tools/train_0050.py
Find the fine-tuning sample in tools/finetune_0050.py
.
NOTE: Download checkpoints via
tools/download_pretrained_weights.py
first. Before running, make necessary changes to learning rate, batch size, number of training steps or other training parameters there.