diff --git a/tutorials/FITS-tables/FITS-tables_pt-br.ipynb b/tutorials/FITS-tables/FITS-tables_pt-br.ipynb
new file mode 100644
index 00000000..1b56000c
--- /dev/null
+++ b/tutorials/FITS-tables/FITS-tables_pt-br.ipynb
@@ -0,0 +1,679 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "RxmiCdE8m-Dn"
+ },
+ "source": [
+ "# Visualizando e manipulando dados de tabelas FITS\n",
+ "\n",
+ "## Autores\n",
+ "Lia Corrales, Kris Stern\n",
+ "\n",
+ "## Tradução\n",
+ "Lethycia Carvalho\n",
+ "\n",
+ "## Objetivos de Aprendizagem\n",
+ "* Descarregar um arquivo de tabela FITS de um endereço da web;\n",
+ "* Abrir um arquivo de tabela FITS e visualizar seu conteúdo;\n",
+ "* Produzir um histograma 2D com os dados da tabela;\n",
+ "* Fechar o arquivo FITS após o uso.\n",
+ "\n",
+ "## Palavras-chave\n",
+ "FITS, arquivo de entrada/saída, tabela, numpy, matplotlib, histograma.\n",
+ "\n",
+ "\n",
+ "## Sumário\n",
+ "\n",
+ "Este tutorial demonstra o uso do `astropy.utils.data` para descarregar um arquivo de dados de um endereço da web, e de `astropy.io.fits` and `astropy.table` para abrir o arquivo. Também demonstra como usar o `matplotlib` para visualizar estes dados em um histograma."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": true,
+ "id": "otqGYBnom-Dr"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "from astropy.io import fits\n",
+ "from astropy.table import Table\n",
+ "from matplotlib.colors import LogNorm\n",
+ "\n",
+ "# Configurar matplotlib\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ZHuMGmsKm-Ds"
+ },
+ "source": [
+ "A linha seguinte é necessária para descarregarmos os arquivos FITS que serão usados de exemplo neste tutorial."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": true,
+ "id": "fRJ9ZHfBm-Dt"
+ },
+ "outputs": [],
+ "source": [
+ "from astropy.utils.data import download_file"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "9lRFp440m-Du"
+ },
+ "source": [
+ "Arquivos FITS, geralmente, contêm grandes quantidades de tabelas e dados multidimensionais.\n",
+ "\n",
+ "Neste exemplo particular, abriremos um arquivo FITS de uma observação do Centro Galáctico realizada pelo Chandra. O arquivo contém uma lista de eventos (EVENTS) com coordenadas x e y, energia e várias outras informações."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "id": "s_dtFP06m-Du"
+ },
+ "outputs": [],
+ "source": [
+ "event_filename = download_file('http://data.astropy.org/tutorials/FITS-tables/chandra_events.fits', \n",
+ " cache=True)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "QuGuiHIdm-Dv"
+ },
+ "source": [
+ "## Abrindo o arquivo FITS e visualizando o conteúdo da tabela"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "xb80naZsm-Dw"
+ },
+ "source": [
+ "Já que o arquivo é grande, vamos abri-lo com o `memmap=True` para previnir problemas com o armazenamento da RAM."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": true,
+ "id": "x6fb8IYZm-Dw"
+ },
+ "outputs": [],
+ "source": [
+ "hdu_list = fits.open(event_filename, memmap=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "id": "UNl1QLqam-Dy",
+ "outputId": "e494543f-20e7-45b9-c24a-d06c564f7e57",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Filename: /root/.astropy/cache/download/url/333246bccb141ea3b4e86c49e45bf8d6/contents\n",
+ "No. Name Ver Type Cards Dimensions Format\n",
+ " 0 PRIMARY 1 PrimaryHDU 30 () \n",
+ " 1 EVENTS 1 BinTableHDU 890 483964R x 19C [1D, 1I, 1I, 1J, 1I, 1I, 1I, 1I, 1E, 1E, 1E, 1E, 1J, 1J, 1E, 1J, 1I, 1I, 32X] \n",
+ " 2 GTI 3 BinTableHDU 28 1R x 2C [1D, 1D] \n",
+ " 3 GTI 2 BinTableHDU 28 1R x 2C [1D, 1D] \n",
+ " 4 GTI 1 BinTableHDU 28 1R x 2C [1D, 1D] \n",
+ " 5 GTI 0 BinTableHDU 28 1R x 2C [1D, 1D] \n",
+ " 6 GTI 6 BinTableHDU 28 1R x 2C [1D, 1D] \n"
+ ]
+ }
+ ],
+ "source": [
+ "hdu_list.info()"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "PKht71E6m-Dy"
+ },
+ "source": [
+ "Nesse caso, estamos interessados em ler a tabela EVENTS, que contém informações sobre cada fóton de raios-X que atingiu o detector."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "FKPtH-c2m-Dz"
+ },
+ "source": [
+ "Para descobrirmos quais informações a tabela EVENTS contém, vamos imprimir os nomes das suas colunas."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "id": "dngNAXsTm-Dz",
+ "outputId": "f8f460df-604a-4dae-b617-33bcc1d533c4",
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "ColDefs(\n",
+ " name = 'time'; format = '1D'; unit = 's'\n",
+ " name = 'ccd_id'; format = '1I'\n",
+ " name = 'node_id'; format = '1I'\n",
+ " name = 'expno'; format = '1J'\n",
+ " name = 'chipx'; format = '1I'; unit = 'pixel'; coord_type = 'CPCX'; coord_unit = 'mm'; coord_ref_point = 0.5; coord_ref_value = 0.0; coord_inc = 0.023987\n",
+ " name = 'chipy'; format = '1I'; unit = 'pixel'; coord_type = 'CPCY'; coord_unit = 'mm'; coord_ref_point = 0.5; coord_ref_value = 0.0; coord_inc = 0.023987\n",
+ " name = 'tdetx'; format = '1I'; unit = 'pixel'\n",
+ " name = 'tdety'; format = '1I'; unit = 'pixel'\n",
+ " name = 'detx'; format = '1E'; unit = 'pixel'; coord_type = 'LONG-TAN'; coord_unit = 'deg'; coord_ref_point = 4096.5; coord_ref_value = 0.0; coord_inc = 0.00013666666666667\n",
+ " name = 'dety'; format = '1E'; unit = 'pixel'; coord_type = 'NPOL-TAN'; coord_unit = 'deg'; coord_ref_point = 4096.5; coord_ref_value = 0.0; coord_inc = 0.00013666666666667\n",
+ " name = 'x'; format = '1E'; unit = 'pixel'; coord_type = 'RA---TAN'; coord_unit = 'deg'; coord_ref_point = 4096.5; coord_ref_value = 266.41519201128; coord_inc = -0.00013666666666667\n",
+ " name = 'y'; format = '1E'; unit = 'pixel'; coord_type = 'DEC--TAN'; coord_unit = 'deg'; coord_ref_point = 4096.5; coord_ref_value = -29.012248288366; coord_inc = 0.00013666666666667\n",
+ " name = 'pha'; format = '1J'; unit = 'adu'; null = 0\n",
+ " name = 'pha_ro'; format = '1J'; unit = 'adu'; null = 0\n",
+ " name = 'energy'; format = '1E'; unit = 'eV'\n",
+ " name = 'pi'; format = '1J'; unit = 'chan'; null = 0\n",
+ " name = 'fltgrade'; format = '1I'\n",
+ " name = 'grade'; format = '1I'\n",
+ " name = 'status'; format = '32X'\n",
+ ")\n"
+ ]
+ }
+ ],
+ "source": [
+ "print(hdu_list[1].columns)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jggHCOJMm-D0"
+ },
+ "source": [
+ "Agora, converteremos estes dados em uma [tabela do astropy](http://docs.astropy.org/en/stable/table/). Embora seja possível acessar tabelas FITS diretamente com ``.data``, o uso de [Table](http://docs.astropy.org/en/stable/api/astropy.table.Table.html#astropy.table.Table) tende a tornar uma variedade de tarefas comuns mais convenientes."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": true,
+ "id": "yAon5Jdxm-D0"
+ },
+ "outputs": [],
+ "source": [
+ "evt_data = Table(hdu_list[1].data)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "BnWDdIdnm-D1"
+ },
+ "source": [
+ "Por exemplo, uma pré-visualização da tabela é facilmente obtida executando uma célula simples com o nome da tabela, definido na última linha:"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "id": "GUC9H2jQm-D1",
+ "outputId": "ebbd7377-aaf3-4315-a06f-48c0b1391aba",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 913
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/html": [
+ "
Table length=483964\n",
+ "
\n",
+ "time | ccd_id | node_id | expno | chipx | chipy | tdetx | tdety | detx | dety | x | y | pha | pha_ro | energy | pi | fltgrade | grade | status [32] |
\n",
+ "float64 | int16 | int16 | int32 | int16 | int16 | int16 | int16 | float32 | float32 | float32 | float32 | int32 | int32 | float32 | int32 | int16 | int16 | bool |
\n",
+ "238623220.9093583 | 3 | 3 | 68 | 920 | 8 | 5124 | 3981 | 5095.641 | 4138.995 | 4168.0723 | 5087.772 | 3548 | 3534 | 13874.715 | 951 | 16 | 4 | False .. False |
\n",
+ "238623220.9093583 | 3 | 1 | 68 | 437 | 237 | 4895 | 3498 | 4865.567 | 4621.1826 | 3662.1968 | 4915.9336 | 667 | 629 | 2621.1938 | 180 | 64 | 2 | False .. False |
\n",
+ "238623220.9093583 | 3 | 2 | 68 | 719 | 289 | 4843 | 3780 | 4814.835 | 4340.254 | 3935.2207 | 4832.552 | 3033 | 2875 | 12119.018 | 831 | 8 | 3 | False .. False |
\n",
+ "238623220.9093583 | 3 | 0 | 68 | 103 | 295 | 4837 | 3164 | 4807.3643 | 4954.385 | 3324.4644 | 4897.2754 | 831 | 773 | 3253.0364 | 223 | 0 | 0 | False .. False |
\n",
+ "238623220.9093583 | 3 | 1 | 68 | 498 | 314 | 4818 | 3559 | 4788.987 | 4560.3276 | 3713.6343 | 4832.735 | 3612 | 3439 | 14214.382 | 974 | 64 | 2 | False .. False |
\n",
+ "238623220.9093583 | 3 | 3 | 68 | 791 | 469 | 4663 | 3852 | 4635.4526 | 4268.053 | 3985.8496 | 4645.93 | 500 | 438 | 1952.7239 | 134 | 0 | 0 | False .. False |
\n",
+ "238623220.9093583 | 3 | 3 | 68 | 894 | 839 | 4293 | 3955 | 4266.642 | 4165.3203 | 4044.5469 | 4267.605 | 835 | 713 | 3267.5334 | 224 | 0 | 0 | False .. False |
\n",
+ "238623220.9093583 | 3 | 3 | 68 | 857 | 941 | 4191 | 3918 | 4164.815 | 4202.2256 | 3995.9353 | 4170.818 | 975 | 804 | 3817.0366 | 262 | 0 | 0 | False .. False |
\n",
+ "238623220.9093583 | 3 | 3 | 68 | 910 | 959 | 4173 | 3971 | 4146.9937 | 4149.364 | 4046.3376 | 4146.9106 | 576 | 446 | 2252.7295 | 155 | 0 | 0 | False .. False |
\n",
+ "238623220.9093583 | 3 | 3 | 68 | 961 | 962 | 4170 | 4022 | 4144.1284 | 4098.4976 | 4096.515 | 4138.09 | 1572 | 1354 | 6154.1094 | 422 | 0 | 0 | False .. False |
\n",
+ "... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
\n",
+ "238672393.54971933 | 1 | 3 | 15723 | 933 | 199 | 4933 | 5040 | 4902.907 | 3082.4956 | 5212.4995 | 4766.2295 | 1222 | 1181 | 4819.8286 | 331 | 0 | 0 | False .. False |
\n",
+ "238672393.54971933 | 1 | 2 | 15723 | 596 | 412 | 4720 | 4703 | 4691.51 | 3418.9893 | 4853.5117 | 4595.8037 | 3142 | 3020 | 12536.866 | 859 | 10 | 6 | False .. False |
\n",
+ "238672393.54971933 | 1 | 3 | 15723 | 1000 | 608 | 4524 | 5107 | 4494.713 | 3015.7185 | 5230.886 | 4353.018 | 658 | 585 | 2599.5652 | 179 | 0 | 0 | False .. False |
\n",
+ "238672393.54971933 | 1 | 1 | 15723 | 270 | 917 | 4215 | 4377 | 4188.3325 | 3743.5957 | 4472.07 | 4134.221 | 3861 | 3463 | 15535.768 | 1024 | 16 | 4 | False .. False |
\n",
+ "238672393.54971933 | 1 | 0 | 15723 | 232 | 988 | 4144 | 4339 | 4117.6147 | 3781.8774 | 4425.75 | 4068.4873 | 1680 | 1499 | 6653.0815 | 456 | 0 | 0 | False .. False |
\n",
+ "238672393.59075934 | 0 | 1 | 15723 | 366 | 103 | 3164 | 4766 | 3140.9048 | 3356.3208 | 4733.6816 | 3048.5664 | 3621 | 3602 | 14362.482 | 984 | 0 | 0 | False .. False |
\n",
+ "238672393.59075934 | 0 | 3 | 15723 | 937 | 646 | 3707 | 4195 | 3681.2122 | 3925.5452 | 4231.8354 | 3651.9724 | 3717 | 3486 | 14653.954 | 1004 | 8 | 3 | False .. False |
\n",
+ "238672393.59075934 | 0 | 1 | 15723 | 406 | 687 | 3748 | 4726 | 3723.4014 | 3396.252 | 4762.421 | 3631.7224 | 1676 | 1536 | 6652.827 | 456 | 0 | 0 | False .. False |
\n",
+ "238672393.59075934 | 0 | 1 | 15723 | 354 | 870 | 3931 | 4778 | 3906.07 | 3344.775 | 4834.99 | 3807.0835 | 2436 | 2165 | 9672.882 | 663 | 16 | 4 | False .. False |
\n",
+ "238672393.63179934 | 6 | 1 | 15723 | 384 | 821 | 3259 | 2523 | 3230.9204 | 5596.8496 | 2519.2202 | 3401.0327 | 491 | 356 | 1875.9359 | 129 | 0 | 0 | False .. False |
\n",
+ "
"
+ ],
+ "text/plain": [
+ "\n",
+ " time ccd_id node_id expno ... pi fltgrade grade status [32] \n",
+ " float64 int16 int16 int32 ... int32 int16 int16 bool \n",
+ "------------------ ------ ------- ----- ... ----- -------- ----- --------------\n",
+ " 238623220.9093583 3 3 68 ... 951 16 4 False .. False\n",
+ " 238623220.9093583 3 1 68 ... 180 64 2 False .. False\n",
+ " 238623220.9093583 3 2 68 ... 831 8 3 False .. False\n",
+ " 238623220.9093583 3 0 68 ... 223 0 0 False .. False\n",
+ " 238623220.9093583 3 1 68 ... 974 64 2 False .. False\n",
+ " 238623220.9093583 3 3 68 ... 134 0 0 False .. False\n",
+ " 238623220.9093583 3 3 68 ... 224 0 0 False .. False\n",
+ " 238623220.9093583 3 3 68 ... 262 0 0 False .. False\n",
+ " 238623220.9093583 3 3 68 ... 155 0 0 False .. False\n",
+ " 238623220.9093583 3 3 68 ... 422 0 0 False .. False\n",
+ " ... ... ... ... ... ... ... ... ...\n",
+ "238672393.54971933 1 3 15723 ... 331 0 0 False .. False\n",
+ "238672393.54971933 1 2 15723 ... 859 10 6 False .. False\n",
+ "238672393.54971933 1 3 15723 ... 179 0 0 False .. False\n",
+ "238672393.54971933 1 1 15723 ... 1024 16 4 False .. False\n",
+ "238672393.54971933 1 0 15723 ... 456 0 0 False .. False\n",
+ "238672393.59075934 0 1 15723 ... 984 0 0 False .. False\n",
+ "238672393.59075934 0 3 15723 ... 1004 8 3 False .. False\n",
+ "238672393.59075934 0 1 15723 ... 456 0 0 False .. False\n",
+ "238672393.59075934 0 1 15723 ... 663 16 4 False .. False\n",
+ "238672393.63179934 6 1 15723 ... 129 0 0 False .. False"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 8
+ }
+ ],
+ "source": [
+ "evt_data"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "i5OZrYKJm-D2"
+ },
+ "source": [
+ "Podemos extrair dados da tabela referenciando o nome da coluna. Vamos tentar fazer um histograma para a energia de cada fóton, o que vai nos dar uma noção do espectro (dobrado com a eficiência do detector)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "id": "5ts5Gq5Am-D2",
+ "outputId": "3af6a499-7557-414b-dae1-6ec389faa36a",
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 265
+ }
+ },
+ "outputs": [
+ {
+ "output_type": "display_data",
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD4CAYAAAAO9oqkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAWb0lEQVR4nO3df5Bd9Xnf8fenEGjsYEsYlSqS6Cqx6g72NLW8A3ScuB6TCkFci7aOB5Ipsq2Jpg20dp2OLeKZ4LFDBprWNIxjPEpRDR6CIMQeNAUHqxjq6YwFCIz5aazll5FGgIL4kZbGjtynf9yv8GW9q9Xee3f37u77NXNnz33O95z7nHOl+9zv9/y4qSokSYvb35rrBCRJc89iIEmyGEiSLAaSJCwGkiTg2LlOoFcnnXRSjYyMzHUakjSv3HvvvX9ZVcvGx+dtMRgZGWH37t1znYYkzStJnp4o7jCRJMliIEk6imKQZFuS55M8NMG830lSSU5qz5PkyiRjSR5Israr7cYke9pjY1f8XUkebMtcmSSD2jhJ0tE5mp7Bl4H144NJVgHrgB90hc8G1rTHZuCq1vZE4BLgdOA04JIkS9syVwG/1bXcT72WJGlmTVkMqupbwMEJZl0BfBLovrnRBuDa6tgFLEmyHDgL2FlVB6vqRWAnsL7Ne1NV7arOTZKuBc7tb5MkSdPV0zGDJBuAfVX13XGzVgDPdD3f22JHiu+dID7Z625OsjvJ7gMHDvSSuiRpAtMuBkneAPwu8HuDT+fIqmprVY1W1eiyZT91mqwkqUe99Ax+EVgNfDfJU8BK4L4kfxfYB6zqaruyxY4UXzlBXJI0i6ZdDKrqwar6O1U1UlUjdIZ21lbVs8AO4IJ2VtEZwMtVtR+4DViXZGk7cLwOuK3NeyXJGe0soguAmwe0bZKko3Q0p5ZeD3wbeFuSvUk2HaH5rcATwBjwJ8BvA1TVQeBzwD3t8dkWo7X5r22Zx4Gv97Ypi8/IllsY2XLLXKchaQGY8nYUVXX+FPNHuqYLuHCSdtuAbRPEdwPvmCoPSdLM8QpkSZLFYDFyeEnSePP2rqWaHj/8JR2JPYMh47d2SXPBYiBJshhIkiwGkiQsBpIkLAaSJCwGkiQsBpIkvOhswfEaBUm9sGcgSbIYSJIsBpIkLAaSJDyAvCB40FhSvywGi1h3EXnqsl+bw0wkzTWHiSRJFgNJksVAksRRFIMk25I8n+ShrtgfJvlekgeSfC3Jkq55FycZS/JYkrO64utbbCzJlq746iR3tfgNSY4b5AZKkqZ2ND2DLwPrx8V2Au+oqn8IfB+4GCDJqcB5wNvbMl9MckySY4A/Bs4GTgXOb20BLgeuqKq3Ai8Cm/raIknStE1ZDKrqW8DBcbFvVNWh9nQXsLJNbwC2V9UPq+pJYAw4rT3GquqJqvoRsB3YkCTA+4Cb2vLXAOf2uU2SpGkaxDGDjwJfb9MrgGe65u1tscnibwFe6iosh+MTSrI5ye4kuw8cODCA1CVJ0GcxSPJp4BBw3WDSObKq2lpVo1U1umzZstl4SUlaFHq+6CzJh4H3A2dWVbXwPmBVV7OVLcYk8ReAJUmObb2D7vaagFcbS5oJPRWDJOuBTwL/pKpe7Zq1A/jTJJ8Hfh5YA9wNBFiTZDWdD/vzgN+oqkpyB/BBOscRNgI397ox6p1XI0uL29GcWno98G3gbUn2JtkEfAE4AdiZ5P4kXwKoqoeBG4FHgL8ALqyqH7dv/RcBtwGPAje2tgCfAj6RZIzOMYSrB7qFkqQpTdkzqKrzJwhP+oFdVZcCl04QvxW4dYL4E3TONpIkzRGvQJYkWQwkSRYDSRIWA0kSFgNJEv7SmSbgNQfS4mPPQJJkMZAkWQwkSVgMJElYDCRJWAw0hZEtt3jbbGkRsBhIkiwGkiSLgSQJi4EkCYuBJAmLgSQJb1Q3L3hqp6SZZs9AkmQxkCQdRTFIsi3J80ke6oqdmGRnkj3t79IWT5Irk4wleSDJ2q5lNrb2e5Js7Iq/K8mDbZkrk2TQGylJOrKj6Rl8GVg/LrYFuL2q1gC3t+cAZwNr2mMzcBV0igdwCXA6cBpwyeEC0tr8Vtdy419LkjTDpjyAXFXfSjIyLrwBeG+bvga4E/hUi19bVQXsSrIkyfLWdmdVHQRIshNYn+RO4E1VtavFrwXOBb7ez0Zp8Pz1M2lh6/WYwclVtb9NPwuc3KZXAM90tdvbYkeK750gPqEkm5PsTrL7wIEDPaYuSRqv7wPIrRdQA8jlaF5ra1WNVtXosmXLZuMlJWlR6LUYPNeGf2h/n2/xfcCqrnYrW+xI8ZUTxCVJs6jXYrADOHxG0Ebg5q74Be2sojOAl9tw0m3AuiRL24HjdcBtbd4rSc5oZxFd0LUuSdIsmfIAcpLr6RwAPinJXjpnBV0G3JhkE/A08KHW/FbgHGAMeBX4CEBVHUzyOeCe1u6zhw8mA79N54yln6Vz4NiDx5I0y47mbKLzJ5l15gRtC7hwkvVsA7ZNEN8NvGOqPCRJM8crkCVJ3qhuWHlzOkmzyWKgafMCNGnhcZhIkmQxkCRZDGbFyJZbPAYgaahZDCRJFgNJksVAkoTFQJKE1xkMBQ8uS5pr9gwkSRYDSZLFQJKExUCShMVAkoTFQJKEp5aqT97OWloY7BlIkiwGkiSLgSSJPotBkn+f5OEkDyW5PsnfTrI6yV1JxpLckOS41vb49nyszR/pWs/FLf5YkrP62yRJ0nT1XAySrAD+HTBaVe8AjgHOAy4HrqiqtwIvApvaIpuAF1v8itaOJKe25d4OrAe+mOSYXvOSJE1fv8NExwI/m+RY4A3AfuB9wE1t/jXAuW16Q3tOm39mkrT49qr6YVU9CYwBp/WZl+aAv+gmzV89F4Oq2gf8J+AHdIrAy8C9wEtVdag12wusaNMrgGfasoda+7d0xydY5nWSbE6yO8nuAwcO9Jq6JGmcfoaJltL5Vr8a+HngjXSGeWZMVW2tqtGqGl22bNlMvpQkLSr9DBP9KvBkVR2oqr8Bvgq8G1jSho0AVgL72vQ+YBVAm/9m4IXu+ATLSJJmQT/F4AfAGUne0Mb+zwQeAe4APtjabARubtM72nPa/G9WVbX4ee1so9XAGuDuPvKSJE1Tz7ejqKq7ktwE3AccAr4DbAVuAbYn+f0Wu7otcjXwlSRjwEE6ZxBRVQ8nuZFOITkEXFhVP+41L0nS9PV1b6KqugS4ZFz4CSY4G6iq/hr49UnWcylwaT+5SJJ65xXIkiSLgSTJYiBJwmIgScIft9EM8AdvpPnHnoEkyWIgSbIYSJLwmMGscixd0rCyZyBJshhIkhwmmjP+IpikYWIx0IzyOIk0PzhMJEmyGEiSLAaSJCwGkiQsBpIkLAaSJCwGkiQsBpIk+iwGSZYkuSnJ95I8muQfJzkxyc4ke9rfpa1tklyZZCzJA0nWdq1nY2u/J8nGfjdKw2lkyy2vPSQNl357Bn8E/EVV/QPgl4BHgS3A7VW1Bri9PQc4G1jTHpuBqwCSnAhcApwOnAZccriASJJmR8/FIMmbgfcAVwNU1Y+q6iVgA3BNa3YNcG6b3gBcWx27gCVJlgNnATur6mBVvQjsBNb3mpckafr6uTfRauAA8N+S/BJwL/Ax4OSq2t/aPAuc3KZXAM90Lb+3xSaL/5Qkm+n0KjjllFP6SH3mORQiaT7pZ5joWGAtcFVVvRP4P/xkSAiAqiqg+niN16mqrVU1WlWjy5YtG9RqJWnR66dnsBfYW1V3tec30SkGzyVZXlX72zDQ823+PmBV1/IrW2wf8N5x8Tv7yEsLjHc+lWZez8Wgqp5N8kySt1XVY8CZwCPtsRG4rP29uS2yA7goyXY6B4tfbgXjNuAPug4arwMu7jUvLQwOsy1ek733fhGYWf3+nsG/Ba5LchzwBPAROkNPNybZBDwNfKi1vRU4BxgDXm1tqaqDST4H3NPafbaqDvaZlyRpGvoqBlV1PzA6wawzJ2hbwIWTrGcbsK2fXDS/OPQjDRd/6UzzyuEiYgFZfPwCMbO8HYUkyZ6BpOHgSQNzy56BJMliIEmyGEiah7z77eB5zEDSnPEDfXjYM5AkWQwkSRYDSRIeM9AQcNxYmnv2DCRJ9gwkzV/er2hw7BlIkuwZSJpdHiMaTvYMJEkWA0mSw0TSrPOgp4aRPQNJksVAkuQwkaQFwuG3/vTdM0hyTJLvJPnv7fnqJHclGUtyQ5LjWvz49nyszR/pWsfFLf5YkrP6zUmSND2DGCb6GPBo1/PLgSuq6q3Ai8CmFt8EvNjiV7R2JDkVOA94O7Ae+GKSYwaQlyTpKPU1TJRkJfBrwKXAJ5IEeB/wG63JNcBngKuADW0a4CbgC639BmB7Vf0QeDLJGHAa8O1+cpsLXkwjab7q95jBfwE+CZzQnr8FeKmqDrXne4EVbXoF8AxAVR1K8nJrvwLY1bXO7mUkado8fjB9PReDJO8Hnq+qe5O8d3ApHfE1NwObAU455ZTZeEkNKf+zzy/2modfP8cM3g18IMlTwHY6w0N/BCxJcrjIrAT2tel9wCqANv/NwAvd8QmWeZ2q2lpVo1U1umzZsj5SlyR167kYVNXFVbWyqkboHAD+ZlX9JnAH8MHWbCNwc5ve0Z7T5n+zqqrFz2tnG60G1gB395qXJGn6ZuI6g08B25P8PvAd4OoWvxr4SjtAfJBOAaGqHk5yI/AIcAi4sKp+PAN5SZImMZBiUFV3Ane26SfonA00vs1fA78+yfKX0jkjSZI0B7wCWVpEPPCuyXhvIkmSPQNpLvlNXcPCYiBpxgzD9QWHc7DYHpnDRJIkewaa/xxqkfpnz0CSZM+gX8MwJipJ/bIYaMFzGEmamsVgCn6QaKGaqbNs7C3PTx4zkCTZM5jIZN9s7CVI85f/f4/MYtDYtV14fE+lo+cwkSTJnoHfHiXJYiAteH7h0dGwGPTI/2DST/j/Yf6zGGhB8UNJ6o3FQFJPLLwLi8VAmiV+eGqYeWqpJMmegbTYeWWuoI+eQZJVSe5I8kiSh5N8rMVPTLIzyZ72d2mLJ8mVScaSPJBkbde6Nrb2e5Js7H+zJGlyI1tuee2hjn56BoeA36mq+5KcANybZCfwYeD2qrosyRZgC/Ap4GxgTXucDlwFnJ7kROASYBSotp4dVfViH7lJE/JbsDSxnotBVe0H9rfpv0ryKLAC2AC8tzW7BriTTjHYAFxbVQXsSrIkyfLWdmdVHQRoBWU9cH2vuUnz0SALld94NV0DOWaQZAR4J3AXcHIrFADPAie36RXAM12L7W2xyeITvc5mYDPAKaecMojUtYjZS5g+i8zC1XcxSPJzwJ8DH6+qV5K8Nq+qKkn1+xpd69sKbAUYHR0d2Hql6XzILeTC4Yf94tVXMUjyM3QKwXVV9dUWfi7J8qra34aBnm/xfcCqrsVXttg+fjKsdDh+Zz95SfNdr8XJD3P1qudikE4X4Grg0ar6fNesHcBG4LL29+au+EVJttM5gPxyKxi3AX9w+KwjYB1wca95SYuNBUCD0E/P4N3AvwIeTHJ/i/0unSJwY5JNwNPAh9q8W4FzgDHgVeAjAFV1MMnngHtau88ePpgszXd+UGu+6Odsov8FZJLZZ07QvoALJ1nXNmBbr7lIs8kDz1qIvAJZGgB7APOXxb3DYiD1wSKghcIb1UmSLAaSJIuBJAmLgSQJi4EkiUV6NpFngEjS69kzkCQtzp6BJE1kMV+AZs9AkmQxkCRZDCRJWAwkaUIjW25ZVGceWgwkSRYDSZLFQJKE1xlI0hEtlmsP7BlIkuwZSNLRWsi9BIuBJPVgoRWGoRkmSrI+yWNJxpJsmet8JGkxGYqeQZJjgD8G/imwF7gnyY6qemRuM5OkqU10cdp86y0MRTEATgPGquoJgCTbgQ2AxUDSvDTZ1cvDWiSGpRisAJ7per4XOH18oySbgc3t6f9O8tg0X+ck4C97ynB2mefgzZdc50ueMH9yHao8c/mks2Yrz783UXBYisFRqaqtwNZel0+yu6pGB5jSjDDPwZsvuc6XPGH+5GqeR2dYDiDvA1Z1PV/ZYpKkWTAsxeAeYE2S1UmOA84DdsxxTpK0aAzFMFFVHUpyEXAbcAywraoenoGX6nmIaZaZ5+DNl1znS54wf3I1z6OQqprL15ckDYFhGSaSJM0hi4EkaXEUg7m+1UWSVUnuSPJIkoeTfKzFP5NkX5L72+OcrmUubvk+luSs2dyWJE8lebDltLvFTkyyM8me9ndpiyfJlS2fB5Ks7VrPxtZ+T5KNA87xbV377f4kryT5+LDs0yTbkjyf5KGu2MD2YZJ3tfdorC2bAeb5h0m+13L5WpIlLT6S5P927dsvTZXPZNs8oDwH9l6nc/LKXS1+QzonsvRkklxv6MrzqST3t/ic7dOfUlUL+kHngPTjwC8AxwHfBU6d5RyWA2vb9AnA94FTgc8A/2GC9qe2PI8HVrf8j5mtbQGeAk4aF/uPwJY2vQW4vE2fA3wdCHAGcFeLnwg80f4ubdNLZ/A9fpbOxTRDsU+B9wBrgYdmYh8Cd7e2acuePcA81wHHtunLu/Ic6W43bj0T5jPZNg8oz4G918CNwHlt+kvAvxnkez9u/n8Gfm+u9+n4x2LoGbx2q4uq+hFw+FYXs6aq9lfVfW36r4BH6Vx1PZkNwPaq+mFVPQmM0dmOudyWDcA1bfoa4Nyu+LXVsQtYkmQ5cBaws6oOVtWLwE5g/QzldibweFU9fYQ2s7pPq+pbwMEJcuh7H7Z5b6qqXdX5RLi2a11951lV36iqQ+3pLjrX/Uxqinwm2+a+8zyCab3X7Rv3+4Cb+s1zqlzba30IuP5I65iNfTreYigGE93q4kgfxDMqyQjwTuCuFrqodce3dXX3Jst5tralgG8kuTedW4AAnFxV+9v0s8DJQ5IrdK5L6f7PNYz7FAa3D1e06fHxmfBROt9KD1ud5DtJ/meSX2mxI+Uz2TYPyiDe67cAL3UVwJncn78CPFdVe7piQ7FPF0MxGBpJfg74c+DjVfUKcBXwi8A/AvbT6T4Og1+uqrXA2cCFSd7TPbN9UxmKc5Lb2O4HgD9roWHdp68zTPtwMkk+DRwCrmuh/cApVfVO4BPAnyZ509Gubwa2eV681+Ocz+u/uAzNPl0MxWAobnWR5GfoFILrquqrAFX1XFX9uKr+H/AndLqxMHnOs7ItVbWv/X0e+FrL67nWdT3chX1+GHKlU7Duq6rnWs5DuU+bQe3Dfbx+6GbgOSf5MPB+4DfbBw5t2OWFNn0vnfH3vz9FPpNtc98G+F6/QGdo7thx8YFq6/8XwA1d2zA0+3QxFIM5v9VFGye8Gni0qj7fFV/e1eyfA4fPPtgBnJfk+CSrgTV0DibN+LYkeWOSEw5P0zmY+FB7ncNns2wEbu7K9YJ0nAG83LqwtwHrkixt3fd1LTZor/umNYz7tMtA9mGb90qSM9q/rQu61tW3JOuBTwIfqKpXu+LL0vntEZL8Ap19+MQU+Uy2zYPIcyDvdSt2dwAfnIk8u/wq8L2qem34Z6j26SCOQg/7g87ZGt+nU3U/PQev/8t0unIPAPe3xznAV4AHW3wHsLxrmU+3fB+j60yRmd4WOmdafLc9Hj78GnTGVW8H9gD/AzixxUPnh4keb9sy2rWuj9I5eDcGfGQGcn0jnW91b+6KDcU+pVOg9gN/Q2e8d9Mg9yEwSufD73HgC7S7CQwozzE6Y+uH/61+qbX9l+3fxP3AfcA/myqfybZ5QHkO7L1u/+7vbtv+Z8Dxg3zvW/zLwL8e13bO9un4h7ejkCQtimEiSdIULAaSJIuBJMliIEnCYiBJwmIgScJiIEkC/j94SPnleP3zeQAAAABJRU5ErkJggg==\n",
+ "text/plain": [
+ "