-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmodel.py
223 lines (189 loc) · 8.29 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import torch
import torch.nn as nn
class Transformer(nn.Module):
def __init__(self,
src_vocab_size,
trg_vocab_size,
src_pad_idx,
trg_pad_idx,
embed_dim,
n_blocks,
n_heads,
ff_hid_dim,
max_length,
dropout,
device):
super().__init__()
self.encoder = Encoder(src_vocab_size,
embed_dim,
n_blocks,
n_heads,
ff_hid_dim,
max_length,
dropout,
device)
self.decoder = Decoder(trg_vocab_size,
embed_dim,
n_blocks,
n_heads,
ff_hid_dim,
max_length,
dropout,
device)
self.src_pad_idx = src_pad_idx
self.trg_pad_idx = trg_pad_idx
self.device = device
def src_mask(self, src):
src_mask = (src != self.src_pad_idx).unsqueeze(1).unsqueeze(2)
return src_mask.to(self.device)
def trg_mask(self, trg):
N, trg_len = trg.shape
trg_pad_mask = (trg != self.trg_pad_idx).unsqueeze(1).unsqueeze(2)
trg_mask = torch.tril(torch.ones((trg_len, trg_len))).bool().to(self.device) & trg_pad_mask
return trg_mask.to(self.device)
def forward(self, src, trg):
src_mask = self.src_mask(src)
trg_mask = self.trg_mask(trg)
encoded = self.encoder(src, src_mask)
decoded = self.decoder(trg, encoded, trg_mask, src_mask)
return decoded
class MultiHeadAttention(nn.Module):
def __init__(self, embed_dim, n_heads, dropout):
super().__init__()
self.head_dim = embed_dim // n_heads
self.n_heads = n_heads
self.embed_dim = embed_dim
self.scale = embed_dim ** 0.5
self.keys = nn.Linear(embed_dim, embed_dim)
self.queries = nn.Linear(embed_dim, embed_dim)
self.values = nn.Linear(embed_dim, embed_dim)
self.proj = nn.Linear(embed_dim, embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, q, k, v, mask=None):
N = q.size(0) # batch_size
Q = self.queries(q) # shape: [N, query_len, embed_dim]
K = self.keys(k) # shape: [N, key_len, embed_dim]
V = self.values(v) # shape: [N, value_len, embed_dim]
Q = Q.view(N, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) # shape: [N, n_heads, query_len, head_dim]
K = K.view(N, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) # shape: [N, n_heads, key_len, head_dim]
V = V.view(N, -1, self.n_heads, self.head_dim).permute(0, 2, 1, 3) # shape: [N, n_heads, value_len, head_dim]
energy = (Q @ K.permute(0, 1, 3, 2)) / self.scale
if mask is not None:
energy = energy.masked_fill(mask == 0, -1e20)
attention = energy.softmax(-1) # shape: [N, n_heads, query_len, key_len]
x = self.dropout(attention) @ V # shape: [N, n_heads, query_len, key_len]
x = x.permute(0, 2, 1, 3).contiguous() # shape: [N, query_len, n_heads, head_dim]
x = x.view(N, -1, self.embed_dim) # shape: [N, query_len, embed_dim]
x = self.proj(x)
return x
class EncoderLayer(nn.Module):
def __init__(self, embed_dim, n_heads, ff_hid_dim, dropout):
super().__init__()
self.attention = MultiHeadAttention(embed_dim, n_heads, dropout)
self.norm1 = nn.LayerNorm(embed_dim)
self.mlp = nn.Sequential(
nn.Linear(embed_dim, ff_hid_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ff_hid_dim, embed_dim)
)
self.dropout = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(embed_dim)
def forward(self, src, mask):
attention = self.attention(src, src, src, mask)
x = self.norm1(attention + self.dropout(src))
out = self.mlp(x)
out = self.norm2(out + self.dropout(x))
return out
class Encoder(nn.Module):
def __init__(self, vocab_size, embed_dim, n_blocks, n_heads, ff_hid_dim, max_length, dropout, device):
super().__init__()
self.device = device
self.scale = embed_dim ** 0.5
self.tok_emb = nn.Embedding(vocab_size, embed_dim)
self.pos_emb = nn.Embedding(max_length, embed_dim)
self.blocks = nn.ModuleList([EncoderLayer(embed_dim, n_heads, ff_hid_dim, dropout)] * n_blocks)
self.dropout = nn.Dropout(dropout)
def forward(self, src, mask):
N, seq_len = src.shape
positions = torch.arange(0, seq_len).expand(N, seq_len).to(self.device)
pos_embeddings = self.pos_emb(positions)
tok_embeddings = self.tok_emb(src) * self.scale
out = self.dropout(pos_embeddings + tok_embeddings)
for block in self.blocks:
out = block(out, mask)
return out
class DecoderLayer(nn.Module):
def __init__(self, embed_dim, n_heads, ff_hid_dim, dropout):
super().__init__()
self.self_attention = MultiHeadAttention(embed_dim, n_heads, dropout) # decoder self-attention
self.norm1 = nn.LayerNorm(embed_dim)
self.joint_attention = MultiHeadAttention(embed_dim, n_heads, dropout) # encoder-decoder attention
self.norm2 = nn.LayerNorm(embed_dim)
self.mlp = nn.Sequential(
nn.Linear(embed_dim, ff_hid_dim),
nn.ReLU(),
nn.Dropout(dropout),
nn.Linear(ff_hid_dim, embed_dim)
)
self.norm3 = nn.LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
def forward(self, trg, src, trg_mask, src_mask):
trg_attention = self.self_attention(trg, trg, trg, trg_mask)
trg = self.norm1(trg + self.dropout(trg_attention))
joint_attention = self.joint_attention(trg, src, src, src_mask)
trg = self.norm2(trg + self.dropout(joint_attention))
out = self.mlp(trg)
out = self.norm3(trg + self.dropout(out))
return out
class Decoder(nn.Module):
def __init__(self, vocab_size, embed_dim, n_blocks, n_heads, ff_hid_dim, max_length, dropout, device):
super().__init__()
self.device = device
self.scale = embed_dim ** 0.5
self.tok_embedding = nn.Embedding(vocab_size, embed_dim)
self.pos_embedding = nn.Embedding(max_length, embed_dim)
self.dropout = nn.Dropout(dropout)
self.blocks = nn.ModuleList([DecoderLayer(embed_dim, n_heads, ff_hid_dim, dropout)] * n_blocks)
self.fc = nn.Linear(embed_dim, vocab_size)
def forward(self, trg, src, trg_mask, src_mask):
N, trg_len = trg.shape
positions = torch.arange(0, trg_len).expand(N, trg_len).to(self.device)
pos_embeddings = self.pos_embedding(positions)
tok_embeddings = self.tok_embedding(trg) * self.scale
trg = self.dropout(pos_embeddings + tok_embeddings)
for block in self.blocks:
trg = block(trg, src, trg_mask, src_mask)
output = self.fc(trg)
return output
if __name__ == "__main__":
torch.random.manual_seed(42)
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device = 'cpu'
n_blocks = 6
embed_dim = 512
n_heads = 8
ff_hid_dim = 4
max_length = 100
dropout = 0
src_pad_idx = 0
trg_pad_idx = 0
trg_vocab_size = 20
src_vocab_size = 20
src = torch.randint(1, 20, size=(16, 10)).to(device)
trg = torch.randint(1, 20, size=(16, 10)).to(device)
print(f'source: {src.cpu().numpy().tolist()}\ntarget: {trg.cpu().numpy().tolist()}')
model = Transformer(src_vocab_size,
trg_vocab_size,
src_pad_idx,
trg_pad_idx,
embed_dim,
n_blocks,
n_heads,
ff_hid_dim,
max_length,
dropout,
device).to(device)
out = model(src, trg)
print(f'output shape: {out.shape}')
print(f'output: {out.detach().cpu().numpy().tolist()}')