forked from czyssrs/Few-Shot-NLG
-
Notifications
You must be signed in to change notification settings - Fork 1
/
DataLoader.py
executable file
·265 lines (216 loc) · 9.34 KB
/
DataLoader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import time
import numpy as np
import encoder
import os
enc = encoder.get_encoder("117M")
class Preprocessor:
def __init__(self, data_dir, limits, eos, empty):
"""
Main dataloader
Args:
data_dir: str, path to data directory
limits:
eos: str, eos character
empty:
"""
self.data_dir = data_dir
self.limits = limits
self.man_text_len = 150
self.man_summary_len = 85
self.eos = eos
self.empty = empty
start_time = time.time()
print('Reading datasets ...')
self.train_set = self.load_data('train')
self.test_set = self.load_data('test')
self.dev_set = self.load_data('valid')
print('Reading datasets comsumes %.3f seconds' % (time.time() - start_time))
# load fieldid2word list len 3
self.fieldid2word = []
with open(data_dir + "/field2word.txt") as f:
for line in f:
word_list = line.strip().split("\t")[1].split(" ")
wordid_list = [int(tmp) for tmp in word_list]
assert len(wordid_list) == 3
self.fieldid2word.append(wordid_list)
self.fieldid2word = np.array(self.fieldid2word)
def load_file(self, file_path):
"""
Load file, limit to self.limits lines, convert to list of lists
Args:
file_path: str, file path
Returns:
List of lists of tokens
"""
data = open(file_path).read().strip().split('\n')
if self.limits > 0:
data = data[:self.limits]
print(len(data))
print(data[0].strip().split(' '))
d = [list(map(int, d.strip().split(' '))) for d in data]
return d
def load_data(self, split):
"""
Load all data
Args:
split: str, one of 'train', 'test' or 'valid'
Returns:
Dict of data
"""
subdir = os.path.join(self.data_dir, split)
file_path_suffixes = {'summary': '.summary.id',
'text': '.box.val.id',
'field': '.box.lab.id',
'pos': '.box.pos',
'rpos': '.box.rpos',
'dec': '_summary_field_id.txt',
'dec_pos': '_summary_pos.txt',
'dec_rpos': '_summary_rpos.txt',
'cont_path': '.context'}
all_data = {}
for fp in file_path_suffixes.keys():
file_path = os.path.join(subdir, split + file_path_suffixes[fp])
all_data[fp] = self.load_file(file_path)
return all_data
class DataLoader:
def __init__(self, data, domain, batch_size=64, shuffle=True, man_text_len=150,
man_summary_len=85, eos=50256, empty=2):
"""
Main dataloader
Args:
data_dir: dict, all the data
batch_size: int, batch size
shuffle: bool, Whether to shuffle data
domain: str, domain name
"""
self.data = data
self.domain = domain
self.batch_size = batch_size
self.man_text_len = man_text_len
self.man_summary_len = man_summary_len
self.eos = eos
self.empty = empty
self.data_size = len(data['summary'])
self.num_batches = int(self.data_size / batch_size) if self.data_size % batch_size == 0 \
else int(self.data_size / batch_size) + 1
if shuffle:
self.shuffle_all_data()
self.count = 0
def __iter__(self):
return self
def __next__(self):
if self.count < self.num_batches:
return self.get_batch()
else:
raise StopIteration
def __len__(self):
return self.num_batches
def reset(self):
self.count = 0
self.shuffle_all_data()
def shuffle_all_data(self):
"""
Shuffle all data
Returns:
None
"""
data_size = len(self.data['summary'])
shuffle_indices = np.random.permutation(np.arange(data_size))
for fp in self.data.keys():
self.data[fp] = np.array(self.data[fp])[shuffle_indices]
return
def get_zipped_batch(self, data, start_index, end_index):
"""
Get zipped batch of data given start and end index
Args:
data: Dict of data
start_index: int, start index
end_index: int, end index
Returns:
Iterable of batch data
"""
return zip(data['summary'][start_index:end_index],
data['text'][start_index:end_index],
data['field'][start_index:end_index],
data['pos'][start_index:end_index],
data['rpos'][start_index:end_index],
data['dec'][start_index:end_index],
data['dec_pos'][start_index:end_index],
data['dec_rpos'][start_index:end_index],
data['cont_path'][start_index:end_index])
def get_batch(self):
start_index = self.count * self.batch_size
end_index = min((self.count + 1) * self.batch_size, self.data_size)
self.count += 1
# print (self.count)
max_summary_len = max([len(sample) for sample in self.data['summary'][start_index:end_index]])
max_text_len = max([len(sample) for sample in self.data['text'][start_index:end_index]])
max_cont_len = max([len(sample) for sample in self.data['cont_path'][start_index:end_index]])
batch_data = {'enc_in': [], 'enc_fd': [], 'enc_pos': [], 'enc_rpos': [], 'enc_len': [],
'dec_in': [], 'dec_len': [], 'dec_out': [], 'oov_map': [], 'dec_field': [],
'dec_pos': [], 'dec_rpos': [], 'gpt_context': [], 'context': []}
data_subset = self.get_zipped_batch(self.data, start_index, end_index)
for summary, text, field, pos, rpos, dec_field, dec_pos, dec_rpos, cont_text in data_subset:
summary_len = len(summary)
text_len = len(text)
cont_len = len(cont_text)
pos_len = len(pos)
rpos_len = len(rpos)
assert text_len == len(field)
assert pos_len == len(field)
assert rpos_len == pos_len
assert len(dec_field) == len(summary)
gold = summary + [self.eos] * (max_summary_len - summary_len + 1)
# context = [self.eos] * (max_summary_len - summary_len) + summary
summary = summary + [self.eos] * (max_summary_len - summary_len)
# empty field id is 0
dec_field = dec_field + [0] * (max_summary_len - summary_len)
dec_pos = dec_pos + [0] * (max_summary_len - summary_len)
dec_rpos = dec_rpos + [0] * (max_summary_len - summary_len)
context = [self.empty] * (max_cont_len - cont_len) + cont_text
text = text + [self.empty] * (max_text_len - text_len)
field = field + [0] * (max_text_len - text_len)
pos = pos + [0] * (max_text_len - text_len)
rpos = rpos + [0] * (max_text_len - text_len)
if max_text_len > self.man_text_len:
text = text[:self.man_text_len]
context = context[-self.man_text_len:]
field = field[:self.man_text_len]
pos = pos[:self.man_text_len]
rpos = rpos[:self.man_text_len]
text_len = min(text_len, self.man_text_len)
elif max_cont_len > self.man_text_len:
context = context[-self.man_text_len:]
# OOM
if max_summary_len > self.man_summary_len:
gold = gold[:self.man_summary_len + 1]
summary = summary[:self.man_summary_len]
# context = context[-self.man_summary_len:]
dec_field = dec_field[:self.man_summary_len]
dec_pos = dec_pos[:self.man_summary_len]
dec_rpos = dec_rpos[:self.man_summary_len]
summary_len = min(summary_len, self.man_summary_len)
gpt_context = None
if self.domain == "humans":
gpt_context = " Biography : "
elif self.domain == "books":
gpt_context = " Book introduction : "
elif self.domain == "songs":
gpt_context = " Song introduction : "
gpt_context, _ = enc.encode(gpt_context)
batch_data['enc_in'].append(text) # value
batch_data['enc_len'].append(text_len) # value length
batch_data['enc_fd'].append(field) # field
batch_data['enc_pos'].append(pos) # field p+
batch_data['enc_rpos'].append(rpos) # field p-
batch_data['dec_in'].append(summary) # summary
batch_data['dec_len'].append(summary_len) # summary len
batch_data['dec_out'].append(gold) # padded summary
batch_data['dec_field'].append(dec_field) # masked summary
batch_data['dec_pos'].append(dec_pos) # summary pos
batch_data['dec_rpos'].append(dec_rpos) # summary rpos
batch_data['gpt_context'].append(gpt_context) # box for gpt input with domain name
batch_data['context'].append(context) # padded context
return batch_data