-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
173 lines (140 loc) · 5.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import logging
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import pandas as pd
from pathlib import Path
from datetime import datetime
RECORDS_FILEPATH = Path('data/records.csv')
# Create empty records if the records is empty.
if not RECORDS_FILEPATH.is_file():
df = pd.DataFrame({
'rank': pd.Series(dtype='int'),
'name': pd.Series(dtype='string'),
'datetime': pd.Series(dtype='datetime64[ns]'),
'duration_s': pd.Series(dtype='int'),
'avatar_url': pd.Series(dtype='string'),
})
df.to_csv(RECORDS_FILEPATH, index=False)
# Setup logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.StreamHandler(),
],
)
logger = logging.getLogger(__name__)
app = FastAPI(title="[Swiss Cycling North-to-South Challenge] Backend")
# CORS configuration
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"], # Allows all methods (GET, POST, etc.)
allow_headers=["*"], # Allows all headers
)
class Record(BaseModel):
name: str
datetime: str # Use a string for simplicity; can be parsed to datetime later
duration_s: int
@app.get("/")
async def get_root():
logger.info(f"Received GET /")
return {"message": "Welcome to the Swiss Cycling North-to-South Backend!"}
@app.get("/records")
async def get_records():
"""Get all the records saved on disk.
Raises:
HTTPException: 500 error if there is an issue loading the records.
"""
logger.info("Received GET /records")
# Load current records
try:
df = pd.read_csv(RECORDS_FILEPATH)
except Exception as e:
logger.error(f"Error loading records: {e}")
raise HTTPException(status_code=500, detail="Error loading records.")
return {"records": df.to_dict(orient='records')}
@app.get("/podium")
async def get_podium():
"""Get the records whose rank is 1,2,3.
Raises:
HTTPException: 500 error if there is an issue loading the records.
"""
logger.info(f"Received GET /podium")
# Load current records
try:
df = pd.read_csv(RECORDS_FILEPATH)
except Exception as e:
logger.error(f"Error loading records: {e}")
raise HTTPException(status_code=500, detail="Error loading records.")
# Only keep the top 3
df = df[df["rank"] <= 3]
return {"podium": df.to_dict(orient='records')}
@app.get("/add-dummy-records")
async def get_add_dummy_records():
"""Add 5 dummy records, meant for testing.
Raises:
HTTPException: 500 error if there is an issue loading the records.
HTTPException: 500 if there is an issue dumping the records to disk.
"""
logger.info(f"Received GET /add-dummy-records")
# Load current records
try:
df = pd.read_csv(RECORDS_FILEPATH)
except Exception as e:
logger.error(f"Error loading records: {e}")
raise HTTPException(status_code=500, detail="Error loading records.")
SOME_AVATAR_URL = "https://avatars.githubusercontent.com/u/38256417"
dummy_df = pd.DataFrame({
"name": ["This could be you", "This could also be you!", "You again, maybe", "Maybe you tomorrow?", "A you within reach"],
"datetime": [datetime(2020, 10, 31), datetime(2023, 1, 1), datetime(1997, 7, 25), datetime(2017, 8, 30), datetime(2019, 8, 30)],
"duration_s": [60000, 50000, 72300, 30044, 80000],
"avatar_url": [SOME_AVATAR_URL] * 5
})
df = pd.concat([df,dummy_df], ignore_index=True)
# Recompute ranks based on 'duration_s', 'datetime'
df = df.sort_values(by=['duration_s', 'datetime'])
df['rank'] = range(1, len(df)+1)
# Save the updated DataFrame back to CSV
try:
df.to_csv(RECORDS_FILEPATH, index=False)
except Exception as e:
logger.error("Error saving records: %s", e)
raise HTTPException(status_code=500, detail="Error saving records")
return {"message": "Record added successfully", "status": 200}
@app.post("/add-record")
async def post_add_record(record: Record):
"""Add the record to the list of record saved on disk.
Args:
record (Record): Record to be added.
Raises:
HTTPException: 500 if there is an issue loading the records from disk.
HTTPException: 500 if there is an issue dumping the records to disk.
"""
logger.info(f"Received POST /add-record with data: {record}")
# Load current records
try:
df = pd.read_csv(RECORDS_FILEPATH)
except Exception as e:
logger.error(f"Error loading records: {e}")
raise HTTPException(status_code=500, detail="Error loading records.")
# Append new record
new_record = {
'name': record.name,
'datetime': pd.to_datetime(record.datetime),
'duration_s': record.duration_s,
'avatar_url': pd.Series(dtype='string'),
}
df = pd.concat([df, pd.DataFrame(new_record)], ignore_index=True)
# Recompute ranks based on 'duration_s', 'datetime'
df = df.sort_values(by=['duration_s', 'datetime'])
df['rank'] = range(1, len(df)+1)
# Save the updated DataFrame back to CSV
try:
df.to_csv(RECORDS_FILEPATH, index=False)
except Exception as e:
logger.error("Error saving records: %s", e)
raise HTTPException(status_code=500, detail="Error saving records")
return {"message": "Record added successfully", "status": 200}